1. Let $X=\mathbb{A}^{n}$ and for $2 \leqslant s \leqslant n$ let V_{s} be the open subset of X which is the complement of the linear space $x_{1}=x_{2}=x_{3}=\cdots=x_{s}=0$. Compute (analogously to the computation for \mathbb{A}^{2} and $s=2$) the ring of functions $\mathcal{O}_{X}\left(V_{s}\right)$. (You can make your life easier in the case $s>2$ by appealing to your answer for $s=2$.)
Solution. First consider the case that $s=2$. Then V_{2} is covered by the two principal open sets $x_{1} \neq 0$ and $x_{2} \neq 0$ with respective coordinate rings $k\left[x_{1}, \ldots, x_{n}, \frac{1}{x_{1}}\right]$ and $k\left[x_{1}, \ldots, x_{n}, \frac{1}{x_{2}}\right]$. By construction, an element of $\mathcal{O}_{\mathbb{A}^{n}}\left(V_{2}\right)$ is a pair $g_{1} \in \mathcal{O}_{\mathbb{A}^{n}}\left(U_{x_{1}}\right)$ and $g_{2} \in \mathcal{O}_{\mathbb{A}^{n}}\left(U_{x_{2}}\right)$ which agree on the intersection. Write g_{1} as a polynomial in x_{1} and x_{2} whose coefficients are in $k\left[x_{3}, x_{4}, \ldots, x_{n}\right]$, i.e. as

$$
g_{1}=\sum b_{i j}\left(x_{3}, \cdots, x_{n}\right) x_{1}^{i} x_{2}^{j}
$$

with $b_{i j}\left(x_{2}, \ldots, x_{n}\right) \in k\left[x_{3}, \ldots, x_{n}\right], j \geqslant 0$ and $i \in \mathbb{Z}$. Similarly we can write

$$
g_{2}=\sum c_{i j}\left(x_{3}, \cdots, x_{n}\right) x_{1}^{i} x_{2}^{j}
$$

with $c_{i j}\left(x_{2}, \ldots, x_{n}\right) \in k\left[x_{3}, \ldots, x_{n}\right], i \geqslant 0$ and $j \in \mathbb{Z}$.
In order for g_{1} and g_{2} to agree in $\mathcal{O}_{\mathbb{A}^{n}}\left(U_{x_{1} x_{2}}\right)=k\left[x_{1}, \ldots, x_{n}, \frac{1}{x_{1}}, \frac{1}{x_{2}}\right]$ the coefficients of each monomial $x_{1}^{i} x_{2}^{j}$ must agree. That is, we must have $b_{i j}=c_{i j}$ for all i and j. Since $c_{i j}=0$ when $i<0$, we have $b_{i j}=0$ for negative i as well. Thus $b_{i j} \neq 0$ only for nonnegative i and j. By the equality $c_{i j}=b_{i j}$ the same is true for $c_{i j}$. Thus both g_{1} and g_{2} are polynomials in x_{1}, \ldots, x_{n} (and the same polynomial). Therefore $\mathcal{O}_{\mathbb{A}^{n}}\left(V_{2}\right)=k\left[x_{1}, \ldots, x_{n}\right]$.
To deal with the case $s>2$, we could repeat this type of computation, or take a shortcut. We have $V_{2} \subset V_{3} \subset V_{4} \subset \cdots \subset V_{n}$. Hence, when $s>2$ we have an inclusion $V_{2} \subset V_{s}$, and therefore a restriction map $\mathcal{O}_{\mathbb{A}^{n}}\left(V_{s}\right) \longrightarrow \mathcal{O}_{\mathbb{A}^{n}}\left(V_{2}\right)$. We also have a restriction map $\mathcal{O}_{\mathbb{A}^{n}}\left(\mathbb{A}^{n}\right) \longrightarrow \mathcal{O}_{\mathbb{A}^{n}}\left(V_{s}\right)$. By the first part of this problem, the composite map

$$
k\left[x_{1}, \ldots, x_{n}\right]=\mathcal{O}_{\mathbb{A}^{n}}\left(\mathbb{A}^{n}\right) \longrightarrow \mathcal{O}_{\mathbb{A}^{n}}\left(V_{s}\right) \longrightarrow \mathcal{O}_{\mathbb{A}^{n}}\left(V_{2}\right)=k\left[x_{1}, \ldots, x_{n}\right]
$$

is an isomorphism. Since \mathbb{A}^{n} is a domain, the restriction map $\mathcal{O}_{\mathbb{A}^{n}}\left(V_{s}\right) \longrightarrow \mathcal{O}_{\mathbb{A}^{n}}\left(V_{2}\right)$ is an inclusion. By the above composition map, above, the map $\mathcal{O}_{\mathbb{A}^{n}}\left(V_{s}\right) \longrightarrow \mathcal{O}_{\mathbb{A}^{n}}\left(V_{2}\right)$ is a surjection as well. Thus the map $\mathcal{O}_{\mathbb{A}^{n}}\left(V_{s}\right) \longrightarrow \mathcal{O}_{\mathbb{A}^{n}}\left(V_{2}\right)$ is an isomorphism, and so $\mathcal{O}_{\mathbb{A}^{n}}\left(V_{s}\right)=\mathcal{O}_{\mathbb{A}^{n}}\left(V_{2}\right)=k\left[x_{1}, \ldots, x_{n}\right]$.
2. Let X be the affine variety described by the equation $x y-z^{2}=0$ in \mathbb{A}^{3}, and let $U \subset X$ be the complement of $(0,0,0) \in X$. In this problem we will compute $\mathcal{O}_{X}(U)$ and see that it is equal to $R[X]$.

