Math 413/813 Answers for Homework 3

1. Let X and Y be two affine varieties, with rings of functions R[X] and R[Y]. In this
problem we will use the theorem from the classes of Jan. 17th and 21st to prove that X
and Y are isomorphic varieties if and only if R[X] and R[Y| are isomorphic rings.

(a) Explain why (1x)* = 1gx.

Here 1x and 1gjx) are being used in the category-theoretic sense. They are, respec-
tively, the identity morphism 1x: X —— X and the identity ring homomorphism

(b) Suppose that ¢: X — X is a morphism of affine varieties and that ¢* = 1g[x).

()

Explain why must have ¢ = 1x.

Suppose that X and Y are isomorphic affine varieties. Writing out the definition
of “isomorphic varities” and applying the functor to rings, explain why R[X] and
R[Y] are isomorphic rings.

(d) Now suppose that R[X] and R[Y] are isomorphic rings. Write out the definition

of “isomorphic rings” and use part (c¢) of the theorem as well as (b) above to show
that X and Y are isomorphic varieties.

Solutions.

(a) By definition of pullback, for any f € R[X], (1x)*f = folx = f,so (1x)*(f) = f

for all f € R[X]. But this is exactly the identity homomorphism 1p(x].

(b) By the theorem in class, pullback gives a bijection between maps of varieties and

homomorphisms of rings. In part (a) we saw that (1x)* = 1g;x]. Hence (since
the association between morphisms of varieties and ring homomorphisms is one-
to-one), if ¢: X — X is a morphism such that ¢* = 1g[x) then ¢ = 1x.

Alternatively, we could repeat the idea of the proof of this part of the theorem.
Let X C A™ with coordinate functions x1,. .., x,. The map ¢ is determined by the
pullback of the coordinate functions; specifically ¢ = (¢*(z1), ©*(22), ..., ©*(z,)).
By hypothesis we have ¢*(z;) = 1grix)(#;) = ; for all . Therefore the map ¢ is
given by p(x1, T2, ...,2,) = (x1,29,...,2,), so that ¢ = 1y.

If X and Y are isomorphic varieties, then there are morphisms ¢;: X — Y and
p9: Y — X such that ¢ 0 p; = 1x and @1 0 9o = 1y. Applying the functor



from affine varieties to rings we get ring homomorphisms ¢7j: R[Y| — R[X] and
5 RIX] — R[Y] so that

prop; = (p2op1)" =(1x)" = lgx), and
p300] = (prowr)” = (1y)" = Lgy).
Therefore R[X| and R[Y] are isomorphic rings.

Now suppose that R[X] and R[Y] are isomorphic rings. By definition this means
that there are ring homomorphisms v, : R[Y| — R[X] and ¢»: R[X]| — R[Y]
so that 11 0¥y = 1gx) and 13 0 91 = 1Ry

By part (¢) of the Theorem from the Jan. 17th class, there are morphisms ¢;: X —
Y and ¢py: Y — X so that ¢} = ¢, and ¢35 = 1s.

Consider the map 5 0 1. Applying the functor to rings we get
(P2 0p1)" = @] 0wy =110y = lpx.

By part (b) of this question, that means that ¢y o o1 = 1x. Similarly, since
(p10p2)" = @5 0] =0t = lpy,

we conclude that ¢ o o3 = 1y. Thus ¢ and y are isomorphisms, and so X and
Y are isomorphic.

2. In this question we will see an example of a morphism of affine varieties which is
one-to-one on points, but which is not an isomorphism. (In other words, in the category
of affine varieties, isomorphism implies more than just one-to-one.) Let X = Al with

ring of functions k[t], and let Y be the subset of A? given by the equation y? = .

(a)
(b)
()
(d)

(e)

3
Let p: X — A? be the map given by o(t) = (t2,t*). Show the image of ¢ lies in
Y, so that ¢ defines a morphism p: X — Y.

