
Math 413/813 Answers for Homework 5

1. In this problem we will use parts of the algebra-geometry correspondence that we
have built up to prove the following result in commutative algebra:

Let I ⊆ k[x1, . . . , xn] be an ideal, and I the intersection of all the
maximal ideals of k[x1, . . . , xn] containing I. Then I =

√
I.

(a) Show that a maximal ideal is a radical ideal. (Suggestion: It may help to rewrite
the condition that I ⊂ A is a radical ideal in terms of the quotient ring A/I.)

(b) Show that an arbitrary intersection of maximal ideals is a radical ideal. (You can
use results from the previous homework.)

Now assume that J ⊆ k[x1, . . . , xn] is a radical ideal, and let I be the intersection of all

maximal ideals containing J . I.e., I =
⋂

J⊆m

m, where each m is a maximal ideal.

(c) Show that every maximal ideal containing J also contains I.

(d) Show that J ⊆ I.

(e) Show that every maximal ideal containing I also contains J .

Next, using parts of the algebra-geometry dictionary we have seen in class:

(f) Explain why V (J) = V (I). (Suggestion: what do (c) and (e) say about the
points of V (J) and V (I)?)

(g) Explain why we then know that J = I.

Finally, let I ⊂ k[x1, . . . , xn] be any ideal, and set J =
√
I.

(h) Show that any maximal ideal containing I also contains J .

(i) Show that any maximal ideal containing J also contains I.

(j) Prove the commutative algebra statement above.
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Solutions.

(a) Let A be a ring and I ⊆ A an ideal. The condition that I is a radical ideal is that
for any f ∈ A, if fn ∈ I for some n > 1 then f ∈ I. In terms of the quotient, this
means that for any f ∈ A/I, if f

n
= 0 for some n > 1 then f = 0.

If I is a maximal ideal, then A/I is a field and hence a domain. Therefore if
f
n
= 0 we must have f = 0, so I is a radical ideal. (More generally, if I is a prime

ideal then A/I is a domain, and this argument gives another way of showing that
a prime ideal is radical.)

(b) The argument from H4, Q2(d) works essentially without change. Suppose that
Jα, α ∈ S is a collection of radical ideals in a ring A, and set I = ∩α∈SJα.
Suppose that f ∈ A and that fn ∈ I for some n > 1. Then fn ∈ Jα for each
α ∈ S. Since each Jα is a radical ideal, this means that f ∈ Jα for each α.
Therefore f ∈ ∩α∈SJα = I, and so I is a radical ideal.

(c) The intersection of sets is always contained in each of the sets being intersected.
By definition I is the intersection of all maximal ideals containing J , and hence is
contained in each maximal ideal containing J .

(d) If m is a maximal ideal containing J , then certainly J ⊆ m, and so J will also be
contained in the intersection of all such maximal ideals. Since that intersection is
I, J ⊆ I.

(e) By part (d) we have J ⊆ I. Therefore if m is a maximal ideal containing I, we
have J ⊆ I ⊆ m, so m also contains J .

(f) Part (c) tells us that every maximal ideal containing J also contains I, and part
(e) that every maximal ideal containing I contains J . Thus the set of maximal
ideals containing I and the set of maximal ideals containing J are the same.

Maximal ideals in k[x1, . . . , xn] correspond to points of An. By the order reversing
correspondence between ideals and varieties, the points of V (J) correspond to the
maximal ideals containing J , and the points of V (I) correspond to the maximal
ideals containing I. By the previous discussion these sets of maximal ideals are
the same, and therefore the sets of points are the same. Thus the points of V (J)
and V (I) are the same, and so V (J) = V (I).

(g) The ideal/variety correspondence gives a bijection between subvarieties of An and
radical ideals of k[x1, . . . , xn]. By part (b) I is a radical ideal, and J is a radical
ideal by assumption. Since V (J) = V (I) the correspondence then tells us that
J = I.
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(h) Let m be a maximal ideal containing I, and f any element of J . By definition
there is an n > 1 so that fn ∈ I, and therefore fn ∈ m too. By part (a), m is a
radical ideal, so we have f ∈ m. Thus every element of J is an element of m and
so J ⊆ m.

(i) We have already seen in class that I ⊆
√
I = J , so any maximal ideal containing

J also contains I.