The variety X is covered by the principal open sets U_{x} and U_{y}, with coordinate rings $k[x, y, z, 1 / x] /\left(x y-z^{2}\right) \cong k[x, 1 / x, z]$ and $k[x, y, z, 1 / y] /\left(x y-z^{2}\right) \cong k[y, 1 / y, z]$ respectively. Any function $g_{1} \in R\left[U_{x}\right]$ can be written as a finite sum $g_{1}=\sum a_{i j} x^{i} z^{j}$ and any function $g_{2} \in R\left[U_{y}\right]$ can be written as a finite sum $g_{2}=\sum b_{k \ell} y^{k} z^{\ell}$.
(a) What range of indices are valid in the expressions for g_{1} and g_{2} above?

We want to look at pairs $\left(g_{1}, g_{2}\right)$ which agree on $U_{x} \cap U_{y}$. The expressions for g_{1} and g_{2} above are with respect to different variables. To compare them we need to write them in terms of the same variables.
(b) Use the relation $y=\frac{z^{2}}{x}$ (valid on U_{x}, and hence also on $U_{x} \cap U_{y}$) to write g_{2} in terms of the variables x and z.
(c) In order for g_{1} to be equal to g_{2}, what must be the relation between the $a_{i j}$ and the $b_{k \ell}$?
(d) Considering the restrictions on the indices from part (a), your formula from (c) will imply additional restrictions on i and j. What are they?
(e) For each i and j satisfying the conditions above, show that there is a monomial $x^{p} y^{q} z^{r}$ which is equal to $x^{i} z^{j}$ on U_{x}.
(f) Explain why this means that the restriction homomorphism $R[X] \longrightarrow \mathcal{O}_{X}(U)$ is surjective.

Solution.

(a) The ranges are $i \in \mathbb{Z}$ and $j \geqslant 0$ for g_{1} and $k \in \mathbb{Z}$ and $\ell \geqslant 0$ for g_{2}.
(b) $g_{2}=\sum b_{k \ell} y^{k} z^{\ell}=\sum b_{k \ell}\left(\frac{z^{2}}{x}\right)^{k} z^{\ell}=\sum b_{k \ell} x^{-k} z^{\ell+2 k}$.
(c) In order for g_{1} and g_{2} to agree, the coefficients of each monomial must match up. Thus we must have $b_{k \ell}=a_{-k, \ell+2 k}$ for all k and ℓ, or reversing the formula, that $a_{i j}=b_{-i, j+2 i}$.
(d) Since $b_{k \ell}=0$ when $\ell<0$, we have $a_{i j}=0$ for $j+2 i<0$. Thus nonzero $a_{i j}$ occur only when $j+2 i \geqslant 0$. Here is a picture of the pairs (i, j) satisfying this condition (as well as $j \geqslant 0, i \in \mathbb{Z}$):

(e) Consider a monomial $x^{i} y^{j}$ with $i \in \mathbb{Z}, j \geqslant 0$, and $j+2 i \geqslant 0$. If j is even set $q=\frac{j}{2}$ and $p=i+\frac{j}{2}$. Then $q \geqslant 0$ since $j \geqslant 0$, and $p \geqslant 0$ since $2 p=2 i+j \geqslant 0$. The monomial $x^{p} y^{q}$ therefore belongs to $\mathcal{O}_{X}(X)$. Its restriction to U_{x} is equal to

$$
x^{p}\left(\frac{z^{2}}{x}\right)^{q}=x^{p-q} z^{2 q}=x^{\left(i+\frac{j}{2}\right)-\frac{j}{2}} z^{2\left(\frac{j}{2}\right)}=x^{i} y^{j} .
$$

On the other hand, if j is odd, set $q=\frac{j-1}{2}, p=i+\frac{j-1}{2}$. Since $j \geqslant 0$ and is odd, $j \geqslant 1$ and therefore $q \geqslant 0$. Since $2 i+j$ is $\geqslant 0$ and odd (j is odd, and $2 i$ even), $2 i+j$ is $\geqslant 1$ and therefore $2 i+j \geqslant 1$ and so $2 p=2 i+(j-1) \geqslant 0$. The monomial $x^{p} y^{q} z$ therefore belongs to $\mathcal{O}_{X}(X)$. Its restriction to U_{x} is

$$
x^{p}\left(\frac{z^{2}}{x}\right)^{q} z=x^{p-q} z^{2 q+1}=x^{\left(i+\frac{j-1}{2}\right)-\frac{j-1}{2}} z^{2\left(\frac{j-1}{2}\right)+1}=x^{i} y^{j} .
$$

