1. In this problem we will prove that $\sqrt{\left\langle x^{2}(x+1), y\right\rangle}=\langle x(x+1), y\rangle$.
(a) Explain why we have the containment $\langle x(x+1), y\rangle \subseteq \sqrt{\left\langle x^{2}(x+1), y\right\rangle}$.

From part (a), in order to show equality it is enough to show the reverse containment. Let f be any element of $\sqrt{\left\langle x^{2}(x+1), y\right\rangle}$.
(b) Explain why we know that there is an $n \geqslant 1$ and polynomials $h_{1}, h_{2} \in k[x, y]$ such that

$$
\begin{equation*}
f^{n}=x^{2}(x+1) h_{1}+y h_{2} \tag{b1}
\end{equation*}
$$

(c) Let $\psi: k[x, y] \longrightarrow k[x]$ be the ring homomorphism given by setting $y=0$, and set $\bar{f}=\psi(f)$. Looking at the image of (b1) under ψ, and using unique factorization in the ring $k[x]$, explain why we know that there is a polynomial $h_{3} \in k[x]$ so that

$$
\bar{f}=x(x+1) h_{3}
$$

(d) Using part (c), explain why we know that there is a polynomial $h_{4} \in k[x, y]$ so that $f-x(x+1) h_{4}$ is in the kernel of ψ.
(e) What is the kernel of ψ ?
(f) Complete the problem by showing that $f \in\langle x(x+1), y\rangle$.

Solutions.

(a) Let $I=\left\langle x^{2}(x+1), y\right\rangle$. We always have the inclusion $I \subseteq \sqrt{I}$, and therefore since $y \in I$ we have $y \in \sqrt{I}$. Set $f=x(x+1)$. Since $f^{2}=x^{2}(x+1)^{2}=$ $(x+1) \cdot\left(x^{2}(x+1)\right) \in I$ we have $f \in \sqrt{I}$ by definition of \sqrt{I}. Since both y and $x(x+1)$ are in the ideal \sqrt{I}, the ideal $\langle x(x+1), y\rangle$ is also contained in \sqrt{I}.
(b) By the definition of the radical if $f \in \sqrt{I}$ there is an $n \geqslant 1$ so that $f^{n} \in I$. Since I is generated by $x^{2}(x+1)$ and y this means that there are $h_{1}, h_{2} \in k[x, y]$ with $f^{n}=x^{2}(x+1) h_{1}+y h_{2}$.
(c) Let \bar{h}_{1} be the image of h_{1} under ψ. Applying ψ to (b1) we get
(c2)

$$
\bar{f}^{n}=x^{2}(x+1) \bar{h}_{1} .
$$

Any polynomial in $k[x]$ can be factored as a product of linear factors (or irreducible factors, if k is not algebraically closed). Since x divides the right hand side of (c2) it must also divide \bar{f}^{n}, and therefore must divide \bar{f}. Similarly, since $x+1$ divides the right hand side of (c2) $x+1$ must also divide \bar{f}^{n} and hence also divide \bar{f}. Since x and $(x+1)$ are relatively prime, their product must also divide \bar{f}. By definition (of 'divides') this means that there is a polynomial $h_{3} \in k[x]$ so that $\bar{f}=x(x+1) h_{3}$.
(d) Let $h_{4} \in k[x, y]$ be the polynomial h_{3}, now also considered as a polynomial in x, y (but with no y 's). Then $\psi\left(h_{4}\right)=h_{3}$, so

$$
\psi\left(f-x(x+1) h_{4}\right)=\psi(f)-x(x+1) \psi\left(h_{4}\right)=\bar{f}-x(x+1) h_{3}=0
$$

