1. In this problem we will use parts of the algebra-geometry correspondence that we have built up to prove the following result in commutative algebra:

Let $I \subseteq k[x_1, \ldots, x_n]$ be an ideal, and \overline{I} the intersection of all the maximal ideals of $k[x_1, \ldots, x_n]$ containing I. Then $\overline{I} = \sqrt{I}$.

- (a) Show that a maximal ideal is a radical ideal. (SUGGESTION: It may help to rewrite the condition that $I \subset A$ is a radical ideal in terms of the quotient ring A/I.)
- (b) Show that an arbitrary intersection of maximal ideals is a radical ideal. (You can use results from the previous homework.)

Now assume that $J \subseteq k[x_1, \ldots, x_n]$ is a radical ideal, and let \overline{I} be the intersection of all maximal ideals containing J. I.e., $\overline{I} = \bigcap_{J \subseteq \mathfrak{m}} \mathfrak{m}$, where each \mathfrak{m} is a maximal ideal.

- (c) Show that every maximal ideal containing J also contains I.
- (d) Show that $J \subseteq \overline{I}$.
- (e) Show that every maximal ideal containing \overline{I} also contains J.

Next, using parts of the algebra-geometry dictionary we have seen in class:

- (f) Explain why $V(J) = V(\overline{I})$. (SUGGESTION: what do (c) and (e) say about the points of V(J) and $V(\overline{I})$?)
- (g) Explain why we then know that $J = \overline{I}$.

Finally, let $I \subset k[x_1, \ldots, x_n]$ be any ideal, and set $J = \sqrt{I}$.

- (h) Show that any maximal ideal containing I also contains J.
- (i) Show that any maximal ideal containing J also contains I.
- (j) Prove the commutative algebra statement above.

Solutions.

(a) Let A be a ring and $I \subseteq A$ an ideal. The condition that I is a radical ideal is that for any $f \in A$, if $f^n \in I$ for some $n \ge 1$ then $f \in I$. In terms of the quotient, this means that for any $\overline{f} \in A/I$, if $\overline{f}^n = 0$ for some $n \ge 1$ then $\overline{f} = 0$.

If I is a maximal ideal, then A/I is a field and hence a domain. Therefore if $\overline{f}^n = 0$ we must have $\overline{f} = 0$, so I is a radical ideal. (More generally, if I is a prime ideal then A/I is a domain, and this argument gives another way of showing that a prime ideal is radical.)

- (b) The argument from H4, Q2(d) works essentially without change. Suppose that $J_{\alpha}, \alpha \in S$ is a collection of radical ideals in a ring A, and set $\overline{I} = \bigcap_{\alpha \in S} J_{\alpha}$. Suppose that $f \in A$ and that $f^n \in \overline{I}$ for some $n \ge 1$. Then $f^n \in J_{\alpha}$ for each $\alpha \in S$. Since each J_{α} is a radical ideal, this means that $f \in J_{\alpha}$ for each α . Therefore $f \in \bigcap_{\alpha \in S} J_{\alpha} = \overline{I}$, and so \overline{I} is a radical ideal.
- (c) The intersection of sets is always contained in each of the sets being intersected. By definition \overline{I} is the intersection of all maximal ideals containing J, and hence is contained in each maximal ideal containing J.
- (d) If \mathfrak{m} is a maximal ideal containing J, then certainly $J \subseteq \mathfrak{m}$, and so J will also be contained in the intersection of all such maximal ideals. Since that intersection is $\overline{I}, J \subseteq \overline{I}$.
- (e) By part (d) we have $J \subseteq \overline{I}$. Therefore if \mathfrak{m} is a maximal ideal containing \overline{I} , we have $J \subseteq \overline{I} \subseteq \mathfrak{m}$, so \mathfrak{m} also contains J.
- (f) Part (c) tells us that every maximal ideal containing J also contains \overline{I} , and part (e) that every maximal ideal containing \overline{I} contains J. Thus the set of maximal ideals containing \overline{I} and the set of maximal ideals containing J are the same.

