1. In this problem we will use parts of the algebra-geometry correspondence that we have built up to prove the following result in commutative algebra:

Let $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal, and \bar{I} the intersection of all the maximal ideals of $k\left[x_{1}, \ldots, x_{n}\right]$ containing I. Then $\bar{I}=\sqrt{I}$.
(a) Show that a maximal ideal is a radical ideal. (SugGestion: It may help to rewrite the condition that $I \subset A$ is a radical ideal in terms of the quotient ring A / I.)
(b) Show that an arbitrary intersection of maximal ideals is a radical ideal. (You can use results from the previous homework.)

Now assume that $J \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ is a radical ideal, and let \bar{I} be the intersection of all maximal ideals containing J. I.e., $\bar{I}=\bigcap_{J \subseteq \mathfrak{m}} \mathfrak{m}$, where each \mathfrak{m} is a maximal ideal.
(c) Show that every maximal ideal containing J also contains \bar{I}.
(d) Show that $J \subseteq \bar{I}$.
(e) Show that every maximal ideal containing \bar{I} also contains J.

Next, using parts of the algebra-geometry dictionary we have seen in class:
(f) Explain why $V(J)=V(\bar{I})$. (Suggestion: what do (c) and (e) say about the points of $V(J)$ and $V(\bar{I})$?)
(g) Explain why we then know that $J=\bar{I}$.

Finally, let $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ be any ideal, and set $J=\sqrt{I}$.
(h) Show that any maximal ideal containing I also contains J.
(i) Show that any maximal ideal containing J also contains I.
(j) Prove the commutative algebra statement above.

Solutions.

(a) Let A be a ring and $I \subseteq A$ an ideal. The condition that I is a radical ideal is that for any $f \in A$, if $f^{n} \in I$ for some $n \geqslant 1$ then $f \in I$. In terms of the quotient, this means that for any $\bar{f} \in A / I$, if $\bar{f}^{n}=0$ for some $n \geqslant 1$ then $\bar{f}=0$.

If I is a maximal ideal, then A / I is a field and hence a domain. Therefore if $\bar{f}^{n}=0$ we must have $\bar{f}=0$, so I is a radical ideal. (More generally, if I is a prime ideal then A / I is a domain, and this argument gives another way of showing that a prime ideal is radical.)
(b) The argument from $\mathbf{H 4}, \mathbf{Q 2 (d)}$ works essentially without change. Suppose that $J_{\alpha}, \alpha \in S$ is a collection of radical ideals in a ring A, and set $\bar{I}=\cap_{\alpha \in S} J_{\alpha}$. Suppose that $f \in A$ and that $f^{n} \in \bar{I}$ for some $n \geqslant 1$. Then $f^{n} \in J_{\alpha}$ for each $\alpha \in S$. Since each J_{α} is a radical ideal, this means that $f \in J_{\alpha}$ for each α. Therefore $f \in \cap_{\alpha \in S} J_{\alpha}=\bar{I}$, and so \bar{I} is a radical ideal.
(c) The intersection of sets is always contained in each of the sets being intersected. By definition \bar{I} is the intersection of all maximal ideals containing J, and hence is contained in each maximal ideal containing J.
(d) If \mathfrak{m} is a maximal ideal containing J, then certainly $J \subseteq \mathfrak{m}$, and so J will also be contained in the intersection of all such maximal ideals. Since that intersection is $\bar{I}, J \subseteq \bar{I}$.
(e) By part (d) we have $J \subseteq \bar{I}$. Therefore if \mathfrak{m} is a maximal ideal containing \bar{I}, we have $J \subseteq \bar{I} \subseteq \mathfrak{m}$, so \mathfrak{m} also contains J.
(f) Part (c) tells us that every maximal ideal containing J also contains \bar{I}, and part (e) that every maximal ideal containing \bar{I} contains J. Thus the set of maximal ideals containing \bar{I} and the set of maximal ideals containing J are the same.