and so $f-x(x+1) h_{4} \in \operatorname{Ker}(\psi)$.
(e) The map ψ corresponds to "restriction to the x-axis", and has kernel $\langle y\rangle$.
(f) Since $f-x(x+1) h_{4} \in \operatorname{Ker}(\psi)=\langle y\rangle$ there is a polynomial $h_{5} \in k[x, y]$ so that $f-x(x+1) h_{4}=y h_{5}$. But then $f=x(x+1) h_{4}+y h_{5}$, so that $f \in\langle x(x+1), y\rangle$.
2. In this problem we will explore other questions about the radical.
(a) Let A be any ring, $I \subset A$ and ideal, and $f \in I$. Suppose that $f=f_{1}^{e_{1}} f_{2}^{e_{2}} \cdots f_{r}^{e_{r}}$ for some $f_{1}, \ldots, f_{r} \in A$, and some $e_{1}, \ldots e_{r} \geqslant 1$. Show that $f_{1} f_{2} \cdots f_{r} \in \sqrt{I}$.
(b) Let $I \subset \mathbb{Z}$ be an ideal. We know that every ideal in \mathbb{Z} is generated by a single element, so $I=\langle n\rangle$ for some $n \in \mathbb{Z}$. Assume that $n \neq 0$ (i.e, $I \neq(0)$) and let $n=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$ be the prime factorization of n. Show that $\sqrt{I}=\left\langle p_{1} p_{2} \cdots p_{r}\right\rangle$.
(c) Let J_{1} and J_{2} be ideals. Show that $J_{1} \cap J_{2}$ is also an ideal.
(d) Let I_{1} and I_{2} be radical ideals. Show that $I_{1} \cap I_{2}$ is also a radical ideal.
[Math 813 only] (e) For any $f \in k\left[x_{1}, \ldots, x_{n}\right]$ let $f=f_{1}^{e_{1}} \cdots f_{r}^{e_{r}}$ be its factorization into irreducibles, and define $\operatorname{Rad}(f)$ by the formula $\operatorname{Rad}(f)=f_{1} f_{2} \cdots f_{r}$. Show that if I is a principal ideal, $I=\langle f\rangle$, then $\sqrt{I}=\langle\operatorname{Rad}(f)\rangle$.
[Math 813 only]
(f) Give an example of an ideal $I=\left\langle g_{1}, g_{2}\right\rangle \subset k[x, y]$ such that $\sqrt{I} \neq\left\langle\operatorname{Rad}\left(g_{1}\right), \operatorname{Rad}\left(g_{2}\right)\right\rangle$. (One possibility: An ideal with this property has already appeared in class, but you can make up your own.)

Solution.

(a) Let $e=\max \left(e_{1}, e_{2}, \ldots, e_{r}\right)$. Then $\left(f_{1} \cdots f_{r}\right)^{e}=f_{1}^{e-e_{1}} f_{2}^{e-e_{2}} \cdots f_{r}^{e-e_{r}} f \in I$. Therefore by definition of the radical we must have $f_{1} \cdots f_{r} \in \sqrt{I}$.
(b) By part (a), $p_{1} \cdots p_{r} \in \sqrt{I}$, so that $\left\langle p_{1} \cdots p_{r}\right\rangle \subseteq \sqrt{I}$. We now want to show the opposite containment. Let m be any element of \sqrt{I}. By definition there is a positive integer n so that $m^{n} \in I=\left\langle p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}\right\rangle$. Thus there is a number g so that $m^{n}=g \cdot p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$. But then each of p_{1}, \ldots, p_{r} divides m^{n}, so each of p_{1}, \ldots, p_{r} must also divide m. Since p_{1}, \ldots, p_{r} are relatively prime, this implies that the product $p_{1} p_{2} \cdots p_{r}$ divids m, and therefore that $m=u \cdot p_{1} \cdots p_{r}$ for some integer u. This is the same thing as saying that $m \in\left\langle p_{1} \cdots p_{r}\right\rangle$. Since m was arbitrary, we conclude that $\sqrt{I} \subseteq\left\langle p_{1} \cdots p_{r}\right\rangle$ and hence that $\sqrt{I}=\left\langle p_{1} \cdots p_{r}\right\rangle$.
(c) Set $J=J_{1} \cap J_{2}$. We need to show that J is closed under addition, and that J is "multiplicatively sticky".

Suppose that $f_{1}, f_{2} \in J$. By the definition of J this means f_{1} and f_{2} are in each of I_{1} and I_{2}. Since I_{1} is an ideal we know that $f_{1}+f_{2} \in I_{1}$. Since I_{2} is an ideal we know that $f_{1}+f_{2} \in I_{2}$. Therefore $f_{1}+f_{2} \in I_{1} \cap I_{2}=J$.

