
Math 413/813 Answers for Homework 4

1. In this problem we will prove that
√

〈x2(x+ 1), y〉 = 〈x(x+ 1), y〉.

(a) Explain why we have the containment 〈x(x+ 1), y〉 ⊆
√

〈x2(x+ 1), y〉.

From part (a), in order to show equality it is enough to show the reverse containment.
Let f be any element of

√

〈x2(x+ 1), y〉.

(b) Explain why we know that there is an n > 1 and polynomials h1, h2 ∈ k[x, y] such
that

(b) fn = x2(x+ 1)h1 + yh2.

(c) Let ψ : k[x, y] −→ k[x] be the ring homomorphism given by setting y = 0, and set
f = ψ(f). Looking at the image of (b) under ψ, and using unique factorization
in the ring k[x], explain why we know that there is a polynomial h3 ∈ k[x] so that

f = x(x+ 1)h3.

(d) Using part (c), explain why we know that there is a polynomial h4 ∈ k[x, y] so
that f − x(x+ 1)h4 is in the kernel of ψ.

(e) What is the kernel of ψ?

(f) Complete the problem by showing that f ∈ 〈x(x+ 1), y〉.

Solutions.

(a) Let I = 〈x2(x + 1), y〉. We always have the inclusion I ⊆
√
I, and therefore

since y ∈ I we have y ∈
√
I. Set f = x(x + 1). Since f 2 = x2(x + 1)2 =

(x + 1) · (x2(x + 1)) ∈ I we have f ∈
√
I by definition of

√
I. Since both y and

x(x+ 1) are in the ideal
√
I, the ideal 〈x(x+ 1), y〉 is also contained in

√
I.

(b) By the definition of the radical if f ∈
√
I there is an n > 1 so that fn ∈ I. Since

I is generated by x2(x + 1) and y this means that there are h1, h2 ∈ k[x, y] with
fn = x2(x+ 1)h1 + yh2.
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(c) Let h1 be the image of h1 under ψ. Applying ψ to (b) we get

(c) f
n

= x2(x+ 1)h1.

Any polynomial in k[x] can be factored as a product of linear factors (or irreducible
factors, if k is not algebraically closed). Since x divides the right hand side of (c)
it must also divide f

n

, and therefore must divide f . Similarly, since x+ 1 divides
the right hand side of (c) x + 1 must also divide f

n

and hence also divide f .
Since x and (x + 1) are relatively prime, their product must also divide f . By
definition (of ‘divides’) this means that there is a polynomial h3 ∈ k[x] so that
f = x(x+ 1)h3.

(d) Let h4 ∈ k[x, y] be the polynomial h3, now also considered as a polynomial in x, y
(but with no y’s). Then ψ(h4) = h3, so

ψ
(

f − x(x+ 1)h4

)

= ψ(f)− x(x+ 1)ψ(h4) = f − x(x+ 1)h3 = 0,

and so f − x(x+ 1)h4 ∈ Ker(ψ).

(e) The map ψ corresponds to “restriction to the x-axis”, and has kernel 〈y〉.

(f) Since f − x(x + 1)h4 ∈ Ker(ψ) = 〈y〉 there is a polynomial h5 ∈ k[x, y] so that
f − x(x+ 1)h4 = yh5. But then f = x(x+ 1)h4 + yh5, so that f ∈ 〈x(x+ 1), y〉.

2. In this problem we will explore other questions about the radical.

(a) Let A be any ring, I ⊂ A and ideal, and f ∈ I. Suppose that f = f e1

1 f
e2

2 · · · f er
r

for some f1,. . . , fr ∈ A, and some e1, . . . er > 1. Show that f1f2 · · · fr ∈
√
I.

(b) Let I ⊂ Z be an ideal. We know that every ideal in Z is generated by a single
element, so I = 〈n〉 for some n ∈ Z. Assume that n 6= 0 (i.e, I 6= (0)) and let
n = pe11 · · · per

r
be the prime factorization of n. Show that

√
I = 〈p1p2 · · · pr〉.

(c) Let J1 and J2 be ideals. Show that J1 ∩ J2 is also an ideal.

(d) Let I1 and I2 be radical ideals. Show that I1 ∩ I2 is also a radical ideal.

(e)[Math 813 only] For any f ∈ k[x1, . . . , xn] let f = f e1

1 · · · f er
r

be its factorization into irreducibles,
and define Rad(f) by the formula Rad(f) = f1f2 · · ·fr. Show that if I is a principal
ideal, I = 〈f〉, then

√
I = 〈Rad(f)〉.

(f)[Math 813 only] Give an example of an ideal I = 〈g1, g2〉 ⊂ k[x, y] such that
√
I 6= 〈Rad(g1),Rad(g2)〉.

(One possibility: An ideal with this property has already appeared in class, but
you can make up your own.)
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Solution.

