1. Let X and Y be two affine varieties, with rings of functions $R[X]$ and $R[Y]$. In this problem we will use the theorem from the classes of Jan. 17th and 21st to prove that X and Y are isomorphic varieties if and only if $R[X]$ and $R[Y]$ are isomorphic rings.
(a) Explain why $\left(1_{X}\right)^{*}=1_{R[X]}$.

Here 1_{X} and $1_{R[X]}$ are being used in the category-theoretic sense. They are, respectively, the identity morphism $1_{X}: X \longrightarrow X$ and the identity ring homomorphism $1_{R[X]}: R[X] \longrightarrow R[X]$.
(b) Suppose that $\varphi: X \longrightarrow X$ is a morphism of affine varieties and that $\varphi^{*}=1_{R[X]}$. Explain why must have $\varphi=1_{X}$.
(c) Suppose that X and Y are isomorphic affine varieties. Writing out the definition of "isomorphic varities" and applying the functor to rings, explain why $R[X]$ and $R[Y]$ are isomorphic rings.
(d) Now suppose that $R[X]$ and $R[Y]$ are isomorphic rings. Write out the definition of "isomorphic rings" and use part (c) of the theorem as well as (b) above to show that X and Y are isomorphic varieties.

Solutions.

(a) By definition of pullback, for any $f \in R[X],\left(1_{X}\right)^{*} f=f \circ 1_{X}=f$, so $\left(1_{X}\right)^{*}(f)=f$ for all $f \in R[X]$. But this is exactly the identity homomorphism $1_{R[X]}$.
(b) By the theorem in class, pullback gives a bijection between maps of varieties and homomorphisms of rings. In part (a) we saw that $\left(1_{X}\right)^{*}=1_{R[X]}$. Hence (since the association between morphisms of varieties and ring homomorphisms is one-to-one), if $\varphi: X \longrightarrow X$ is a morphism such that $\varphi^{*}=1_{R[X]}$ then $\varphi=1_{X}$.

Alternatively, we could repeat the idea of the proof of this part of the theorem. Let $X \subseteq \mathbb{A}^{n}$ with coordinate functions x_{1}, \ldots, x_{n}. The map φ is determined by the pullback of the coordinate functions; specifically $\varphi=\left(\varphi^{*}\left(x_{1}\right), \varphi^{*}\left(x_{2}\right), \ldots, \varphi^{*}\left(x_{n}\right)\right)$. By hypothesis we have $\varphi^{*}\left(x_{i}\right)=1_{R[X]}\left(x_{i}\right)=x_{i}$ for all i. Therefore the map φ is given by $\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, so that $\varphi=1_{X}$.
(c) If X and Y are isomorphic varieties, then there are morphisms $\varphi_{1}: X \longrightarrow Y$ and $\varphi_{2}: Y \longrightarrow X$ such that $\varphi_{2} \circ \varphi_{1}=1_{X}$ and $\varphi_{1} \circ \varphi_{2}=1_{Y}$. Applying the functor
from affine varieties to rings we get ring homomorphisms $\varphi_{1}^{*}: R[Y] \longrightarrow R[X]$ and $\varphi_{2}^{*}: R[X] \longrightarrow R[Y]$ so that

$$
\begin{aligned}
& \varphi_{1}^{*} \circ \varphi_{2}^{*}=\left(\varphi_{2} \circ \varphi_{1}\right)^{*}=\left(1_{X}\right)^{*}=1_{R[X]}, \quad \text { and } \\
& \varphi_{2}^{*} \circ \varphi_{1}^{*}=\left(\varphi_{1} \circ \varphi_{2}\right)^{*}=\left(1_{Y}\right)^{*}=1_{R[Y]} .
\end{aligned}
$$

Therefore $R[X]$ and $R[Y]$ are isomorphic rings.
(d) Now suppose that $R[X]$ and $R[Y]$ are isomorphic rings. By definition this means that there are ring homomorphisms $\psi_{1}: R[Y] \longrightarrow R[X]$ and $\psi_{2}: R[X] \longrightarrow R[Y]$ so that $\psi_{1} \circ \psi_{2}=1_{R[X]}$ and $\psi_{2} \circ \psi_{1}=1_{R[Y]}$.

By part (c) of the Theorem from the Jan. 17th class, there are morphisms $\varphi_{1}: X \longrightarrow$ Y and $\varphi_{2}: Y \longrightarrow X$ so that $\varphi_{1}^{*}=\psi_{1}$ and $\varphi_{2}^{*}=\psi_{2}$.