Similarly, suppose that $f \in J$ and that $a \in A$ (where A is the ring we are working in). Since $f \in I_{1} \cap I_{2}$, we know that f is in I_{1} and I_{2}. Since I_{1} is an ideal $a f \in I_{1}$. Since I_{2} is an ideal af $\in I_{2}$. Therefore af $\in I_{1} \cap I_{2}=J$.
(d) By part (b) $I_{1} \cap I_{1}$ is an ideal, so the only issue is to show that it is also a radical ideal. Set $J=I_{1} \cap I_{2}$, and suppose that $f \in A$, and that $f^{n} \in J$ for some $n \geqslant 1$. Then we have $f^{n} \in I_{1}$ and $f^{n} \in I_{2}$ by the definition of J. Since both I_{1} and I_{2} are radical ideals, this implies that $f \in I_{1}$ and $f \in I_{2}$. Therefore $f \in I_{1} \cap I_{2}=J$, so J is a radical ideal.
[Math 813 only]
[Math $\mathbf{8 1 3}$ only] (f) Perhaps the easiest example is this: Suppose that k is not of characteristic 2 and
(e) This argument works exactly like the argument in (b): Let $f=f_{1}^{e_{1}} \cdots f_{r}^{e_{r}}$ be the factorization of f into irreducibles. By part (a) we have $f_{1} \cdots f_{r} \in \sqrt{I}$, so that $\left\langle f_{1} \cdots f_{r}\right\rangle \subseteq \sqrt{I}$, and we need to show the opposite containment. Suppose that $g \in \sqrt{I}$. By definition that means that there is an $n \geqslant 1$ so that $g^{n} \in I$, so that $g^{n}=h f_{1}^{e_{1}} \cdots f_{r}^{e_{r}}$ for some $h \in k\left[x_{1}, \ldots, x_{n}\right]$. The equation shows that each of f_{1}, \ldots, f_{r} divides g^{n}, hence since f_{1}, \ldots, f_{r} are irreducible (and so prime), each of f_{1}, \ldots, f_{r} divides g. Since f_{1}, \ldots, f_{r} are relatively prime, the product $f_{1} \cdots f_{r}$ also divides g. Therefore $g \in\left\langle f_{1} \cdots f_{r}\right\rangle$, so that $\sqrt{I}=\left\langle f_{1} \cdots f_{r}\right\rangle$. let I be the ideal $I=\left\langle x^{2}-y^{2}, x^{2}+y^{2}\right\rangle \subset k[x, y]$. Then $\operatorname{Rad}\left(x^{2}-y^{2}\right)=x^{2}-y^{2}$, $\operatorname{Rad}\left(x^{2}+y^{2}\right)=x^{2}+y^{2}$. However, $\left\langle x^{2}-y^{2}, x^{2}+y^{2}\right\rangle=\left\langle x^{2}, y^{2}\right\rangle$, so we see that $(x, y) \subseteq \sqrt{I}$. From this we deduce that $\langle x, y\rangle=\sqrt{I}$ since $\langle x, y\rangle$ is a maximal ideal,
and $\sqrt{I} \neq k[x, y]$. However, $\left\langle x^{2}-y^{2}, x^{2}+y^{2}\right\rangle \neq\langle x, y\rangle$, so $\sqrt{\langle f, g\rangle} \neq\langle\operatorname{Rad} f, \operatorname{Rad} g\rangle$ when $f=x^{2}-y^{2}, g=x^{2}+y^{2}$.

An alternate example is the one we saw in class (and question 1). Let $I=\left\langle y, y^{2}-\right.$ $\left.x^{3}-x^{2}\right\rangle$, i.e., $f=y$ and $g=y^{2}-x^{3}-x^{2}$. Then $\operatorname{Rad}(f)=f, \operatorname{Rad}(g)=g$, but since $I=\left\langle y, x^{2}(x+1)\right\rangle$ we have $\sqrt{I}=\langle y, x(x+1)\rangle \neq I$.
3. Let $\mathfrak{m} \subset \mathbb{C}[x, y, z]$ be the maximal ideal $\mathfrak{m}=\langle x-3, y-4, z-5\rangle$. Which of the following ideals are contained in \mathfrak{m} ? And how do you know?
(a) $I_{1}=\left\langle x^{2}+y^{2}-z^{2}\right\rangle$.
(b) $I_{2}=\left\langle z^{2}-2 x y\right\rangle$.
(c) $I_{3}=\left\langle y^{2}-x^{2}-x-y, x y z-3 z^{2}+5 x\right\rangle$.
(d) $I_{4}=\left\langle x^{2}+y^{2}+z^{2}-x y-x z-y z, 7 y z+4 x z-8 z^{2}\right\rangle$.

