1. Draw sketches of the following varieties in \mathbb{A}^{3} (with coordinates x, y, and z).
(a) $z^{2}-x^{2}-y^{2}=0$
(b) $y-x^{2}=0$.
(c) $\left(y-x^{2}\right)(z-1)=0$
(d) $x^{2}+y^{2}-1=0$.
(e) $x^{2}+y^{2}-1=0, z^{2}-1=0$.
(f) $x^{2}+y^{2}-1=0, z^{2}-x^{2}-y^{2}=0$.
(Of course, you only have to draw the real points, i.e, solutions in \mathbb{R}^{3}.)

Solutions.

(a)	(b) Stretched Parabola	(c) Stretched Parabola union the Plane $z=1$
(d)	(e)	(f)
Cylinder	Two Circles	The Same Two Circles

Part (e) is the intersection of (a) and the planes $z=1$ and $z=-1$, while part (f) is the intersection of (a) and (d). Both intersections are the same. One way to see this without doing the intersections is to notice that the ideals $\left\langle x^{2}+y^{2}-1, z^{2}-1\right\rangle$ and $\left\langle x^{2}+y^{2}-1, z-x^{2}-y^{2}\right\rangle$ are equal (see the answer to $2(\mathrm{c})$), and hence their zero loci are also equal.

2. (Computing in quotient Rings)

(a) Show that $\frac{k[x, y, z]}{\left\langle x^{2}-y, x^{3}-z\right\rangle} \cong k[x]$.

Recall that a ring A is called a domain if whenever $a_{1}, a_{2} \in A$ are not zero, then $a_{1} \cdot a_{2} \neq 0$.
(b) Show that $A=\frac{k[x, y, z]}{\left\langle\left(y-x^{2}\right)(z-1)\right\rangle}$ is not a domain.
(c) Is $B=\frac{k[x, y, z]}{\left\langle x^{2}+y^{2}-1, z^{2}-x^{2}-y^{2}\right\rangle}$ a domain?

Notes: (1) To show that a ring is not a domain, you need to find two elements f_{1} and f_{2} of A such that $f_{1} \neq 0, f_{2} \neq 0$, but $f_{1} f_{2}=0$. Since our rings are rings of functions on algebraic varieties, one way to show that a function is not zero is to evaluate it at a point of the corresponding variety. (2) You have already drawn pictures of the geometric shapes corresponding to the rings in $2(b, c)$.

Solutions.

(a) Let $J=\left\langle y-x^{2}, z-x^{3}\right\rangle$. From the definition of J we have $y \equiv x^{2} \bmod J$ and $z \equiv x^{3} \bmod J$. Therefore in the quotient ring $k[x, y, z] / J$ we can replace any y by x^{2} and any z by x^{3}, leaving a polynomial only in x. This shows that $k[x, y, z] / J$ is $k[x]$, or possibly smaller, if J also contains a polynomial only in x.

To see that the quotient is only $k[x]$ and no smaller, one way is to note that if there were a non-zero polynomial $q(x)$ in the ideal J, it would imply that all the points (x, y, z) satisfying the equations $y=x^{2}$ and $z=x^{3}$ would also satisfy the equation $q(x)$. But $q(x)$ is a polynomial in one variable, so has finitely many roots. I.e., if there were a non-zero $q(x) \in J$ it would imply that there are only finitely many possible x-coordinates among the points (x, y, z) satisfying the conditions $y=x^{2}$ and $z=x^{3}$. But the points $\left(t, t^{2}, t^{3}\right)$ with $t \in k$ give infinitely many points satisfying these equations with different x-coordinates, and therefore no such $q(x)$ exists. We conclude that $k[x, y, z] / J \cong k[x]$.

Alternate Solution. Consider the homomorphism $\psi: k[x, y, z] \longrightarrow k[x]$ defined by $\psi(x)=x, \psi(y)=x^{2}$, and $\psi(z)=x^{3}$. This map is evidently surjective. Let $I=\operatorname{Ker}(\psi)$. Since $\psi\left(y-x^{2}\right)=x^{2}-x^{2}=0$ and $\psi\left(z-x^{3}\right)=x^{3}-x^{3}=0$ we see that both $y-x^{2}$ and $z-x^{3}$ are in I, and therefore that $J \subseteq I$. Thus the map ψ factors through the quotient map $\pi: k[x, y, z] \longrightarrow k[x, y, z] / J$, i.e,. there exists a $\operatorname{map} \varphi: k[x, y, z] / J \longrightarrow k[x]$ such that $\psi=\varphi \circ \pi$:

Since ψ is surjective, so is φ. To show that φ is an isomorphism we then only need to show that φ is injective (or, equivalently, that $I \subseteq J$).

