
Math 413/813 Answers for Homework 3

1. Let X and Y be two affine varieties, with rings of functions R[X ] and R[Y ]. In this
problem we will use the theorem from the classes of Jan. 17th and 21st to prove that X
and Y are isomorphic varieties if and only if R[X ] and R[Y ] are isomorphic rings.

(a) Explain why (1X)
∗ = 1R[X].

Here 1X and 1R[X] are being used in the category-theoretic sense. They are, respec-
tively, the identity morphism 1X : X −→ X and the identity ring homomorphism
1R[X] : R[X ] −→ R[X ].

(b) Suppose that ϕ : X −→ X is a morphism of affine varieties and that ϕ∗ = 1R[X].
Explain why must have ϕ = 1X .

(c) Suppose that X and Y are isomorphic affine varieties. Writing out the definition
of “isomorphic varities” and applying the functor to rings, explain why R[X ] and
R[Y ] are isomorphic rings.

(d) Now suppose that R[X ] and R[Y ] are isomorphic rings. Write out the definition
of “isomorphic rings” and use part (c) of the theorem as well as (b) above to show
that X and Y are isomorphic varieties.

Solutions.

(a) By definition of pullback, for any f ∈ R[X ], (1X)
∗f = f ◦1X = f , so (1X)

∗(f) = f
for all f ∈ R[X ]. But this is exactly the identity homomorphism 1R[X].

(b) By the theorem in class, pullback gives a bijection between maps of varieties and
homomorphisms of rings. In part (a) we saw that (1X)

∗ = 1R[X]. Hence (since
the association between morphisms of varieties and ring homomorphisms is one-
to-one), if ϕ : X −→ X is a morphism such that ϕ∗ = 1R[X] then ϕ = 1X .

Alternatively, we could repeat the idea of the proof of this part of the theorem.
Let X ⊆ A

n with coordinate functions x1,. . . , xn. The map ϕ is determined by the
pullback of the coordinate functions; specifically ϕ = (ϕ∗(x1), ϕ

∗(x2), . . . , ϕ
∗(xn)).

By hypothesis we have ϕ∗(xi) = 1R[X](xi) = xi for all i. Therefore the map ϕ is
given by ϕ(x1, x2, . . . , xn) = (x1, x2, . . . , xn), so that ϕ = 1X .

(c) If X and Y are isomorphic varieties, then there are morphisms ϕ1 : X −→ Y and
ϕ2 : Y −→ X such that ϕ2 ◦ ϕ1 = 1X and ϕ1 ◦ ϕ2 = 1Y . Applying the functor
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from affine varieties to rings we get ring homomorphisms ϕ∗

1 : R[Y ] −→ R[X ] and
ϕ∗

2 : R[X ] −→ R[Y ] so that

ϕ∗

1 ◦ ϕ
∗

2 = (ϕ2 ◦ ϕ1)
∗ = (1X)

∗ = 1R[X], and

ϕ∗

2 ◦ ϕ
∗

1 = (ϕ1 ◦ ϕ2)
∗ = (1Y )

∗ = 1R[Y ].

Therefore R[X ] and R[Y ] are isomorphic rings.

(d) Now suppose that R[X ] and R[Y ] are isomorphic rings. By definition this means
that there are ring homomorphisms ψ1 : R[Y ] −→ R[X ] and ψ2 : R[X ] −→ R[Y ]
so that ψ1 ◦ ψ2 = 1R[X] and ψ2 ◦ ψ1 = 1R[Y ].

By part (c) of the Theorem from the Jan. 17th class, there are morphisms ϕ1 : X −→
Y and ϕ2 : Y −→ X so that ϕ∗

1 = ψ1 and ϕ∗

2 = ψ2.

Consider the map ϕ2 ◦ ϕ1. Applying the functor to rings we get

(ϕ2 ◦ ϕ1)
∗ = ϕ∗

1 ◦ ϕ
∗

2 = ψ1 ◦ ψ2 = 1R[X].

By part (b) of this question, that means that ϕ2 ◦ ϕ1 = 1X . Similarly, since

(ϕ1 ◦ ϕ2)
∗ = ϕ∗

2 ◦ ϕ
∗

1 = ψ2 ◦ ψ1 = 1R[Y ],

we conclude that ϕ1 ◦ ϕ2 = 1Y . Thus ϕ1 and ϕ2 are isomorphisms, and so X and
Y are isomorphic.

2. In this question we will see an example of a morphism of affine varieties which is
one-to-one on points, but which is not an isomorphism. (In other words, in the category
of affine varieties, isomorphism implies more than just one-to-one.) Let X = A

1 with
ring of functions k[t], and let Y be the subset of A2 given by the equation y2 = x3.

