- 1. Draw sketches of the following varieties in \mathbb{A}^3 (with coordinates x, y, and z).
 - (a) $z^2 x^2 y^2 = 0$
 - (b) $y x^2 = 0$.
 - (c) $(y x^2)(z 1) = 0$
 - (d) $x^2 + y^2 1 = 0.$
 - (e) $x^2 + y^2 1 = 0, z^2 1 = 0.$
 - (f) $x^2 + y^2 1 = 0, z^2 x^2 y^2 = 0.$

(Of course, you only have to draw the real points, i.e, solutions in \mathbb{R}^3 .)

Part (e) is the intersection of (a) and the planes z = 1 and z = -1, while part (f) is the intersection of (a) and (d). Both intersections are the same. One way to see this without doing the intersections is to notice that the ideals $\langle x^2 + y^2 - 1, z^2 - 1 \rangle$ and $\langle x^2 + y^2 - 1, z - x^2 - y^2 \rangle$ are equal (see the answer to 2(c)), and hence their zero loci are also equal.

2. (Computing in quotient rings)

(a) Show that $\frac{k[x,y,z]}{\langle x^2-y,x^3-z\rangle} \cong k[x].$

Recall that a ring A is called a *domain* if whenever $a_1, a_2 \in A$ are not zero, then $a_1 \cdot a_2 \neq 0$.

- (b) Show that $A = \frac{k[x,y,z]}{\langle (y-x^2)(z-1) \rangle}$ is not a domain.
- (c) Is $B = \frac{k[x,y,z]}{\langle x^2 + y^2 1, z^2 x^2 y^2 \rangle}$ a domain?

NOTES: (1) To show that a ring is *not* a domain, you need to find two elements f_1 and f_2 of A such that $f_1 \neq 0$, $f_2 \neq 0$, but $f_1 f_2 = 0$. Since our rings are rings of functions on algebraic varieties, one way to show that a function is not zero is to evaluate it at a point of the corresponding variety. (2) You have already drawn pictures of the geometric shapes corresponding to the rings in 2(b,c).

Solutions.

(a) Let $J = \langle y - x^2, z - x^3 \rangle$. From the definition of J we have $y \equiv x^2 \mod J$ and $z \equiv x^3 \mod J$. Therefore in the quotient ring k[x, y, z]/J we can replace any y by x^2 and any z by x^3 , leaving a polynomial only in x. This shows that k[x, y, z]/J is k[x], or possibly smaller, if J also contains a polynomial only in x.

To see that the quotient *is* only k[x] and no smaller, one way is to note that if there were a non-zero polynomial q(x) in the ideal J, it would imply that all the points (x, y, z) satisfying the equations $y = x^2$ and $z = x^3$ would also satisfy the equation q(x). But q(x) is a polynomial in one variable, so has finitely many roots. I.e., if there were a non-zero $q(x) \in J$ it would imply that there are only finitely many possible x-coordinates among the points (x, y, z) satisfying the conditions $y = x^2$ and $z = x^3$. But the points (t, t^2, t^3) with $t \in k$ give infinitely many points satisfying these equations with different x-coordinates, and therefore no such q(x)exists. We conclude that $k[x, y, z]/J \cong k[x]$.

Alternate Solution. Consider the homomorphism $\psi \colon k[x, y, z] \longrightarrow k[x]$ defined by $\psi(x) = x, \ \psi(y) = x^2$, and $\psi(z) = x^3$. This map is evidently surjective. Let $I = \operatorname{Ker}(\psi)$. Since $\psi(y - x^2) = x^2 - x^2 = 0$ and $\psi(z - x^3) = x^3 - x^3 = 0$ we see that both $y - x^2$ and $z - x^3$ are in I, and therefore that $J \subseteq I$. Thus the map ψ factors through the quotient map $\pi \colon k[x, y, z] \longrightarrow k[x, y, z]/J$, i.e., there exists a map $\varphi \colon k[x, y, z]/J \longrightarrow k[x]$ such that $\psi = \varphi \circ \pi$:

Since ψ is surjective, so is φ . To show that φ is an isomorphism we then only need to show that φ is injective (or, equivalently, that $I \subseteq J$).