(j) Let I ⊆ k[x1, . . . , xn] be any ideal, and set J =
√
I. By parts (c)–(g) we have that

⋂

J⊆m
m = J . By parts (h) and (i) we have that the maximal ideals containing I are

the same as the maximal ideals containing J . Thus
⋂

I⊆m
m =

⋂

J⊆m
m = J =

√
I.

2. In this question we will explore the construction of sum of ideals. Given a ring A,
and a (possibly infinite) collection of ideals Iα ⊂ A, α ∈ S recall that we have defined
∑

α∈S Iα as all possible finite sums of elements in the Iα, i.e.,

∑

α∈S

Iα =

{

fα1
+ fα2

+ · · ·+ fαk
fαj
∈ Iαj

}

.

(a) Show that
∑

α∈S Iα is an ideal.

(b) Suppose that A is a Noetherian ring. Show that there is a finite subset S ′ ⊆ S
such that

∑

α∈S′ Iα =
∑

α∈S Iα.

(c) Suppose that X is an affine variety with ring of functions R[X ]. Let Zα, α ∈ S be
a collection of closed subsets of X corresponding to ideals Jα, α ∈ S. Show that

V (
∑

α∈S

Jα) =
⋂

α∈S

Zα

as claimed in class.

Solution.

(a) Suppose that f ∈ ∑α∈S Iα, so that f = fα1
+ · · ·+ fαk

for some α1,. . . , αk ∈ S.
Let g be any element of A. Then gfαi

∈ Iαi
for i = 1,. . . , k, since each Iαi

is an
ideal. Therefore gf = (gfα1

) + · · ·+ (gfαk
) ∈

∑

α∈S Iα.

Now suppose that g ∈
∑

α∈S , so that g = gβ1
+ · · · + gβℓ

with gβj
∈ Iβj

for some
β1,. . . , βℓ ∈ S. It is easier notationally to be able to assume that the index sets
for the terms of f and g are the same. We can do this by taking the union of the
two index sets, say {α1, . . . , αk} ∪ {β1, . . . , βℓ} = {γ1, . . . , γr}, and setting fγj = 0
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whenever γj is not one of the α’s, and similarly gγj = 0 whenever γj is not one of
the β’s. Then

f + g = (fγ1 + gγ1) + · · ·+ (fγr + gγr).

Each fγj + gγj ∈ Iγj since Iγj is an ideal. Thus f + g ∈∑α∈S Iα so
∑

α∈S Iα is an
ideal.

(b) Consider the set T of ideals of A of the form
∑

α∈S′ Iα with S ′ a finite subset of
S. Since A is Noetherian, T has a maximal element, i.e., there is an S ′ such that
the ideal I =

∑

α∈S′ Iα is not strictly contained in any other element of T .

The claim is that I =
∑

α∈S Iα. If not, then there is some element f of
∑

α∈S Iα
which is not in I. Let S ′′ be the indices appearing when writing f out as a sum
of elements in the Iα, and set S ′′′ = S ′ ∪ S ′′. Then the ideal

∑

α∈S′′′ Iα is in T ,
contains I, and contains f . I.e., this is an ideal in T which strictly contains I,
contradicting the maximality of I. Therefore I =

∑

α∈S Iα.

(c) Suppose that z ∈ ∩α∈SZα. Then for any fα ∈ Jα, fα(z) = 0. It follows that
for any sum f = fα1

+ · · · + fαk
with each fαj

∈ Iαj
we have f(z) = 0. Thus

∩α∈SZα ⊆ V (
∑

α∈S Jα).

To see the opposite inclusion, note that for any β ∈ S, Jβ ⊆
∑

α∈S Jα, and hence
by the order reversing correspondence between ideals and subvarieties,

V

(

∑

α∈S

Jα

)

⊆ V (Jβ) = Zβ.

Since this is true for all β ∈ S, we have the inclusion V (
∑

α Jα) ⊆ ∩α∈SZα, and
thus V (

∑

α∈S Jα) = ∩α∈SZα.

3. The elementary symmetric polynomials in x1, x2, and x3 are the polynomials e1 =
x1 + x2 + x3, e2 = x1x2 + x2x3 + x1x3, and e3 = x1x2x3. It is a useful result in algebra
that these polynomials are algebraically independent over any field. This means that
for any polynomial f(y1, y2, y3) ∈ k[y1, y2, y3] the polynomial f(e1, e2, e3) ∈ k[x1, x2, x3]
is zero only if f was zero to start with.