Show that ¢ is surjective. (i.e., given (z,y) € Y, show that there is a ¢ such that
p(t) = (z,9).)

Show that ¢ is injective.

Draw a sketch of ¥ (R? points only). One suggestion: from part (b) you know
that Y is the image of ¢, so you can use the parameterization given by ¢ to see
what Y looks like.

Compute the image of the ring homomorphism ¢*: R[Y] — R[X] (and recall
that R[X] = k[t]). Is ¢* surjective?



(f)

Explain why ¢ cannot be an isomorphism of affine varieties.

Solutions.

(a)

(b)

Let g := y* — 23 be the equation defining Y. Since g(p(t)) = g(t%,¢3) = (t3)? —
(t?)® = t° — t° = 0, we see that the image of ¢ lies in Y.

Let (z,y) be a point of Y. If x = 0 then the equation y? — 2* = 0 implies that
y = 0 too, and then ¢(0) = (0,0) = (z,y) is in the image of ¢. We may therefore
assume that z # 0.

In this case, set t = y/x. Then o(t) = (y*/2% vy*/2%). But from y* = 2° we

deduce that y?/2? = 23 /2? = z, and that y3/23 = y(y?/23) = y(1) = y. Therefore
©(t) = (z,y), so that ¢ is surjective.

Suppose that ¢(t;) = ¢(t2), i.e., that (£2,¢3) = (¢3,t3). If 3 = 0 then ¢3 = 0 and
therefore both t; = 0 and t5 = 0, i.e., t; = t5. We may therefore assume that
neither ¢2 nor t3 are zero. But then t; = (¢3/t2) = (t3/t3) = to. Therefore ¢ is
injective.

Using the parameterization ¢, we see that the real points of Y look like this:

Y

From the formula for ¢ we see that ¢*(z) = t* and p*(y) = t3. Thus a polynomial
f=>"cyz'y’ in R[Y] pulls back to ¢*(f) = > ¢;;t**%. In particular, since there
is no way to write 1 as a sum 2i + 35 with both 7, j > 0, we see that ¢t = t! is not
in the image of *. Therefore ¢* is not surjective.

REMARK. It is not hard to check that any natural number greater than 1 can be written
in the form 2 + 35 with 4,5 > 0. It then follows that a polynomial g € klt] is in the
image of ¢* if and only if the coefficient of ¢ in g is zero.

(f)

By the result from question 1 above, ¢ is an isomorphism of varieties if and only if
©* is an isomorphism of rings. Since ¢* is not surjective, it is not an isomorphism
of rings. Therefore ¢ is not an isomorphism of varieties.

REMARK. Why isn’t a bijection of varieties an isomorphism? The definition of iso-
morphism from category theory helps us: We need there to be a map ¢9: ¥ — X
of varieties so that the composition of ¢ and ¢, are the identity maps (of X and Y,
depending on the order of composition). Since ¢ is a bijection of sets, there is certainly
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a map o of sets from Y to X which undoes ¢. The problem is that we cannot give
such a map with algebraic functions. The real problem is that we cannot undo ¢ in a
neighbourhood of (0,0) € Y. As the picture in (d) shows, something funny is going on
at (0,0) € Y, making it look different from A® there.

3. Consider the following four affine varieties, all contained in A3.

= {($1’$27$3)‘$%+x3_120}CA3

= {(yl,yz,yg) yf+y§—y§=0}cA3

{(21,2‘2723)

= {(wl,wQ,wg) ‘ w%+w§ — W3 = O} C Ag

z§+z§+z§—625:0}cA3

SR S
I

(a) Draw sketches of X, Y, Z, and W.

Define a map ¢;: X — A? by 121, T2, 23) = (1173, 1273, T3).

(b) Is the image of ¢ contained in Y, Z, or W7 (Justify your answer.)

Define a map ¢y: X — A3 by @o(21, T, 13) = (=911 + 1229, 1221 — 1629, 2021 + 1525).