Let A = k[x, y, z]/J. An element of A is a coset of J. By the substitution arguments from part (a), every polynomial in k[x, y, z] is congruent, modulo J, to a polynomial q(x) only in x. This is the same as saying that the composite map

$$k[x] \stackrel{\imath}{\hookrightarrow} k[x, y, z] \stackrel{\pi}{\longrightarrow} A$$

is surjective, where i is the natural inclusion and π the quotient map.

The composition $\varphi \circ \pi$ is ψ , and $\psi \circ i$ is the map $k[x] \longrightarrow k[x]$ sending x to x, i.e., is the identity map. Thus $\varphi \circ (\pi \circ i) = (\varphi \circ \pi) \circ i = \psi \circ i = 1_{k[x]}$. Putting this together we have the maps

Since the composition $\varphi \circ (\pi \circ i) = 1_{k[x]}$ is injective (it is the identity map!), and $\pi \circ i$ is surjective, we conclude that φ is also surjective.

(b) The variety cut out by the equation $(y - x^2)(z - 1) = 0$ is the one pictured in 1(c).

Let $f = y - x^2$ and g = z - 1, and let X be the variety $(y - x^2)(z - 1) = 0$. Let \overline{f} and \overline{g} be the images of f and g in

$$k[X] = k[x, y, z] / \langle (y - x^2)(z - 1) \rangle.$$

 $X: (y - x^2)(z - 1) = 0$

From the definition of the quotient, it is clear that $\overline{fg} = 0$, so to show that k[X] is not a domain it is sufficient

to show that $f \neq 0$ and $\overline{g} \neq 0$. Following the suggestion, we look for points on X where \overline{f} and \overline{g} take on nonzero values.

The point (2, 2, 1) is on X (it is on the plane z = 1) and $f(2, 2, 1) = 2 - 2^2 \neq 0$. This shows that $\overline{f} \neq 0$. The point (2, 4, 0) is on X (it is on the stretched parabola $y - x^2 = 0$), and $g(2, 4, 0) = 0 - 1 = -1 \neq 0$, so $\overline{g} \neq 0$. Therefore k[X] is not a domain.

(c) The ring $k[x, y, z]/\langle x^2 + y^2 - 1, z^2 - x^2 - y^2 \rangle$ is not a domain.

As the pictures in 1(e) and 1(f) suggest, the ideals $I := \langle x^2 + y^2 - 1, z^2 - x^2 - y^2 \rangle$ and $J := \langle x^2 + y^2 - 1, z^2 - 1 \rangle$ are equal. This is straightforward to see algebraically. Since $(z^2 - x^2 - y^2) + (x^2 + y^2 - 1) = z^2 - 1$ we see that $z^2 - 1 \in I$ so that $J \subseteq I$. Conversely since $(z^2-1) - (x^2+y^2-1) = z^2 - x^2 - y^2$ we see that $z^2 - x^2 - y^2 \in J$ so that $I \subseteq J$. Therefore I = J.

Let X be the affine variety defined by the equations $x^2 + y^2 - 1 = 0$ and $z^2 - 1 = 0$. As question 1(f) shows, X is a union of two disjoint circles. From the equations we see that k[X] = k[x, y, z]/J, so that $(\overline{z} - 1)(\overline{z} + 1) = \overline{z}^2 - 1 = 0 \in k[X]$. Therefore to show that k[X] is not a domain it is sufficient to show that $\overline{z} - 1 \neq 0$ and $\overline{z} + 1 \neq 0$ in k[X]. We do this by the same method above: finding points of X where the two functions are not zero.

Set $f = \overline{z} - 1$ and $g = \overline{z} + 1$. The point (1, 0, 1) is on X (it is on the top circle). Since $g(1, 0, 1) = 1 + 1 = 2 \neq 0$, the function g is not zero on X. The point (1, 0, -1) is also on X (it is on the bottom circle). Since $f(1, 0, -1) = -1 - 1 = -2 \neq 0$ the function f is not zero on X. Therefore k[X] is not a domain, as claimed.