Let $A=k[x, y, z] / J$. An element of A is a coset of J. By the substitution arguments from part (a), every polynomial in $k[x, y, z]$ is congruent, modulo J, to a polynomial $q(x)$ only in x. This is the same as saying that the composite map

$$
k[x] \stackrel{i}{\hookrightarrow} k[x, y, z] \xrightarrow{\pi} A
$$

is surjective, where i is the natural inclusion and π the quotient map.
The composition $\varphi \circ \pi$ is ψ, and $\psi \circ i$ is the map $k[x] \longrightarrow k[x]$ sending x to x, i.e., is the identity map. Thus $\varphi \circ(\pi \circ i)=(\varphi \circ \pi) \circ i=\psi \circ i=1_{k[x]}$. Putting this together we have the maps

Since the composition $\varphi \circ(\pi \circ i)=1_{k[x]}$ is injective (it is the identity map!), and $\pi \circ i$ is surjective, we conclude that φ is also surjective.
(b) The variety cut out by the equation $\left(y-x^{2}\right)(z-1)=0$ is the one pictured in $1(\mathrm{c})$. Let $f=y-x^{2}$ and $g=z-1$, and let X be the variety $\left(y-x^{2}\right)(z-1)=0$. Let \bar{f} and \bar{g} be the images of f and g in

$$
k[X]=k[x, y, z] /\left\langle\left(y-x^{2}\right)(z-1)\right\rangle .
$$

From the definition of the quotient, it is clear that $\bar{f} \bar{g}=$
 0 , so to show that $k[X]$ is not a domain it is sufficient to show that $\bar{f} \neq 0$ and $\bar{g} \neq 0$. Following the suggestion, we look for points on X where \bar{f} and \bar{g} take on nonzero values.
The point $(2,2,1)$ is on X (it is on the plane $z=1$) and $f(2,2,1)=2-2^{2} \neq 0$. This shows that $\bar{f} \neq 0$. The point $(2,4,0)$ is on X (it is on the stretched parabola $y-x^{2}=0$), and $g(2,4,0)=0-1=-1 \neq 0$, so $\bar{g} \neq 0$. Therefore $k[X]$ is not a domain.
(c) The ring $k[x, y, z] /\left\langle x^{2}+y^{2}-1, z^{2}-x^{2}-y^{2}\right\rangle$ is not a domain.

As the pictures in $1(\mathrm{e})$ and $1(\mathrm{f})$ suggest, the ideals $I:=\left\langle x^{2}+y^{2}-1, z^{2}-x^{2}-y^{2}\right\rangle$ and $J:=\left\langle x^{2}+y^{2}-1, z^{2}-1\right\rangle$ are equal. This is straightforward to see algebraically. Since $\left(z^{2}-x^{2}-y^{2}\right)+\left(x^{2}+y^{2}-1\right)=z^{2}-1$ we see that $z^{2}-1 \in I$ so that $J \subseteq I$.

Conversely since $\left(z^{2}-1\right)-\left(x^{2}+y^{2}-1\right)=z^{2}-x^{2}-y^{2}$ we see that $z^{2}-x^{2}-y^{2} \in J$ so that $I \subseteq J$. Therefore $I=J$.

Let X be the affine variety defined by the equations $x^{2}+y^{2}-1=0$ and $z^{2}-1=0$. As question $1(\mathrm{f})$ shows, X is a union of two disjoint circles. From the equations we see that $k[X]=k[x, y, z] / J$, so that $(\bar{z}-1)(\bar{z}+1)=\bar{z}^{2}-1=0 \in k[X]$. Therefore to show that $k[X]$ is not a domain it is sufficient to show that $\bar{z}-1 \neq 0$ and $\bar{z}+1 \neq 0$ in $k[X]$. We do this by the same method above: finding points of X where the two functions are not zero.