(a) Let ϕ : X −→ A
2 be the map given by ϕ(t) = (t2, t3). Show the image of ϕ lies in

Y , so that ϕ defines a morphism ϕ : X −→ Y .

(b) Show that ϕ is surjective. (i.e., given (x, y) ∈ Y , show that there is a t such that
ϕ(t) = (x, y).)

(c) Show that ϕ is injective.

(d) Draw a sketch of Y (R2 points only). One suggestion: from part (b) you know
that Y is the image of ϕ, so you can use the parameterization given by ϕ to see
what Y looks like.

(e) Compute the image of the ring homomorphism ϕ∗ : R[Y ] −→ R[X ] (and recall
that R[X ] = k[t]). Is ϕ∗ surjective?
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(f) Explain why ϕ cannot be an isomorphism of affine varieties.

Solutions.

(a) Let g := y2 − x3 be the equation defining Y . Since g(ϕ(t)) = g(t2, t3) = (t3)2 −
(t2)3 = t6 − t6 = 0, we see that the image of ϕ lies in Y .

(b) Let (x, y) be a point of Y . If x = 0 then the equation y2 − x3 = 0 implies that
y = 0 too, and then ϕ(0) = (0, 0) = (x, y) is in the image of ϕ. We may therefore
assume that x 6= 0.

In this case, set t = y/x. Then ϕ(t) = (y2/x2, y3/x3). But from y2 = x3 we
deduce that y2/x2 = x3/x2 = x, and that y3/x3 = y(y2/x3) = y(1) = y. Therefore
ϕ(t) = (x, y), so that ϕ is surjective.

(c) Suppose that ϕ(t1) = ϕ(t2), i.e., that (t
2
1, t

3
1) = (t22, t

3
2). If t21 = 0 then t22 = 0 and

therefore both t1 = 0 and t2 = 0, i.e., t1 = t2. We may therefore assume that
neither t21 nor t22 are zero. But then t1 = (t31/t

2
1) = (t32/t

2
2) = t2. Therefore ϕ is

injective.

(d) Using the parameterization ϕ, we see that the real points of Y look like this:

Y

(e) From the formula for ϕ we see that ϕ∗(x) = t2 and ϕ∗(y) = t3. Thus a polynomial
f =

∑

cijx
iyj in R[Y ] pulls back to ϕ∗(f) =

∑

cijt
2i+3j . In particular, since there

is no way to write 1 as a sum 2i+ 3j with both i, j > 0, we see that t = t1 is not
in the image of ϕ∗. Therefore ϕ∗ is not surjective.

Remark. It is not hard to check that any natural number greater than 1 can be written
in the form 2i + 3j with i, j > 0. It then follows that a polynomial g ∈ k[t] is in the
image of ϕ∗ if and only if the coefficient of t in g is zero.

(f) By the result from question 1 above, ϕ is an isomorphism of varieties if and only if
ϕ∗ is an isomorphism of rings. Since ϕ∗ is not surjective, it is not an isomorphism
of rings. Therefore ϕ is not an isomorphism of varieties.

Remark. Why isn’t a bijection of varieties an isomorphism? The definition of iso-
morphism from category theory helps us: We need there to be a map ϕ2 : Y −→ X
of varieties so that the composition of ϕ and ϕ2 are the identity maps (of X and Y ,
depending on the order of composition). Since ϕ is a bijection of sets, there is certainly
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a map ϕ2 of sets from Y to X which undoes ϕ. The problem is that we cannot give
such a map with algebraic functions. The real problem is that we cannot undo ϕ in a
neighbourhood of (0, 0) ∈ Y . As the picture in (d) shows, something funny is going on
at (0, 0) ∈ Y , making it look different from A

1 there.

3. Consider the following four affine varieties, all contained in A
3.

X =
{

(x1, x2, x3) x21 + x22 − 1 = 0
}

⊂ A
3

Y =
{

(y1, y2, y3) y21 + y22 − y
2
3 = 0

}

⊂ A
3

Z =
{

(z1, z2, z3) z21 + z22 + z23 − 625 = 0
}

⊂ A
3

W =
{

(w1, w2, w3) w2
1 + w2

2 − w3 = 0
}

⊂ A
3

(a) Draw sketches of X , Y , Z, and W .

Define a map ϕ1 : X −→ A
3 by ϕ1(x1, x2, x3) = (x1x3, x2x3, x3).

(b) Is the image of ϕ1 contained in Y , Z, or W ? (Justify your answer.)