(c) Is the image of 9 contained in Y, Z, or W? (Justify your answer.)

Define a map ¢3: Y — &% by ©3(y1,92,y3) = (Y1, 92, ¥3)-
(d) Is the image of 3 contained in X, Z, or W7 (Justify your answer.)

One of the maps (b)—(d) has image in .

(e) What is the pullback of 3w; — w3 + w3 € R[W] under this map?
Now we will try and go the other way, from a map of rings to a map of varieties. Define
a ring homomorphism
klwy, xg, 23 klwy, wa, ws]
(@i +23-1) (0} +wi—ws)
by the rule (W) = 271, Y(W2) = 275, Y(w;) = 4.

(f) Check that this ring homomorphism is well-defined by showing that (w? + w3 —
wg) == 0

R[X] =

= R[W]: ¢

(g) What geometric map ¢: X — W does the ring homomorphism ¢ correspond to?
(Write your formula for ¢ in the form ¢(x1, 29, x3) = (formulas in a1, @9, z3) C A®
as in (b)—(d) above.)



Solution.

(a)

<im>

N~

CYLINDER CONE SPHERE PARABOLOID

To check the image of each map ¢; in (b)—(d) we see if the formulas for ¢; satisfy the
equations of X, Y, Z, or W. Equivalently, we see if the pullbacks of the equations for
X, Y, Z, or W under ¢} are zero.

(b) The image of ¢, lies in Y, since applying the equation y+y2—y3 to (x5, T2x3, T3),
and using the fact that 22 + z3 = 1 we get

(21203)? + (w2w3)” — (13)* = 23(2] + 23) — a3 = 25 — 23 = 0
and thus for every (x1,xs,23) € X, ¢1(x1, %2, x3) lies in Y.

(c) The image of p9 lies in Z, since for every (x1, x5, x3) € X, applying the equation
22+ 22 4 22 — 625 to oy, 9, 13) = (=921 + 1229, 1271 — 1629, 2021 + 1525) gives
(=921 +1229)* 4 (1221 — 1629)* 4 (2021 + 1525)* — 625
= (812% — 2167125 + 14423) + (14427 — 3841135 + 25623) + (40027 + 6002129 + 22523) — 625
= (81 + 144 + 400)z7 + (=216 — 384 + 600)x1 75 + (144 + 256 + 225)x5 — 625
= 6252° + O0wy2y + 62525 — 625 = 0.

(d) The image of @3 lies in W; for every (y1,¥ys2,y3) € Y, applying the equation w? +

w3 — w3 to p3(y1,Y2,y3) = (Y1, Y2, y3) gives

() = ()" —ws =yl + 92 —y5 =0,
since this last condition is the defining equation of Y.

(e) The map @3 has image in W. The definition of w;, Ws, and ws is that they
are the restriction of the coordinate functions wy, wy, and wz to W. The defini-
tion of pullback by ¢3 is composition with 3. Since 3 is given by the formula
©3(Y1,Y2,Y3) = (yl,yz,y§), we have

©5(W1) =Ty, ©5(Wa) =T, and @}(Ws) = T3.
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Finally, using the fact that (3 is a ring homomorphism we get
3(3W1 — W5 + Ws) = 37, — T, — -
(f) By the definition of ¢ we have

Y(W: + w5 — W) = (271)* + (272)® —4 =4(T]+T5) —4=4-1—-4=0.

(g) In general, as in (e), the pullbacks of the coordinate functions show the formulas
used to define the map. From the pullbacks in (f) we conclude that the geometric
map ¢: X — W corresponding to ¢ (i.e, so that ¥ = ¢*) is p(x1, T2, x3) =
(21’1, 21’2, 4)

Geometrically this map collapses the cylinder to a circle (by ignoring the value
of the x3 coordinate), and then puts that circle into the paraboloid as a circle of
radius 4 at height 4.