Maximal ideals in $k\left[x_{1}, \ldots, x_{n}\right]$ correspond to points of \mathbb{A}^{n}. By the order reversing correspondence between ideals and varieties, the points of $V(J)$ correspond to the maximal ideals containing J, and the points of $V(\bar{I})$ correspond to the maximal ideals containing \bar{I}. By the previous discussion these sets of maximal ideals are the same, and therefore the sets of points are the same. Thus the points of $V(J)$ and $V(\bar{I})$ are the same, and so $V(J)=V(\bar{I})$.
(g) The ideal/variety correspondence gives a bijection between subvarieties of \mathbb{A}^{n} and radical ideals of $k\left[x_{1}, \ldots, x_{n}\right]$. By part (b) \bar{I} is a radical ideal, and J is a radical ideal by assumption. Since $V(J)=V(\bar{I})$ the correspondence then tells us that $J=\bar{I}$.
(h) Let \mathfrak{m} be a maximal ideal containing I, and f any element of J. By definition there is an $n \geqslant 1$ so that $f^{n} \in I$, and therefore $f^{n} \in \mathfrak{m}$ too. By part (a), \mathfrak{m} is a radical ideal, so we have $f \in \mathfrak{m}$. Thus every element of J is an element of \mathfrak{m} and so $J \subseteq \mathfrak{m}$.
(i) We have already seen in class that $I \subseteq \sqrt{I}=J$, so any maximal ideal containing J also contains I.
(j) Let $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ be any ideal, and set $J=\sqrt{I}$. By parts (c)-(g) we have that $\bigcap_{J \subseteq \mathfrak{m}} \mathfrak{m}=J$. By parts (h) and (i) we have that the maximal ideals containing I are the same as the maximal ideals containing J. Thus $\bigcap_{I \subseteq \mathfrak{m}} \mathfrak{m}=\bigcap_{J \subseteq \mathfrak{m}} \mathfrak{m}=J=\sqrt{I}$.
2. In this question we will explore the construction of sum of ideals. Given a ring A, and a (possibly infinite) collection of ideals $I_{\alpha} \subset A, \alpha \in S$ recall that we have defined $\sum_{\alpha \in S} I_{\alpha}$ as all possible finite sums of elements in the I_{α}, i.e.,

$$
\sum_{\alpha \in S} I_{\alpha}=\left\{f_{\alpha_{1}}+f_{\alpha_{2}}+\cdots+f_{\alpha_{k}} \mid f_{\alpha_{j}} \in I_{\alpha_{j}}\right\}
$$

(a) Show that $\sum_{\alpha \in S} I_{\alpha}$ is an ideal.
(b) Suppose that A is a Noetherian ring. Show that there is a finite subset $S^{\prime \prime} \subseteq S$ such that $\sum_{\alpha \in S^{\prime}} I_{\alpha}=\sum_{\alpha \in S} I_{\alpha}$.
(c) Suppose that X is an affine variety with ring of functions $R[X]$. Let $Z_{\alpha}, \alpha \in S$ be a collection of closed subsets of X corresponding to ideals $J_{\alpha}, \alpha \in S$. Show that

$$
V\left(\sum_{\alpha \in S} J_{\alpha}\right)=\bigcap_{\alpha \in S} Z_{\alpha}
$$

as claimed in class.

Solution.

(a) Suppose that $f \in \sum_{\alpha \in S} I_{\alpha}$, so that $f=f_{\alpha_{1}}+\cdots+f_{\alpha_{k}}$ for some $\alpha_{1}, \ldots, \alpha_{k} \in S$. Let g be any element of A. Then $g f_{\alpha_{i}} \in I_{\alpha_{i}}$ for $i=1, \ldots, k$, since each $I_{\alpha_{i}}$ is an ideal. Therefore $g f=\left(g f_{\alpha_{1}}\right)+\cdots+\left(g f_{\alpha_{k}}\right) \in \sum_{\alpha \in S} I_{\alpha}$.

Now suppose that $g \in \sum_{\alpha \in S}$, so that $g=g_{\beta_{1}}+\cdots+g_{\beta_{\ell}}$ with $g_{\beta_{j}} \in I_{\beta_{j}}$ for some $\beta_{1}, \ldots, \beta_{\ell} \in S$. It is easier notationally to be able to assume that the index sets for the terms of f and g are the same. We can do this by taking the union of the two index sets, say $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\} \cup\left\{\beta_{1}, \ldots, \beta_{\ell}\right\}=\left\{\gamma_{1}, \ldots, \gamma_{r}\right\}$, and setting $f_{\gamma_{j}}=0$
whenever γ_{j} is not one of the α 's, and similarly $g_{\gamma_{j}}=0$ whenever γ_{j} is not one of the β 's. Then

$$
f+g=\left(f_{\gamma_{1}}+g_{\gamma_{1}}\right)+\cdots+\left(f_{\gamma_{r}}+g_{\gamma_{r}}\right) .
$$

Each $f_{\gamma_{j}}+g_{\gamma_{j}} \in I_{\gamma_{j}}$ since $I_{\gamma_{j}}$ is an ideal. Thus $f+g \in \sum_{\alpha \in S} I_{\alpha}$ so $\sum_{\alpha \in S} I_{\alpha}$ is an ideal.
(b) Consider the set T of ideals of A of the form $\sum_{\alpha \in S^{\prime}} I_{\alpha}$ with S^{\prime} a finite subset of S. Since A is Noetherian, T has a maximal element, i.e., there is an S^{\prime} such that the ideal $I=\sum_{\alpha \in S^{\prime}} I_{\alpha}$ is not strictly contained in any other element of T.