Define a map ϕ2 : X −→ A
3 by ϕ2(x1, x2, x3) = (−9x1+12x2, 12x1− 16x2, 20x1+15x2).

(c) Is the image of ϕ2 contained in Y , Z, or W ? (Justify your answer.)

Define a map ϕ3 : Y −→ A
3 by ϕ3(y1, y2, y3) = (y1, y2, y

2
3).

(d) Is the image of ϕ3 contained in X , Z, or W ? (Justify your answer.)

One of the maps (b)–(d) has image in W .

(e) What is the pullback of 3w1 − w
2
2 + w3 ∈ R[W ] under this map?

Now we will try and go the other way, from a map of rings to a map of varieties. Define
a ring homomorphism

R[X ] =
k[x1, x2, x3]

(x21 + x22 − 1)
←−

k[w1, w2, w3]

(w2
1 + w2

2 − w3)
= R[W ] : ψ

by the rule ψ(w1) = 2x1, ψ(w2) = 2x2, ψ(w3) = 4.

(f) Check that this ring homomorphism is well-defined by showing that ψ(w2
1 +w2

2 −

w3) = 0.

(g) What geometric map ϕ : X −→W does the ring homomorphism ψ correspond to?
(Write your formula for ϕ in the form ϕ(x1, x2, x3) = (formulas in x1, x2, x3) ⊂ A

3

as in (b)–(d) above.)
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Solution.

(a)

X

Cylinder

Y

Cone

Z

Sphere

W

Paraboloid

To check the image of each map ϕj in (b)–(d) we see if the formulas for ϕj satisfy the
equations of X , Y , Z, or W . Equivalently, we see if the pullbacks of the equations for
X , Y , Z, or W under ϕ∗

j are zero.

(b) The image of ϕ1 lies in Y , since applying the equation y
2
1+y

2
2−y

2
3 to (x1x3, x2x3, x3),

and using the fact that x21 + x22 = 1 we get

(x1x3)
2 + (x2x3)

2 − (x3)
2 = x23(x

2
1 + x22)− x

2
3 = x23 − x

2
3 = 0

and thus for every (x1, x2, x3) ∈ X , ϕ1(x1, x2, x3) lies in Y .

(c) The image of ϕ2 lies in Z, since for every (x1, x2, x3) ∈ X , applying the equation
z21 + z

2
2 + z

2
3 −625 to ϕ2(x1, x2, x3) = (−9x1+12x2, 12x1−16x2, 20x1+15x2) gives

(−9x1+12x2)
2+(12x1−16x2)

2+(20x1+15x2)
2−625

= (81x21 − 216x1x2 + 144x22) + (144x21 − 384x1x2 + 256x22) + (400x21 + 600x1x2 + 225x22)− 625

= (81 + 144 + 400)x21 + (−216− 384 + 600)x1x2 + (144 + 256 + 225)x22 − 625

= 625x21 + 0x1x2 + 625x22 − 625 = 0.

(d) The image of ϕ3 lies in W ; for every (y1, y2, y3) ∈ Y , applying the equation w2
1 +

w2
2 − w3 to ϕ3(y1, y2, y3) = (y1, y2, y

2
3) gives

(y1)
2 − (y2)

2 − y23 = y21 + y22 − y
2
3 = 0,

since this last condition is the defining equation of Y .

(e) The map ϕ3 has image in W . The definition of w1, w2, and w3 is that they
are the restriction of the coordinate functions w1, w2, and w3 to W . The defini-
tion of pullback by ϕ3 is composition with ϕ3. Since ϕ3 is given by the formula
ϕ3(y1, y2, y3) = (y1, y2, y

2
3), we have

ϕ∗

3(w1) = y1, ϕ
∗

3(w2) = y2, and ϕ
∗

3(w3) = y23.
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Finally, using the fact that ϕ∗

3 is a ring homomorphism we get

ϕ∗

3(3w1 − w
2
2 + w3) = 3y1 − y

3
2 − y

2
3.

(f) By the definition of ψ we have

ψ(w2
1 + w2

2 − w2) = (2x1)
2 + (2x2)

2 − 4 = 4(x21 + x22)− 4 = 4 · 1− 4 = 0.

(g) In general, as in (e), the pullbacks of the coordinate functions show the formulas
used to define the map. From the pullbacks in (f) we conclude that the geometric
map ϕ : X −→ W corresponding to ψ (i.e, so that ψ = ϕ∗) is ϕ(x1, x2, x3) =
(2x1, 2x2, 4).

Geometrically this map collapses the cylinder to a circle (by ignoring the value
of the x3 coordinate), and then puts that circle into the paraboloid as a circle of
radius 4 at height 4.
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