3. (Morphisms)

- (a) Let $\varphi \colon \mathbb{A}^1 \longrightarrow \mathbb{A}^3$ be given by $\varphi(t) = (t, t^2, t^3)$. Show that the image of φ is contained in the variety defined by the equations $y x^2 = 0$, $z x^3 = 0$.
- (b) Describe the ring homorphism from $k[x, y, z]/\langle y x^2, z x^3 \rangle$ to k[t] given by particular, where do $\overline{x}, \overline{y}$, and \overline{z} get sent?) Is φ^* surjective? Injective?
- (c) Let X be $\{(u, v, w) | u^2 + v^2 + w^2 = 1\} \subset \mathbb{A}^3$, and Y the affine variety $\{(x, y, z, w) | xy zw = 0\} \subset \mathbb{A}^4$. Does $\varphi = (1 + u, 1 u, v + iw, v iw)$ induce a map from X to Y? (Here *i* is the square root of -1.) If so analyze φ^* as in part (*b*).

Solutions.

- (a) Let $f = y x^2$ and $g = z x^3$. Since $f(t, t^2, t^3) = t^2 (t)^2 = 0$ and $g(t, t^2, t^3) = t^3 (t)^3 = 0$ the image of φ lies in the variety defined by the equations $y x^2 = 0$ and $z x^3 = 0$.
- (b) Let X be this variety, with ring of functions $k[x, y, z]/\langle y-x^2, z-x^3 \rangle$. The functions $\overline{x}, \overline{y}$, and \overline{z} are the restrictions of the coordinate functions to X, so pulling back by φ we have

$$\varphi^*(\overline{x}) = t, \ \varphi^*(\overline{y}) = t^2, \ \text{and} \ \varphi^*(\overline{z}) = t^3,$$

These formulas show that the map φ^* is surjective: the image of φ^* contains t, and hence any polynomial in t, and that is precisely the ring k[t].

The map φ^* is also injective. By 2(a) $k[X] \cong k[x]$, and the map φ^* on k[x] is simply the map "substitute x = t", and induces an isomorphism from k[x] to k[t]. (Thus, by previous results from class, X is isomorphic to \mathbb{A}^1 .) (c) Since

$$(1-u)(1+u) - (v+iw)(v-iw) = (1-u^2) - (v^2+w^2) = 1 - u^2 - v^2 - w^2 = 0 \in k[X],$$

for every point $(u, v, w) \in X$, $\varphi(u, v, w)$ satisfies the equation defining Y, and so φ does induce a map from X to Y.

The pullbacks of the coordinate functions on Y are

$$\varphi^*(\overline{x}) = 1 + u, \ \varphi^*(\overline{y}) = 1 - u, \ \varphi^*(\overline{z}) = v + iw, \ \text{and} \ \varphi^*(\overline{w}) = v - iw,$$

from which we conclude that $\varphi^*(\overline{x}-1) = u$, $\varphi^*(\frac{1}{2}(\overline{z}+\overline{w})) = v$, and $\varphi^*(\frac{1}{2i}(\overline{z}-\overline{w}) = w$.

In other words, the image of φ^* contains u, v, and w. Since these generate $k[X] = k[u, v, w]/(u^2 + v^2 + w^2 - 1)$, this means that the map φ^* is surjective.

However, the map is not injective: $\varphi^*(\overline{x} + \overline{y} - 2) = (1 + u) + (1 - u) - 2 = 0$, and the equation $\overline{x} + \overline{y} - 2$ is not zero in k[Y]. For instance, the point $(2, 3, 1, 6) \in Y$ and $2 + 3 - 2 = 3 \neq 0$. Therefore the map φ^* is a surjection but not an injection. In particular, since φ^* is not an isomorphism, the map φ is not an isomorphism either.