Maximal ideals in $k[x_1, \ldots, x_n]$ correspond to points of \mathbb{A}^n . By the order reversing correspondence between ideals and varieties, the points of V(J) correspond to the maximal ideals containing J, and the points of $V(\overline{I})$ correspond to the maximal ideals containing \overline{I} . By the previous discussion these sets of maximal ideals are the same, and therefore the sets of points are the same. Thus the points of V(J)and $V(\overline{I})$ are the same, and so $V(J) = V(\overline{I})$.

(g) The ideal/variety correspondence gives a bijection between subvarieties of \mathbb{A}^n and radical ideals of $k[x_1, \ldots, x_n]$. By part (b) \overline{I} is a radical ideal, and J is a radical ideal by assumption. Since $V(J) = V(\overline{I})$ the correspondence then tells us that $J = \overline{I}$.

- (h) Let \mathfrak{m} be a maximal ideal containing I, and f any element of J. By definition there is an $n \ge 1$ so that $f^n \in I$, and therefore $f^n \in \mathfrak{m}$ too. By part (a), \mathfrak{m} is a radical ideal, so we have $f \in \mathfrak{m}$. Thus every element of J is an element of \mathfrak{m} and so $J \subseteq \mathfrak{m}$.
- (i) We have already seen in class that $I \subseteq \sqrt{I} = J$, so any maximal ideal containing J also contains I.
- (j) Let $I \subseteq k[x_1, \ldots, x_n]$ be any ideal, and set $J = \sqrt{I}$. By parts (c)–(g) we have that $\bigcap_{J \subseteq \mathfrak{m}} \mathfrak{m} = J$. By parts (h) and (i) we have that the maximal ideals containing I are the same as the maximal ideals containing J. Thus $\bigcap_{I \subseteq \mathfrak{m}} \mathfrak{m} = \bigcap_{J \subseteq \mathfrak{m}} \mathfrak{m} = J = \sqrt{I}$.

2. In this question we will explore the construction of sum of ideals. Given a ring A, and a (possibly infinite) collection of ideals $I_{\alpha} \subset A$, $\alpha \in S$ recall that we have defined $\sum_{\alpha \in S} I_{\alpha}$ as all possible finite sums of elements in the I_{α} , i.e.,

$$\sum_{\alpha \in S} I_{\alpha} = \left\{ f_{\alpha_1} + f_{\alpha_2} + \dots + f_{\alpha_k} \mid f_{\alpha_j} \in I_{\alpha_j} \right\}.$$

- (a) Show that $\sum_{\alpha \in S} I_{\alpha}$ is an ideal.
- (b) Suppose that A is a Noetherian ring. Show that there is a finite subset $S' \subseteq S$ such that $\sum_{\alpha \in S'} I_{\alpha} = \sum_{\alpha \in S} I_{\alpha}$.
- (c) Suppose that X is an affine variety with ring of functions R[X]. Let Z_{α} , $\alpha \in S$ be a collection of closed subsets of X corresponding to ideals J_{α} , $\alpha \in S$. Show that

$$V(\sum_{\alpha \in S} J_{\alpha}) = \bigcap_{\alpha \in S} Z_{\alpha}$$

as claimed in class.

Solution.

(a) Suppose that $f \in \sum_{\alpha \in S} I_{\alpha}$, so that $f = f_{\alpha_1} + \dots + f_{\alpha_k}$ for some $\alpha_1, \dots, \alpha_k \in S$. Let g be any element of A. Then $gf_{\alpha_i} \in I_{\alpha_i}$ for $i = 1, \dots, k$, since each I_{α_i} is an ideal. Therefore $gf = (gf_{\alpha_1}) + \dots + (gf_{\alpha_k}) \in \sum_{\alpha \in S} I_{\alpha}$.

Now suppose that $g \in \sum_{\alpha \in S}$, so that $g = g_{\beta_1} + \cdots + g_{\beta_\ell}$ with $g_{\beta_j} \in I_{\beta_j}$ for some $\beta_1, \ldots, \beta_\ell \in S$. It is easier notationally to be able to assume that the index sets for the terms of f and g are the same. We can do this by taking the union of the two index sets, say $\{\alpha_1, \ldots, \alpha_k\} \cup \{\beta_1, \ldots, \beta_\ell\} = \{\gamma_1, \ldots, \gamma_r\}$, and setting $f_{\gamma_j} = 0$

whenever γ_j is not one of the α 's, and similarly $g_{\gamma_j} = 0$ whenever γ_j is not one of the β 's. Then

$$f+g=(f_{\gamma_1}+g_{\gamma_1})+\cdots+(f_{\gamma_r}+g_{\gamma_r}).$$

Each $f_{\gamma_j} + g_{\gamma_j} \in I_{\gamma_j}$ since I_{γ_j} is an ideal. Thus $f + g \in \sum_{\alpha \in S} I_\alpha$ so $\sum_{\alpha \in S} I_\alpha$ is an ideal.