(a) Let e = max(e1, e2, . . . , er). Then (f1 · · · fr)e = f e−e1

1 f e−e2

2 · · · f e−er
r

f ∈ I. There-
fore by definition of the radical we must have f1 · · · fr ∈

√
I.

(b) By part (a), p1 · · ·pr ∈
√
I, so that 〈p1 · · · pr〉 ⊆

√
I. We now want to show the

opposite containment. Let m be any element of
√
I. By definition there is a

positive integer n so that mn ∈ I = 〈pe11 · · · per
r
〉. Thus there is a number g so

that mn = g · pe11 · · · per
r
. But then each of p1,. . . , pr divides m

n, so each of p1,. . . ,
pr must also divide m. Since p1,. . . , pr are relatively prime, this implies that the
product p1p2 · · ·pr divids m, and therefore that m = u · p1 · · · pr for some integer
u. This is the same thing as saying that m ∈ 〈p1 · · · pr〉. Since m was arbitrary,
we conclude that

√
I ⊆ 〈p1 · · · pr〉 and hence that

√
I = 〈p1 · · · pr〉.

(c) Set J = J1 ∩ J2. We need to show that J is closed under addition, and that J is
“multiplicatively sticky”.

Suppose that f1, f2 ∈ J . By the definition of J this means f1 and f2 are in each
of I1 and I2. Since I1 is an ideal we know that f1 + f2 ∈ I1. Since I2 is an ideal
we know that f1 + f2 ∈ I2. Therefore f1 + f2 ∈ I1 ∩ I2 = J .

Similarly, suppose that f ∈ J and that a ∈ A (where A is the ring we are working
in). Since f ∈ I1 ∩ I2, we know that f is in I1 and I2. Since I1 is an ideal af ∈ I1.
Since I2 is an ideal af ∈ I2. Therefore af ∈ I1 ∩ I2 = J .

(d) By part (b) I1 ∩ I1 is an ideal, so the only issue is to show that it is also a radical
ideal. Set J = I1 ∩ I2, and suppose that f ∈ A, and that fn ∈ J for some n > 1.
Then we have fn ∈ I1 and f

n ∈ I2 by the definition of J . Since both I1 and I2 are
radical ideals, this implies that f ∈ I1 and f ∈ I2. Therefore f ∈ I1 ∩ I2 = J , so
J is a radical ideal.

(e)[Math 813 only] This argument works exactly like the argument in (b): Let f = f e1

1 · · · f er
r

be the
factorization of f into irreducibles. By part (a) we have f1 · · ·fr ∈

√
I, so that

〈f1 · · · fr〉 ⊆
√
I, and we need to show the opposite containment. Suppose that

g ∈
√
I. By definition that means that there is an n > 1 so that gn ∈ I, so that

gn = hf e1

1 · · · f er
r

for some h ∈ k[x1, . . . , xn]. The equation shows that each of
f1,. . . , fr divides g

n, hence since f1,. . . , fr are irreducible (and so prime), each of
f1,. . . , fr divides g. Since f1,. . . , fr are relatively prime, the product f1 · · ·fr also
divides g. Therefore g ∈ 〈f1 · · · fr〉, so that

√
I = 〈f1 · · ·fr〉.

(f)[Math 813 only] Perhaps the easiest example is this: Suppose that k is not of characteristic 2 and
let I be the ideal I = 〈x2 − y2, x2 + y2〉 ⊂ k[x, y]. Then Rad(x2 − y2) = x2 − y2,
Rad(x2 + y2) = x2 + y2. However, 〈x2 − y2, x2 + y2〉 = 〈x2, y2〉, so we see that
(x, y) ⊆

√
I. From this we deduce that 〈x, y〉 =

√
I since 〈x, y〉 is a maximal ideal,
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and
√
I 6= k[x, y]. However, 〈x2−y2, x2+y2〉 6= 〈x, y〉, so

√

〈f, g〉 6= 〈Rad f,Rad g〉
when f = x2 − y2, g = x2 + y2.

An alternate example is the one we saw in class (and question 1). Let I = 〈y, y2−
x3 − x2〉, i.e., f = y and g = y2 − x3 − x2. Then Rad(f) = f , Rad(g) = g, but
since I = 〈y, x2(x+ 1)〉 we have

√
I = 〈y, x(x+ 1)〉 6= I.

3. Let m ⊂ C[x, y, z] be the maximal ideal m = 〈x − 3, y − 4, z − 5〉. Which of the
following ideals are contained in m? And how do you know?

(a) I1 = 〈x2 + y2 − z2〉.

(b) I2 = 〈z2 − 2xy〉.

(c) I3 = 〈y2 − x2 − x− y, xyz − 3z2 + 5x〉.

(d) I4 = 〈x2 + y2 + z2 − xy − xz − yz, 7yz + 4xz − 8z2〉.