The claim is that $I=\sum_{\alpha \in S} I_{\alpha}$. If not, then there is some element f of $\sum_{\alpha \in S} I_{\alpha}$ which is not in I. Let $S^{\prime \prime}$ be the indices appearing when writing f out as a sum of elements in the I_{α}, and set $S^{\prime \prime \prime}=S^{\prime} \cup S^{\prime \prime}$. Then the ideal $\sum_{\alpha \in S^{\prime \prime \prime}} I_{\alpha}$ is in T, contains I, and contains f. I.e., this is an ideal in T which strictly contains I, contradicting the maximality of I. Therefore $I=\sum_{\alpha \in S} I_{\alpha}$.
(c) Suppose that $z \in \cap_{\alpha \in S} Z_{\alpha}$. Then for any $f_{\alpha} \in J_{\alpha}, f_{\alpha}(z)=0$. It follows that for any $\operatorname{sum} f=f_{\alpha_{1}}+\cdots+f_{\alpha_{k}}$ with each $f_{\alpha_{j}} \in I_{\alpha_{j}}$ we have $f(z)=0$. Thus $\cap_{\alpha \in S} Z_{\alpha} \subseteq V\left(\sum_{\alpha \in S} J_{\alpha}\right)$.

To see the opposite inclusion, note that for any $\beta \in S, J_{\beta} \subseteq \sum_{\alpha \in S} J_{\alpha}$, and hence by the order reversing correspondence between ideals and subvarieties,

$$
V\left(\sum_{\alpha \in S} J_{\alpha}\right) \subseteq V\left(J_{\beta}\right)=Z_{\beta}
$$

Since this is true for all $\beta \in S$, we have the inclusion $V\left(\sum_{\alpha} J_{\alpha}\right) \subseteq \cap_{\alpha \in S} Z_{\alpha}$, and thus $V\left(\sum_{\alpha \in S} J_{\alpha}\right)=\cap_{\alpha \in S} Z_{\alpha}$.
3. The elementary symmetric polynomials in x_{1}, x_{2}, and x_{3} are the polynomials $e_{1}=$ $x_{1}+x_{2}+x_{3}, e_{2}=x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}$, and $e_{3}=x_{1} x_{2} x_{3}$. It is a useful result in algebra that these polynomials are algebraically independent over any field. This means that for any polynomial $f\left(y_{1}, y_{2}, y_{3}\right) \in k\left[y_{1}, y_{2}, y_{3}\right]$ the polynomial $f\left(e_{1}, e_{2}, e_{3}\right) \in k\left[x_{1}, x_{2}, x_{3}\right]$ is zero only if f was zero to start with.
In contrast, the functions $g_{1}=x_{1}^{2}, g_{2}=x_{1} x_{2}$, and $g_{3}=x_{2}^{2}$ are not algebraically independent. Letting $f\left(y_{1}, y_{2}, y_{3}\right)=y_{1} y_{3}-y_{2}^{2}$, we have $f \neq 0$ but $f\left(g_{1}, g_{2}, g_{3}\right)=0$.
In this problem we will use combination of geometric and algebraic arguments (and thus the algebra \longleftrightarrow geometry dictionary) to show that e_{1}, e_{2}, and e_{3} are algebraically independent.
(a) Suppose that $\varphi: X \longrightarrow Y$ is a morphism of affine varieties, and that φ is surjective. Show that the homomorphism $\varphi^{*}: R[Y] \longrightarrow R[X]$ is injective.
(b) Let $X=\mathbb{A}^{3}$ with ring of functions $k\left[x_{1}, x_{2}, x_{3}\right]$, and let Y also be \mathbb{A}^{3} with ring of functions $k\left[y_{1}, y_{2}, y_{3}\right]$. Let $\varphi: X \longrightarrow Y$ be the map

$$
\varphi\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}+x_{3}, x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}, x_{1} x_{2} x_{3}\right)
$$