(b) Consider the set T of ideals of A of the form $\sum_{\alpha \in S'} I_{\alpha}$ with S' a finite subset of S. Since A is Noetherian, T has a maximal element, i.e., there is an S' such that the ideal $I = \sum_{\alpha \in S'} I_{\alpha}$ is not strictly contained in any other element of T.

The claim is that $I = \sum_{\alpha \in S} I_{\alpha}$. If not, then there is some element f of $\sum_{\alpha \in S} I_{\alpha}$ which is not in I. Let S'' be the indices appearing when writing f out as a sum of elements in the I_{α} , and set $S''' = S' \cup S''$. Then the ideal $\sum_{\alpha \in S'''} I_{\alpha}$ is in T, contains I, and contains f. I.e., this is an ideal in T which strictly contains I, contradicting the maximality of I. Therefore $I = \sum_{\alpha \in S} I_{\alpha}$.

(c) Suppose that $z \in \bigcap_{\alpha \in S} Z_{\alpha}$. Then for any $f_{\alpha} \in J_{\alpha}$, $f_{\alpha}(z) = 0$. It follows that for any sum $f = f_{\alpha_1} + \cdots + f_{\alpha_k}$ with each $f_{\alpha_j} \in I_{\alpha_j}$ we have f(z) = 0. Thus $\bigcap_{\alpha \in S} Z_{\alpha} \subseteq V(\sum_{\alpha \in S} J_{\alpha})$.

To see the opposite inclusion, note that for any $\beta \in S$, $J_{\beta} \subseteq \sum_{\alpha \in S} J_{\alpha}$, and hence by the order reversing correspondence between ideals and subvarieties,

$$V\left(\sum_{\alpha\in S}J_{\alpha}\right)\subseteq V(J_{\beta})=Z_{\beta}.$$

Since this is true for all $\beta \in S$, we have the inclusion $V(\sum_{\alpha} J_{\alpha}) \subseteq \bigcap_{\alpha \in S} Z_{\alpha}$, and thus $V(\sum_{\alpha \in S} J_{\alpha}) = \bigcap_{\alpha \in S} Z_{\alpha}$.

3. The elementary symmetric polynomials in x_1 , x_2 , and x_3 are the polynomials $e_1 = x_1 + x_2 + x_3$, $e_2 = x_1x_2 + x_2x_3 + x_1x_3$, and $e_3 = x_1x_2x_3$. It is a useful result in algebra that these polynomials are algebraically independent over any field. This means that for any polynomial $f(y_1, y_2, y_3) \in k[y_1, y_2, y_3]$ the polynomial $f(e_1, e_2, e_3) \in k[x_1, x_2, x_3]$ is zero only if f was zero to start with.

In contrast, the functions $g_1 = x_1^2$, $g_2 = x_1x_2$, and $g_3 = x_2^2$ are not algebraically independent. Letting $f(y_1, y_2, y_3) = y_1y_3 - y_2^2$, we have $f \neq 0$ but $f(g_1, g_2, g_3) = 0$.

In this problem we will use combination of geometric and algebraic arguments (and thus the algebra \longleftrightarrow geometry dictionary) to show that e_1 , e_2 , and e_3 are algebraically independent.