Solution. In class we have seen that for a maximial ideal of the form $\mathfrak{m}=\left\langle x_{1}-\right.$ $\left.a_{1}, \ldots, x_{n}-a_{n}\right\rangle \subset k\left[x_{1}, \ldots, x_{n}\right]$, that a polynomial $g \in k\left[x_{1}, \ldots, x_{n}\right]$ is in \mathfrak{m} if and only if $g\left(a_{1}, \ldots, a_{n}\right)=0$. (We saw this in two different ways, one of which was identifying \mathfrak{m} as the kernel of the evaluation map $k\left[x_{1}, \ldots, x_{n}\right] \longrightarrow k$ sending each g to $g\left(a_{1}, \ldots, a_{n}\right)$, and the other was by considering the "Taylor expansion" of g around $\left(a_{1}, \ldots, a_{n}\right)$.)
In this problem we are considering the maximal ideal $\mathfrak{m}=\langle x-3, y-4, z-5\rangle$.
(a) The ideal $I_{1}=\left\langle x^{2}+y^{2}-z^{2}\right\rangle$ is generated by $g_{1}=x^{2}+y^{2}-z^{2}$. Since $g_{1}(3,4,5)=$ $3^{2}+4^{2}-5^{2}=0$, we see that $g_{1} \in \mathfrak{m}$. Since $g_{1} \in \mathfrak{m}$, the ideal $I_{1}=\left\langle g_{1}\right\rangle$ is also contained in \mathfrak{m}.
(b) The ideal $I_{2}=\left\langle z^{2}-2 x y\right\rangle$ is generated by $g_{2}=z^{2}-2 x y$. Since $g_{2}(3,4,5)=$ $5^{2}-2 \cdot 3 \cdot 4=25-24=1 \neq 0$, we see that $g_{2} \notin \mathfrak{m}$, and so $I_{2} \not \subset \mathfrak{m}$.
(c) The ideal $I_{3}=\left\langle y^{2}-x^{2}-x-y, x y z-3 z^{2}+5 x\right\rangle$ is generated by $g_{3}=y^{2}-x^{2}-x-y$ and $h_{3}=x y z-3 z^{2}+5 x$. We have

$$
\begin{aligned}
& g_{3}(3,4,5)=4^{2}-3^{2}-3-4=16-9-3-4=0, \text { and } \\
& h_{3}(3,4,5)=3 \cdot 4 \cdot 5-3 \cdot 5^{2}+5 \cdot 3=60-75+15=0
\end{aligned}
$$

and therefore both g_{3} and h_{3} are in \mathfrak{m}. We conclude that $I_{3}=\left\langle g_{3}, h_{3}\right\rangle \subset \mathfrak{m}$.
(d) The ideal $I_{4}=\left\langle x^{2}+y^{2}+z^{2}-x y-x z-y z, 7 y z+4 x z-8 z^{2}\right\rangle$ is generated by $g_{4}=x^{2}+y^{2}+z^{2}-x y-x z-y z$ and by $h_{4}=7 y z+4 x z-8 z^{2}$. We have

$$
\begin{aligned}
& g_{4}(3,4,5)=3^{2}+4^{2}+5^{2}-3 \cdot 4-3 \cdot 5-4 \cdot 5=3, \text { and } \\
& h_{4}(3,4,5)=7 \cdot 4 \cdot 5+4 \cdot 3 \cdot 5-8 \cdot 5^{2}=0 .
\end{aligned}
$$