In contrast, the functions g1 = x2

1
, g2 = x1x2, and g3 = x2

2
are not algebraically inde-

pendent. Letting f(y1, y2, y3) = y1y3 − y2
2
, we have f 6= 0 but f(g1, g2, g3) = 0.

In this problem we will use combination of geometric and algebraic arguments (and
thus the algebra ←→ geometry dictionary) to show that e1, e2, and e3 are algebraically
independent.

(a) Suppose that ϕ : X −→ Y is a morphism of affine varieties, and that ϕ is surjective.
Show that the homomorphism ϕ∗ : R[Y ] −→ R[X ] is injective.
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(b) Let X = A
3 with ring of functions k[x1, x2, x3], and let Y also be A

3 with ring of
functions k[y1, y2, y3]. Let ϕ : X −→ Y be the map

ϕ(x1, x2, x3) =
(

x1 + x2 + x3, x1x2 + x2x3 + x1x3, x1x2x3

)

.

So, for instance, ϕ(3, 1, 5) = (3 + 1 + 5, 3 · 1 + 1 · 5 + 3 · 5, 3 · 1 · 5) = (9, 23, 15).

Describe the pullback map ϕ∗. In particular, what are ϕ∗(y1), ϕ
∗(y2), and ϕ∗(y3)?

(c) Expand the product (t− α)(t− β)(t− γ).

(d) For any (a, b, c) ∈ Y , consider the polynomial t3 − at2 + bt− c and let α, β, and γ
be the roots. Show that ϕ(α, β, γ) = (a, b, c).

(e) Prove that e1, e2, and e3 are algebraically independent.

Solution.

(a) Suppose that f ∈ R[Y ] is in the kernel of ϕ∗. Then ϕ∗(f) is the zero function on
X , so ϕ∗(f)(x) = f(ϕ(x)) = 0 for all x ∈ X . Let y be any point of Y . Since ϕ
is surjective, there is an x ∈ X such that ϕ(x) = y. By the previous calculation,
this means that f(y) = f(ϕ(x)) = 0. In other words, f(y) = 0 for all y ∈ Y , so f
is the zero function. Thus ϕ∗ is injective.

(b) The pullback map is composition, so

ϕ∗(y1)(x1, x2, x3) = y1(ϕ((x1, x2, x3)) = y1((x1 + x2 + x3, x1x2 + x2x3 + x1x3, x1x2x3)

= x1 + x2 + x2,

ϕ∗(y2)(x1, x2, x3) = y2(ϕ((x1, x2, x3)) = y2((x1 + x2 + x3, x1x2 + x2x3 + x1x3, x1x2x3)

= x1x2 + x2x3 + x1x3,

ϕ∗(y3)(x1, x2, x3) = y3(ϕ((x1, x2, x3)) = y3((x1 + x2 + x3, x1x2 + x2x3 + x1x3, x1x2x3)

= x1x2x3.

In general, for a polynomial f(y1, y2, y3) ∈ R[Y ] = k[y1, y2, y3] this implies that
ϕ∗(f) = f(x1 + x2 + x3, x1x2 + x2x3 + x1x3, x1x2x3) = f(e1, e2, e3).

(c) (t− α)(t− β)(t− γ) = t3 − (α + β + γ)t2 + (αβ + βγ + αγ)t− αβγ.

(d) If α, β, and γ are the roots of t3 − at2 + bt− c then

t3−at2+bt−c = (t−α)(t−β)(t−γ) = t3−(α+β+γ)t2+(αβ+βγ+αγ)t−αβγ,

so a = α+ β + γ, b = αβ + βγ + αγ, and c = αβγ. Therfore ϕ(α, β, γ) = (a, b, c).
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(e) From part (b), for any f(y1, y2, y3) ∈ k[y1, y2, y3], ϕ
∗f = f(e1, e2, e3). By part

(d) the map ϕ is surjective, so by (a) this means that ϕ∗ is injective. Thus,
the only polynomial f(y1, y2, y3) ∈ k[y1, y2, y3] such that f(e1, e2, e3) = 0 is the
zero polynomial. By definition this means that e1, e2, and e3 are algebraically
independent.
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