Consider the map $\varphi_{2} \circ \varphi_{1}$. Applying the functor to rings we get

$$
\left(\varphi_{2} \circ \varphi_{1}\right)^{*}=\varphi_{1}^{*} \circ \varphi_{2}^{*}=\psi_{1} \circ \psi_{2}=1_{R[X]} .
$$

By part (b) of this question, that means that $\varphi_{2} \circ \varphi_{1}=1_{X}$. Similarly, since

$$
\left(\varphi_{1} \circ \varphi_{2}\right)^{*}=\varphi_{2}^{*} \circ \varphi_{1}^{*}=\psi_{2} \circ \psi_{1}=1_{R[Y]},
$$

we conclude that $\varphi_{1} \circ \varphi_{2}=1_{Y}$. Thus φ_{1} and φ_{2} are isomorphisms, and so X and Y are isomorphic.
2. In this question we will see an example of a morphism of affine varieties which is one-to-one on points, but which is not an isomorphism. (In other words, in the category of affine varieties, isomorphism implies more than just one-to-one.) Let $X=\mathbb{A}^{1}$ with ring of functions $k[t]$, and let Y be the subset of \mathbb{A}^{2} given by the equation $y^{2}=x^{3}$.
(a) Let $\varphi: X \longrightarrow \mathbb{A}^{2}$ be the map given by $\varphi(t)=\left(t^{2}, t^{3}\right)$. Show the image of φ lies in Y, so that φ defines a morphism $\varphi: X \longrightarrow Y$.
(b) Show that φ is surjective. (i.e., given $(x, y) \in Y$, show that there is a t such that $\varphi(t)=(x, y)$.
(c) Show that φ is injective.
(d) Draw a sketch of $Y\left(\mathbb{R}^{2}\right.$ points only). One suggestion: from part (b) you know that Y is the image of φ, so you can use the parameterization given by φ to see what Y looks like.
(e) Compute the image of the ring homomorphism $\varphi^{*}: R[Y] \longrightarrow R[X]$ (and recall that $R[X]=k[t]$. Is φ^{*} surjective?
(f) Explain why φ cannot be an isomorphism of affine varieties.

Solutions.

(a) Let $g:=y^{2}-x^{3}$ be the equation defining Y. Since $g(\varphi(t))=g\left(t^{2}, t^{3}\right)=\left(t^{3}\right)^{2}-$ $\left(t^{2}\right)^{3}=t^{6}-t^{6}=0$, we see that the image of φ lies in Y.
(b) Let (x, y) be a point of Y. If $x=0$ then the equation $y^{2}-x^{3}=0$ implies that $y=0$ too, and then $\varphi(0)=(0,0)=(x, y)$ is in the image of φ. We may therefore assume that $x \neq 0$.

In this case, set $t=y / x$. Then $\varphi(t)=\left(y^{2} / x^{2}, y^{3} / x^{3}\right)$. But from $y^{2}=x^{3}$ we deduce that $y^{2} / x^{2}=x^{3} / x^{2}=x$, and that $y^{3} / x^{3}=y\left(y^{2} / x^{3}\right)=y(1)=y$. Therefore $\varphi(t)=(x, y)$, so that φ is surjective.
(c) Suppose that $\varphi\left(t_{1}\right)=\varphi\left(t_{2}\right)$, i.e., that $\left(t_{1}^{2}, t_{1}^{3}\right)=\left(t_{2}^{2}, t_{2}^{3}\right)$. If $t_{1}^{2}=0$ then $t_{2}^{2}=0$ and therefore both $t_{1}=0$ and $t_{2}=0$, i.e., $t_{1}=t_{2}$. We may therefore assume that neither t_{1}^{2} nor t_{2}^{2} are zero. But then $t_{1}=\left(t_{1}^{3} / t_{1}^{2}\right)=\left(t_{2}^{3} / t_{2}^{2}\right)=t_{2}$. Therefore φ is injective.
(d) Using the parameterization φ, we see that the real points of Y look like this:

(e) From the formula for φ we see that $\varphi^{*}(x)=t^{2}$ and $\varphi^{*}(y)=t^{3}$. Thus a polynomial $f=\sum c_{i j} x^{i} y^{j}$ in $R[Y]$ pulls back to $\varphi^{*}(f)=\sum c_{i j} t^{2 i+3 j}$. In particular, since there is no way to write 1 as a sum $2 i+3 j$ with both $i, j \geqslant 0$, we see that $t=t^{1}$ is not in the image of φ^{*}. Therefore φ^{*} is not surjective.

Remark. It is not hard to check that any natural number greater than 1 can be written in the form $2 i+3 j$ with $i, j \geqslant 0$. It then follows that a polynomial $g \in k[t]$ is in the image of φ^{*} if and only if the coefficient of t in g is zero.
(f) By the result from question 1 above, φ is an isomorphism of varieties if and only if φ^{*} is an isomorphism of rings. Since φ^{*} is not surjective, it is not an isomorphism of rings. Therefore φ is not an isomorphism of varieties.