(a) Suppose that $\varphi \colon X \longrightarrow Y$ is a morphism of affine varieties, and that φ is surjective. Show that the homomorphism $\varphi^* \colon R[Y] \longrightarrow R[X]$ is injective. (b) Let $X = \mathbb{A}^3$ with ring of functions $k[x_1, x_2, x_3]$, and let Y also be \mathbb{A}^3 with ring of functions $k[y_1, y_2, y_3]$. Let $\varphi \colon X \longrightarrow Y$ be the map

$$\varphi(x_1, x_2, x_3) = \left(x_1 + x_2 + x_3, \, x_1 x_2 + x_2 x_3 + x_1 x_3, \, x_1 x_2 x_3\right).$$

So, for instance, $\varphi(3, 1, 5) = (3 + 1 + 5, 3 \cdot 1 + 1 \cdot 5 + 3 \cdot 5, 3 \cdot 1 \cdot 5) = (9, 23, 15).$

Describe the pullback map φ^* . In particular, what are $\varphi^*(y_1)$, $\varphi^*(y_2)$, and $\varphi^*(y_3)$?

- (c) Expand the product $(t \alpha)(t \beta)(t \gamma)$.
- (d) For any $(a, b, c) \in Y$, consider the polynomial $t^3 at^2 + bt c$ and let α , β , and γ be the roots. Show that $\varphi(\alpha, \beta, \gamma) = (a, b, c)$.
- (e) Prove that e_1 , e_2 , and e_3 are algebraically independent.

Solution.

- (a) Suppose that $f \in R[Y]$ is in the kernel of φ^* . Then $\varphi^*(f)$ is the zero function on X, so $\varphi^*(f)(x) = f(\varphi(x)) = 0$ for all $x \in X$. Let y be any point of Y. Since φ is surjective, there is an $x \in X$ such that $\varphi(x) = y$. By the previous calculation, this means that $f(y) = f(\varphi(x)) = 0$. In other words, f(y) = 0 for all $y \in Y$, so f is the zero function. Thus φ^* is injective.
- (b) The pullback map is composition, so

$$\begin{split} \varphi^*(y_1)(x_1, x_2, x_3) &= y_1(\varphi((x_1, x_2, x_3)) = y_1((x_1 + x_2 + x_3, x_1x_2 + x_2x_3 + x_1x_3, x_1x_2x_3)) \\ &= x_1 + x_2 + x_2, \\ \varphi^*(y_2)(x_1, x_2, x_3) &= y_2(\varphi((x_1, x_2, x_3)) = y_2((x_1 + x_2 + x_3, x_1x_2 + x_2x_3 + x_1x_3, x_1x_2x_3)) \\ &= x_1x_2 + x_2x_3 + x_1x_3, \\ \varphi^*(y_3)(x_1, x_2, x_3) &= y_3(\varphi((x_1, x_2, x_3)) = y_3((x_1 + x_2 + x_3, x_1x_2 + x_2x_3 + x_1x_3, x_1x_2x_3)) \\ &= x_1x_2x_3. \end{split}$$

In general, for a polynomial $f(y_1, y_2, y_3) \in R[Y] = k[y_1, y_2, y_3]$ this implies that $\varphi^*(f) = f(x_1 + x_2 + x_3, x_1x_2 + x_2x_3 + x_1x_3, x_1x_2x_3) = f(e_1, e_2, e_3).$

(c)
$$(t-\alpha)(t-\beta)(t-\gamma) = t^3 - (\alpha + \beta + \gamma)t^2 + (\alpha\beta + \beta\gamma + \alpha\gamma)t - \alpha\beta\gamma.$$

(d) If α , β , and γ are the roots of $t^3 - at^2 + bt - c$ then $t^3 - at^2 + bt - c = (t - \alpha)(t - \beta)(t - \gamma) = t^3 - (\alpha + \beta + \gamma)t^2 + (\alpha\beta + \beta\gamma + \alpha\gamma)t - \alpha\beta\gamma,$ so $a = \alpha + \beta + \gamma, b = \alpha\beta + \beta\gamma + \alpha\gamma,$ and $c = \alpha\beta\gamma$. Therfore $\varphi(\alpha, \beta, \gamma) = (a, b, c)$. (e) From part (b), for any $f(y_1, y_2, y_3) \in k[y_1, y_2, y_3]$, $\varphi^* f = f(e_1, e_2, e_3)$. By part (d) the map φ is surjective, so by (a) this means that φ^* is injective. Thus, the only polynomial $f(y_1, y_2, y_3) \in k[y_1, y_2, y_3]$ such that $f(e_1, e_2, e_3) = 0$ is the zero polynomial. By definition this means that e_1 , e_2 , and e_3 are algebraically independent.