Solution. In class we have seen that for a maximial ideal of the form m = 〈x1 −
a1, . . . , xn − an〉 ⊂ k[x1, . . . , xn], that a polynomial g ∈ k[x1, . . . , xn] is in m if and only
if g(a1, . . . , an) = 0. (We saw this in two different ways, one of which was identifying m

as the kernel of the evaluation map k[x1, . . . , xn] −→ k sending each g to g(a1, . . . , an),
and the other was by considering the “Taylor expansion” of g around (a1, . . . , an).)

In this problem we are considering the maximal ideal m = 〈x− 3, y − 4, z − 5〉.

(a) The ideal I1 = 〈x2 + y2 − z2〉 is generated by g1 = x2 + y2 − z2. Since g1(3, 4, 5) =
32 + 42 − 52 = 0, we see that g1 ∈ m. Since g1 ∈ m, the ideal I1 = 〈g1〉 is also
contained in m.

(b) The ideal I2 = 〈z2 − 2xy〉 is generated by g2 = z2 − 2xy. Since g2(3, 4, 5) =
52 − 2 · 3 · 4 = 25− 24 = 1 6= 0, we see that g2 6∈ m, and so I2 6⊂ m.

(c) The ideal I3 = 〈y2−x2−x−y, xyz−3z2+5x〉 is generated by g3 = y2−x2−x−y
and h3 = xyz − 3z2 + 5x. We have

g3(3, 4, 5) = 42 − 32 − 3− 4 = 16− 9− 3− 4 = 0, and

h3(3, 4, 5) = 3 · 4 · 5− 3 · 52 + 5 · 3 = 60− 75 + 15 = 0

and therefore both g3 and h3 are in m. We conclude that I3 = 〈g3, h3〉 ⊂ m.
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(d) The ideal I4 = 〈x2 + y2 + z2 − xy − xz − yz, 7yz + 4xz − 8z2〉 is generated by
g4 = x2 + y2 + z2 − xy − xz − yz and by h4 = 7yz + 4xz − 8z2. We have

g4(3, 4, 5) = 32 + 42 + 52 − 3 · 4− 3 · 5− 4 · 5 = 3, and

h4(3, 4, 5) = 7 · 4 · 5 + 4 · 3 · 5− 8 · 52 = 0.

Since g4(3, 4, 5) = 3 6= 0, g 6∈ m and therefore I4 6⊂ m.

4.[Math 813 only] In order that maximal ideals are in one-to-one correspondence with points, we
needed the condition that k be algebraically closed. In this problem we will see in a
simple example what happens if k is not algebraically closed: Maximal ideals are in
one-to-one correspondence with Gal(k/k) orbits of points.

(a)[Math 813 only] Let G = Gal(C/R) be the Galois group of C = R over R. Classify the orbits of G
on C.

(b)[Math 813 only] Classify the maximal ideals of R[x].

(c)[Math 813 only] Show that the maximal ideals of R[x] are in one-to-one correspondence with the
orbits of Gal(C/R) on C.

Solutions.

(a)[Math 813 only] The Galois group is G = Gal(C/R) = {IdC, σ}, where σ is complex conjugation.
If z ∈ R ⊆ C then z is fixed by G. If z ∈ C \ R then the orbit of z is {z, z}, of
size 2. Thus an orbit of G consists of either a real number or a pair of conjugate
complex numbers.

(b)[Math 813 only] The ring R[x] is a principal ideal domain, so every ideal I ⊆ R[x] is of the form
I = 〈f〉 for a monic polynomial f . In order for I to be maximal we need f to be
irreducible. The monic irreducible polynomials in R[x] are either linear, so of the
form x − z with z ∈ R or an irreducible quadratic polynomial x2 + bx + c with
b, c ∈ R and b2−4c < 0. The roots of the irreducible quadratic polynomial are the
conjugate pair of complex numbers 1

2
(−b±

√
b2 − 4c), while the root of the linear

polynomial is the real number z.

(c)[Math 813 only] The maximal ideals of R[x] are in one-to-one with the G-orbits on C: given u ∈ C

we send u to the maximal ideal generated by
∏

z∈OrbG(u)(x − z). Concretely, for

u ∈ R ⊂ C this means we send u to the ideal 〈x−u〉, and for u ∈ C \R we send u
to the ideal 〈(x− u)(x− u)〉 = 〈x2 − (u+ u)x+ uu〉. Conversely, given a maximal
ideal m = 〈f〉 ⊂ R[x] we associate it to its set of roots. This gives a one-to-one
correspondence between the two sets.
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Note: The reason we looked at points of C = A1
C
is that A1

C
is the variety associated

to the ring of functions R[x] = C[x]. More generally the maximal ideals of k[x1, . . . , xn]
are in one to one corresopondence with the orbits of Gal(k/k) acting on An

k
. There is a

similar statement for maximal ideals of a ring R[X ] where X is an affine variety defined
over k (i.e., using equations in k[x1, . . . , xn]). Thus working over a non-algebraically
closed field k amounts to combining the geometric picture over k with the action of
Gal(k/k) on the points of the variety.
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