Remark. Why isn't a bijection of varieties an isomorphism? The definition of isomorphism from category theory helps us: We need there to be a map $\varphi_{2}: Y \longrightarrow X$ of varieties so that the composition of φ and φ_{2} are the identity maps (of X and Y, depending on the order of composition). Since φ is a bijection of sets, there is certainly
a map φ_{2} of sets from Y to X which undoes φ. The problem is that we cannot give such a map with algebraic functions. The real problem is that we cannot undo φ in a neighbourhood of $(0,0) \in Y$. As the picture in (d) shows, something funny is going on at $(0,0) \in Y$, making it look different from \mathbb{A}^{1} there.
3. Consider the following four affine varieties, all contained in \mathbb{A}^{3}.

$$
\begin{aligned}
X & =\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}^{2}+x_{2}^{2}-1=0\right\} \subset \mathbb{A}^{3} \\
Y & =\left\{\left(y_{1}, y_{2}, y_{3}\right) \mid y_{1}^{2}+y_{2}^{2}-y_{3}^{2}=0\right\} \subset \mathbb{A}^{3} \\
Z & =\left\{\left(z_{1}, z_{2}, z_{3}\right) \mid z_{1}^{2}+z_{2}^{2}+z_{3}^{2}-625=0\right\} \subset \mathbb{A}^{3} \\
W & =\left\{\left(w_{1}, w_{2}, w_{3}\right) \mid w_{1}^{2}+w_{2}^{2}-w_{3}=0\right\} \subset \mathbb{A}^{3}
\end{aligned}
$$

(a) Draw sketches of X, Y, Z, and W.

Define a map $\varphi_{1}: X \longrightarrow \mathbb{A}^{3}$ by $\varphi_{1}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1} x_{3}, x_{2} x_{3}, x_{3}\right)$.
(b) Is the image of φ_{1} contained in Y, Z, or W ? (Justify your answer.)

Define a map $\varphi_{2}: X \longrightarrow \mathbb{A}^{3}$ by $\varphi_{2}\left(x_{1}, x_{2}, x_{3}\right)=\left(-9 x_{1}+12 x_{2}, 12 x_{1}-16 x_{2}, 20 x_{1}+15 x_{2}\right)$.
(c) Is the image of φ_{2} contained in Y, Z, or W ? (Justify your answer.)

Define a map $\varphi_{3}: Y \longrightarrow \mathbb{A}^{3}$ by $\varphi_{3}\left(y_{1}, y_{2}, y_{3}\right)=\left(y_{1}, y_{2}, y_{3}^{2}\right)$.
(d) Is the image of φ_{3} contained in X, Z, or W ? (Justify your answer.)

One of the maps (b)-(d) has image in W.
(e) What is the pullback of $3 \bar{w}_{1}-\bar{w}_{2}^{2}+\bar{w}_{3} \in R[W]$ under this map?

Now we will try and go the other way, from a map of rings to a map of varieties. Define a ring homomorphism

$$
R[X]=\frac{k\left[x_{1}, x_{2}, x_{3}\right]}{\left(x_{1}^{2}+x_{2}^{2}-1\right)} \longleftarrow \frac{k\left[w_{1}, w_{2}, w_{3}\right]}{\left(w_{1}^{2}+w_{2}^{2}-w_{3}\right)}=R[W]: \psi
$$

by the rule $\psi\left(\bar{w}_{1}\right)=2 \bar{x}_{1}, \psi\left(\bar{w}_{2}\right)=2 \bar{x}_{2}, \psi\left(\bar{w}_{3}\right)=4$.
(f) Check that this ring homomorphism is well-defined by showing that $\psi\left(\bar{w}_{1}^{2}+\bar{w}_{2}^{2}-\right.$ $\left.\bar{w}_{3}\right)=0$.
(g) What geometric map $\varphi: X \longrightarrow W$ does the ring homomorphism ψ correspond to? (Write your formula for φ in the form $\varphi\left(x_{1}, x_{2}, x_{3}\right)=\left(\right.$ formulas in $\left.x_{1}, x_{2}, x_{3}\right) \subset \mathbb{A}^{3}$ as in (b)-(d) above.)

Solution.