Set $f=\bar{z}-1$ and $g=\bar{z}+1$. The point $(1,0,1)$ is on X (it is on the top circle). Since $g(1,0,1)=1+1=2 \neq 0$, the function g is not zero on X. The point $(1,0,-1)$ is also on X (it is on the bottom circle). Since $f(1,0,-1)=-1-1=-2 \neq 0$ the function f is not zero on X. Therefore $k[X]$ is not a domain, as claimed.

3. (MORPHISMS)

(a) Let $\varphi: \mathbb{A}^{1} \longrightarrow \mathbb{A}^{3}$ be given by $\varphi(t)=\left(t, t^{2}, t^{3}\right)$. Show that the image of φ is contained in the variety defined by the equations $y-x^{2}=0, z-x^{3}=0$.
(b) Describe the ring homorphism from $k[x, y, z] /\left\langle y-x^{2}, z-x^{3}\right\rangle$ to $k[t]$ given by particular, where do \bar{x}, \bar{y}, and \bar{z} get sent?) Is φ^{*} surjective? Injective?
(c) Let X be $\left\{(u, v, w) \mid u^{2}+v^{2}+w^{2}=1\right\} \subset \mathbb{A}^{3}$, and Y the affine variety $\{(x, y, z, w) \mid x y$ $z w=0\} \subset \mathbb{A}^{4}$. Does $\varphi=(1+u, 1-u, v+i w, v-i w)$ induce a map from X to Y ? (Here i is the square root of -1 .) If so analyze φ^{*} as in part (b).

Solutions.

(a) Let $f=y-x^{2}$ and $g=z-x^{3}$. Since $f\left(t, t^{2}, t^{3}\right)=t^{2}-(t)^{2}=0$ and $g\left(t, t^{2}, t^{3}\right)=$ $t^{3}-(t)^{3}=0$ the image of φ lies in the variety defined by the equations $y-x^{2}=0$ and $z-x^{3}=0$.
(b) Let X be this variety, with ring of functions $k[x, y, z] /\left\langle y-x^{2}, z-x^{3}\right\rangle$. The functions \bar{x}, \bar{y}, and \bar{z} are the restrictions of the coordinate functions to X, so pulling back by φ we have

$$
\varphi^{*}(\bar{x})=t, \quad \varphi^{*}(\bar{y})=t^{2}, \quad \text { and } \varphi^{*}(\bar{z})=t^{3} .
$$

These formulas show that the map φ^{*} is surjective: the image of φ^{*} contains t, and hence any polynomial in t, and that is precisely the ring $k[t]$.

The map φ^{*} is also injective. By 2 (a) $k[X] \cong k[x]$, and the map φ^{*} on $k[x]$ is simply the map "substitute $x=t$ ", and induces an isomorphism from $k[x]$ to $k[t]$. (Thus, by previous results from class, X is isomorphic to \mathbb{A}^{1}.)
(c) Since
$(1-u)(1+u)-(v+i w)(v-i w)=\left(1-u^{2}\right)-\left(v^{2}+w^{2}\right)=1-u^{2}-v^{2}-w^{2}=0 \in k[X]$, for every point $(u, v, w) \in X, \varphi(u, v, w)$ satisfies the equation defining Y, and so φ does induce a map from X to Y.

The pullbacks of the coordinate functions on Y are

$$
\varphi^{*}(\bar{x})=1+u, \quad \varphi^{*}(\bar{y})=1-u, \quad \varphi^{*}(\bar{z})=v+i w, \text { and } \varphi^{*}(\bar{w})=v-i w
$$

from which we conclude that $\varphi^{*}(\bar{x}-1)=u, \varphi^{*}\left(\frac{1}{2}(\bar{z}+\bar{w})\right)=v$, and $\varphi^{*}\left(\frac{1}{2 i}(\bar{z}-\bar{w})=w\right.$.
In other words, the image of φ^{*} contains u, v, and w. Since these generate $k[X]=$ $k[u, v, w] /\left(u^{2}+v^{2}+w^{2}-1\right)$, this means that the map φ^{*} is surjective.

However, the map is not injective: $\varphi^{*}(\bar{x}+\bar{y}-2)=(1+u)+(1-u)-2=0$, and the equation $\bar{x}+\bar{y}-2$ is not zero in $k[Y]$. For instance, the point $(2,3,1,6) \in Y$ and $2+3-2=3 \neq 0$. Therefore the map φ^{*} is a surjection but not an injection. In particular, since φ^{*} is not an isomorphism, the map φ is not an isomorphism either.