Since $g_{4}(3,4,5)=3 \neq 0, g \notin \mathfrak{m}$ and therefore $I_{4} \not \subset \mathfrak{m}$.
[Math 813 only] 4. In order that maximal ideals are in one-to-one correspondence with points, we needed the condition that k be algebraically closed. In this problem we will see in a simple example what happens if k is not algebraically closed: Maximal ideals are in one-to-one correspondence with $\operatorname{Gal}(\bar{k} / k)$ orbits of points.
[Math $8 \mathbf{1 3}$ only] (a) Let $G=\operatorname{Gal}(\mathbb{C} / \mathbb{R})$ be the Galois group of $\mathbb{C}=\overline{\mathbb{R}}$ over \mathbb{R}. Classify the orbits of G on \mathbb{C}.
[Math 813 only]
[Math 813 only]
(b) Classify the maximal ideals of $\mathbb{R}[x]$.
(c) Show that the maximal ideals of $\mathbb{R}[x]$ are in one-to-one correspondence with the orbits of $\operatorname{Gal}(\mathbb{C} / \mathbb{R})$ on \mathbb{C}.

Solutions.

[Math 813 only] (a) The Galois group is $G=\operatorname{Gal}(\mathbb{C} / \mathbb{R})=\left\{\operatorname{Id}_{\mathbb{C}}, \sigma\right\}$, where σ is complex conjugation. If $z \in \mathbb{R} \subseteq \mathbb{C}$ then z is fixed by G. If $z \in \mathbb{C} \backslash \mathbb{R}$ then the orbit of z is $\{z, \bar{z}\}$, of size 2. Thus an orbit of G consists of either a real number or a pair of conjugate complex numbers.
[Math 813 only] (b) The ring $\mathbb{R}[x]$ is a principal ideal domain, so every ideal $I \subseteq \mathbb{R}[x]$ is of the form $I=\langle f\rangle$ for a monic polynomial f. In order for I to be maximal we need f to be irreducible. The monic irreducible polynomials in $\mathbb{R}[x]$ are either linear, so of the form $x-z$ with $z \in \mathbb{R}$ or an irreducible quadratic polynomial $x^{2}+b x+c$ with $b, c \in \mathbb{R}$ and $b^{2}-4 c<0$. The roots of the irreducible quadratic polynomial are the conjugate pair of complex numbers $\frac{1}{2}\left(-b \pm \sqrt{b^{2}-4 c}\right)$, while the root of the linear polynomial is the real number z.
[Math 813 only]
(c) The maximal ideals of $\mathbb{R}[x]$ are in one-to-one with the G-orbits on \mathbb{C} : given $u \in \mathbb{C}$ we send u to the maximal ideal generated by $\prod_{z \in \operatorname{Orb}_{G}(u)}(x-z)$. Concretely, for $u \in \mathbb{R} \subset \mathbb{C}$ this means we send u to the ideal $\langle x-u\rangle$, and for $u \in \mathbb{C} \backslash \mathbb{R}$ we send u to the ideal $\langle(x-u)(x-\bar{u})\rangle=\left\langle x^{2}-(u+\bar{u}) x+u \bar{u}\right\rangle$. Conversely, given a maximal ideal $\mathfrak{m}=\langle f\rangle \subset \mathbb{R}[x]$ we associate it to its set of roots. This gives a one-to-one correspondence between the two sets.

Note: The reason we looked at points of $\mathbb{C}=\mathbb{A}_{\mathbb{C}}^{1}$ is that $\mathbb{A}_{\mathbb{C}}^{1}$ is the variety associated to the ring of functions $\overline{\mathbb{R}}[x]=\mathbb{C}[x]$. More generally the maximal ideals of $k\left[x_{1}, \ldots, x_{n}\right]$ are in one to one corresopondence with the orbits of $\operatorname{Gal}(\bar{k} / k)$ acting on $\mathbb{A} \frac{n}{k}$. There is a similar statement for maximal ideals of a ring $R[X]$ where X is an affine variety defined over k (i.e., using equations in $k\left[x_{1}, \ldots, x_{n}\right]$). Thus working over a non-algebraically closed field k amounts to combining the geometric picture over \bar{k} with the action of $\operatorname{Gal}(\bar{k} / k)$ on the points of the variety.