(a)

X		Z Sphere	W Paraboloid

To check the image of each map φ_{j} in (b)-(d) we see if the formulas for φ_{j} satisfy the equations of X, Y, Z, or W. Equivalently, we see if the pullbacks of the equations for X, Y, Z, or W under φ_{j}^{*} are zero.
(b) The image of φ_{1} lies in Y, since applying the equation $y_{1}^{2}+y_{2}^{2}-y_{3}^{2}$ to $\left(x_{1} x_{3}, x_{2} x_{3}, x_{3}\right)$, and using the fact that $x_{1}^{2}+x_{2}^{2}=1$ we get

$$
\left(x_{1} x_{3}\right)^{2}+\left(x_{2} x_{3}\right)^{2}-\left(x_{3}\right)^{2}=x_{3}^{2}\left(x_{1}^{2}+x_{2}^{2}\right)-x_{3}^{2}=x_{3}^{2}-x_{3}^{2}=0
$$

and thus for every $\left(x_{1}, x_{2}, x_{3}\right) \in X, \varphi_{1}\left(x_{1}, x_{2}, x_{3}\right)$ lies in Y.
(c) The image of φ_{2} lies in Z, since for every $\left(x_{1}, x_{2}, x_{3}\right) \in X$, applying the equation $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}-625$ to $\varphi_{2}\left(x_{1}, x_{2}, x_{3}\right)=\left(-9 x_{1}+12 x_{2}, 12 x_{1}-16 x_{2}, 20 x_{1}+15 x_{2}\right)$ gives

$$
\begin{aligned}
& \left(-9 x_{1}+12 x_{2}\right)^{2}+\left(12 x_{1}-16 x_{2}\right)^{2}+\left(20 x_{1}+15 x_{2}\right)^{2}-625 \\
& =\left(81 x_{1}^{2}-216 x_{1} x_{2}+144 x_{2}^{2}\right)+\left(144 x_{1}^{2}-384 x_{1} x_{2}+256 x_{2}^{2}\right)+\left(400 x_{1}^{2}+600 x_{1} x_{2}+225 x_{2}^{2}\right)-625 \\
& =(81+144+400) x_{1}^{2}+(-216-384+600) x_{1} x_{2}+(144+256+225) x_{2}^{2}-625 \\
& =625 x_{1}^{2}+0 x_{1} x_{2}+625 x_{2}^{2}-625=0 .
\end{aligned}
$$

(d) The image of φ_{3} lies in W; for every $\left(y_{1}, y_{2}, y_{3}\right) \in Y$, applying the equation $w_{1}^{2}+$ $w_{2}^{2}-w_{3}$ to $\varphi_{3}\left(y_{1}, y_{2}, y_{3}\right)=\left(y_{1}, y_{2}, y_{3}^{2}\right)$ gives

$$
\left(y_{1}\right)^{2}-\left(y_{2}\right)^{2}-y_{3}^{2}=y_{1}^{2}+y_{2}^{2}-y_{3}^{2}=0,
$$

since this last condition is the defining equation of Y.
(e) The map φ_{3} has image in W. The definition of \bar{w}_{1}, \bar{w}_{2}, and \bar{w}_{3} is that they are the restriction of the coordinate functions w_{1}, w_{2}, and w_{3} to W. The definition of pullback by φ_{3} is composition with φ_{3}. Since φ_{3} is given by the formula $\varphi_{3}\left(y_{1}, y_{2}, y_{3}\right)=\left(y_{1}, y_{2}, y_{3}^{2}\right)$, we have

$$
\varphi_{3}^{*}\left(\bar{w}_{1}\right)=\bar{y}_{1}, \varphi_{3}^{*}\left(\bar{w}_{2}\right)=\bar{y}_{2}, \text { and } \varphi_{3}^{*}\left(\bar{w}_{3}\right)=\bar{y}_{3}^{2} .
$$

Finally, using the fact that φ_{3}^{*} is a ring homomorphism we get

$$
\varphi_{3}^{*}\left(3 \bar{w}_{1}-\bar{w}_{2}^{2}+\bar{w}_{3}\right)=3 \bar{y}_{1}-\bar{y}_{2}^{3}-\bar{y}_{3}^{2} .
$$

(f) By the definition of ψ we have

$$
\psi\left(\bar{w}_{1}^{2}+\bar{w}_{2}^{2}-\bar{w}_{2}\right)=\left(2 \bar{x}_{1}\right)^{2}+\left(2 \bar{x}_{2}\right)^{2}-4=4\left(\bar{x}_{1}^{2}+\bar{x}_{2}^{2}\right)-4=4 \cdot 1-4=0 .
$$

(g) In general, as in (e), the pullbacks of the coordinate functions show the formulas used to define the map. From the pullbacks in (f) we conclude that the geometric $\operatorname{map} \varphi: X \longrightarrow W$ corresponding to ψ (i.e, so that $\psi=\varphi^{*}$) is $\varphi\left(x_{1}, x_{2}, x_{3}\right)=$ $\left(2 x_{1}, 2 x_{2}, 4\right)$.

Geometrically this map collapses the cylinder to a circle (by ignoring the value of the x_{3} coordinate), and then puts that circle into the paraboloid as a circle of radius 4 at height 4 .

