1. Let M be a $C^{\infty} n$-manifold; show that the tangent bundle $T M$ of M is orientable. (Hint: Consider the C^{∞} atlas on $T M$ derived from a C^{∞} atlas on M).
2. Let G be a Lie group. Show that G is orientable.
3. Let M be a $C^{\infty} n$-manifold, and let $\omega \in \Omega^{2}(M)$. The pair (M, ω) is called a symplectic manifold if:
(i) ω is closed (i.e. $d \omega=0$), and
(ii) ω is non-degenerate; i.e. $\forall p \in M: \omega(\mathbf{v}, \mathbf{w})=0, \forall \mathbf{w} \in T_{p} M \Rightarrow \mathbf{v}=0$.
ω is then called a symplectic structure on M.
(a) Show that if M admits a symplectic structure, then necessarily M is even-dimensional.
(b) Show that if M admits a symplectic structure, then necessarily M is orientable.
(c) Let M be an n-dimensional manifold, and consider the cotangent bundle $\pi: T^{\star} M \rightarrow M$. Let $\lambda \in \Omega^{1}\left(T^{\star} M\right)$ be defined by: $\forall(p, \alpha) \in T^{\star} M, \forall \mathbf{v} \in T_{(p, \alpha)}\left(T^{\star} M\right),\left\langle\lambda_{(p, \alpha)}, \mathbf{v}\right\rangle=\left\langle\alpha_{p}, \mathbf{T}_{(p, \alpha)} \pi(\mathbf{v})\left(\lambda\right.\right.$ is called the Liouville 1-form on $\left.T^{\star} M\right)$. Let $\omega=d \lambda ;$ show that $\left(T^{\star} M, \omega\right)$ is a symplectic manifold. (ω is called the canonical symplectic structure on $T^{\star} M$).
(d) Consider \mathbb{R}^{n} with the canonical global coordinate system $\left(q^{1}, \cdots, q^{n}\right)$, and let $\left(q^{1}, \cdots, q^{n}, p_{1}, \cdots, p_{n}\right)$ be the corresponding global chart of $T^{\star} \mathbb{R}^{n}$ (i.e. the element of $T^{\star} \mathbb{R}^{n}$ having coordinate values ($a^{1}, \cdots, a^{n}, b_{1}, \cdots, b_{n}$) is precisely the pair $\left(a, \sum_{i=1}^{n} b_{i} d q^{i}(a)\right)$, where $a=\left(a^{1}, \cdots, a^{n}\right)$. . Express the canonical symplectic structure of $T^{\star} \mathbb{R}^{n}$ using the coordinate functions $\left(q^{1}, \cdots, q^{n}, p_{1}, \cdots, p_{n}\right)$. (Note the choice of p 's and q 's for the coordinate functions \ldots. historical connections to classical mechanics: The q^{i} are the "position" variables, the p_{i} the "momentum" variables.)
(e) Let (M, ω) be a symplectic manifold, and let $H: M \rightarrow \mathbb{R}$ be a C^{∞} function (the "Hamiltonian"). We define a vector field X_{H} on M as follows: $\omega_{p}\left(X_{H}(p), \mathbf{v}\right)=d H(p), \forall p \in M, \forall \mathbf{v} \in T_{p} M$. Show that X_{H} is well-defined on M and $C^{\infty}\left(X_{H}\right.$ is called the Hamiltonian vector field corresponding to the Hamiltonian H).
(f) Consider now $T^{\star} \mathbb{R}^{n}$ with its canonical symplectic structure; let $H \in C^{\infty}\left(T^{\star} \mathbb{R}^{n}\right)$ be the Hamiltonian, and let X_{H} denote the corresponding Hamiltonian vector field. Write the equations for the integral curves of X_{H} in the canonical global chart of $T^{\star} \mathbb{R}^{n}$ (Hamilton's equations).
4. Recall that a subset F of \mathbb{R}^{n} has Lebesgue measure zero if $\forall \epsilon>0$ there exists a countable cover $\left(B_{i}\right)_{i \in \mathbb{N}}$ of F by open balls B_{i}, with respective radii r_{i}, such that $\sum_{i=0}^{\infty} r_{i}^{n}<\epsilon$. Let now M be a $C^{\infty} n$-manifold, and let $F \subset M$.
(a) Show that the notion of F having (Lebesgue) measure zero is well-defined.
(b) Let F have zero measure, and let $\omega \in \Omega_{c}^{n}(M)$. Show that $\int_{M \backslash F} \omega=\int_{M} \omega$.
5. Let $n \in \mathbb{N}^{\star}$, and consider the inclusion mapping $S^{n} \hookrightarrow \mathbb{R}^{n+1} \backslash\{0\}$, where S^{n} is the unit sphere of $\mathbb{R}^{n+1} \backslash\{0\}$. Consider the C^{∞} n-form on $\mathbb{R}^{n+1} \backslash\{0\}$ defined by $\omega_{0}=\sum_{i=0}^{n}(-1)^{i} x^{i} d x^{0} \wedge \cdots \wedge \widehat{d x^{i}} \cdots \wedge d x^{n}$, and recall that the $C^{\infty} n$-form on S^{n} defined by $\omega_{S^{n}}=i^{\star}\left(\omega_{0}\right)$ is an orientation form on S^{n}. Compute $\int_{S^{n}} \omega_{S^{n}}$ and deduce from this that $\omega_{S^{n}}$ is not an exact form on S^{n}. (Hint: Use Problem (4) to reduce the integration to an open subset of S^{n} on which spherical coordinates yield a global coordinate chart).