So, for instance, $\varphi(3,1,5)=(3+1+5,3 \cdot 1+1 \cdot 5+3 \cdot 5,3 \cdot 1 \cdot 5)=(9,23,15)$.
Describe the pullback map φ^{*}. In particular, what are $\varphi^{*}\left(y_{1}\right), \varphi^{*}\left(y_{2}\right)$, and $\varphi^{*}\left(y_{3}\right)$?
(c) Expand the product $(t-\alpha)(t-\beta)(t-\gamma)$.
(d) For any $(a, b, c) \in Y$, consider the polynomial $t^{3}-a t^{2}+b t-c$ and let α, β, and γ be the roots. Show that $\varphi(\alpha, \beta, \gamma)=(a, b, c)$.
(e) Prove that e_{1}, e_{2}, and e_{3} are algebraically independent.

Solution.

(a) Suppose that $f \in R[Y]$ is in the kernel of φ^{*}. Then $\varphi^{*}(f)$ is the zero function on X, so $\varphi^{*}(f)(x)=f(\varphi(x))=0$ for all $x \in X$. Let y be any point of Y. Since φ is surjective, there is an $x \in X$ such that $\varphi(x)=y$. By the previous calculation, this means that $f(y)=f(\varphi(x))=0$. In other words, $f(y)=0$ for all $y \in Y$, so f is the zero function. Thus φ^{*} is injective.
(b) The pullback map is composition, so

$$
\begin{aligned}
\varphi^{*}\left(y_{1}\right)\left(x_{1}, x_{2}, x_{3}\right) & =y_{1}\left(\varphi\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=y_{1}\left(\left(x_{1}+x_{2}+x_{3}, x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}, x_{1} x_{2} x_{3}\right)\right.\right. \\
& =x_{1}+x_{2}+x_{2}, \\
\varphi^{*}\left(y_{2}\right)\left(x_{1}, x_{2}, x_{3}\right) & =y_{2}\left(\varphi\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=y_{2}\left(\left(x_{1}+x_{2}+x_{3}, x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}, x_{1} x_{2} x_{3}\right)\right.\right. \\
& =x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}, \\
\varphi^{*}\left(y_{3}\right)\left(x_{1}, x_{2}, x_{3}\right) & =y_{3}\left(\varphi\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=y_{3}\left(\left(x_{1}+x_{2}+x_{3}, x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}, x_{1} x_{2} x_{3}\right)\right.\right. \\
& =x_{1} x_{2} x_{3} .
\end{aligned}
$$

In general, for a polynomial $f\left(y_{1}, y_{2}, y_{3}\right) \in R[Y]=k\left[y_{1}, y_{2}, y_{3}\right]$ this implies that $\varphi^{*}(f)=f\left(x_{1}+x_{2}+x_{3}, x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}, x_{1} x_{2} x_{3}\right)=f\left(e_{1}, e_{2}, e_{3}\right)$.
(c) $(t-\alpha)(t-\beta)(t-\gamma)=t^{3}-(\alpha+\beta+\gamma) t^{2}+(\alpha \beta+\beta \gamma+\alpha \gamma) t-\alpha \beta \gamma$.
(d) If α, β, and γ are the roots of $t^{3}-a t^{2}+b t-c$ then
$t^{3}-a t^{2}+b t-c=(t-\alpha)(t-\beta)(t-\gamma)=t^{3}-(\alpha+\beta+\gamma) t^{2}+(\alpha \beta+\beta \gamma+\alpha \gamma) t-\alpha \beta \gamma$,
so $a=\alpha+\beta+\gamma, b=\alpha \beta+\beta \gamma+\alpha \gamma$, and $c=\alpha \beta \gamma$. Therfore $\varphi(\alpha, \beta, \gamma)=(a, b, c)$.
(e) From part (b), for any $f\left(y_{1}, y_{2}, y_{3}\right) \in k\left[y_{1}, y_{2}, y_{3}\right], \varphi^{*} f=f\left(e_{1}, e_{2}, e_{3}\right)$. By part (d) the map φ is surjective, so by (a) this means that φ^{*} is injective. Thus, the only polynomial $f\left(y_{1}, y_{2}, y_{3}\right) \in k\left[y_{1}, y_{2}, y_{3}\right]$ such that $f\left(e_{1}, e_{2}, e_{3}\right)=0$ is the zero polynomial. By definition this means that e_{1}, e_{2}, and e_{3} are algebraically independent.