(f) Given any g_{1} and g_{2} which agree on $U_{x y}$ as above, part (c) shows us that $g_{1}=$ $\sum a_{i j} x^{i} y^{j}$ with $i \in \mathbb{Z}, j \geqslant 0$, and $j+2 i \geqslant 0$. By part (e) any such monomial $x^{i} y^{j}$ is the restriction of a monomial of the form $x^{p} y^{q} z^{r}$, with $p, q, r \geqslant 0$, is the restriction of something in $R[X]=\mathcal{O}_{X}(X)$. Thus the restriction map $R[X]=\mathcal{O}_{X}(X) \longrightarrow$ $\mathcal{O}_{X}(U)$ is surjective.
3. Given a ring A and an element $f \in A$ we have been looking at the ring $A[1 / f]$ obtained by adjoining the additional element $1 / f$ to A (and of course using ring operations to get more elements). More precisely the ring $A[1 / f]$ is the ring $A[y] /((1-y f))$. There is a natural ring homomorphism $A \longrightarrow A[1 / f]$, and we have seen in class that this is not always injective. For instance, if $h \in A$ is an element so that $h \cdot f^{n}=0$ for some $n \geqslant 1$, then in $A[1 / f]$ we compute that $h=\left(h \cdot f^{n}\right) \cdot \frac{1}{f^{n}}=0 \cdot \frac{1}{f^{n}}=0$.
The purpose of this question is to prove the converse direction: An element $h \in A$ is in the kernel of the map $A \longrightarrow A[1 / f]$ only if there is an $n \geqslant 1$ such that $h \cdot f^{n}=0$ in A.

Suppose that h is such an element. This means that the image of h under the inclusion $A \hookrightarrow A[y]$ must be in the ideal $(y f-1)$ in $A[y]$. Therefore there is a polynomial $g \in A[y]$ such that $h=g(y f-1)$. Since $g \in A[y]$ we can write g as $g=g_{0}+g_{1} y+g_{2} y^{2}+\cdots+g_{n} y^{n}$ with each $g_{j} \in A$.
(a) Expand $g \cdot(y f-1)$ as a polynomial in y.
(b) As a polynomial in y, h has degree 0 . Since we have $h=g \cdot(y f-1)$, the coefficients of powers of y on both sides of the equality must be the same. Comparing coefficients, write down all the relations you obtain.
(c) Show that $h \cdot f^{n+1}=0$.

Solution.

(a) $g(y f-1)=\left(g_{0}+g_{1} y+g_{2} y^{2}+\cdots g_{n} y^{n}\right)(y f-1)$

$$
=-g_{0}+\left(f g_{0}-g_{1}\right) y+\left(f g_{1}-g_{2}\right) y^{2}+\cdots+\left(f g_{n-1}-g_{n}\right) y^{n}+\left(f g_{n}\right) y^{n+1}
$$

(b) Comparing powers of y we have:

$$
\begin{aligned}
h & =-g_{0} \\
0 & =f g_{0}-g_{1} \\
0 & =f g_{1}-g_{2} \\
\vdots & \vdots \vdots \\
0 & =f g_{n-1}-g_{n} \\
0 & =f g_{n}
\end{aligned}
$$

(c) From the second through last equations we have $g_{1}=f g_{0}, g_{2}=f g_{1}=f^{2} g_{0}$, $g_{3}=f g_{2}=f^{3} g_{0}, \ldots, g_{n}=f g_{n-1}=f^{n} g_{0}$, and finally $0=f g_{n}=f^{n+1} g_{0}$. From the first equation we have $h=-g_{0}$, and therefore $f^{n+1} \cdot h=-f^{n} \cdot g_{0}=0$.
4. A topological space X is called quasi-compact if whenever $\left\{U_{i}\right\}_{i \in S}$ are a family of open subsets such that $\cup_{i \in S} U_{i}=X$ then there are a finite number of U_{i} 's which actually cover X. (The term compact is reserved for Hausdorff topological spaces with this finite subcover property. A topological space with the finite subcover property alone is called quasi-compact.) In this question we will show that affine varieties are quasi-compact.
(a) Show that if $U_{f_{i}}, i \in S$ is a family of principal open subsets which cover an affine variety X, then there is a finite number which cover X. (Suggestion: Think about what the condition "the $U_{f_{i}}$ cover X " means about the complement.)
(b) Given an arbitrary cover of X by open sets $\left\{U_{j}\right\}, j \in S$, use the fact that the principal open subsets are a basis for the Zariski topology and part (a) to show that a finite number of the U_{j} are sufficient to cover X.

Solution.

(a) The condition that the " $U_{f_{i}}$ cover X " means that the complement $V\left(f_{i}\right)$ is empty, which is equivalent to the statement that the f_{i} generate the ideal $R[X]=\mathcal{O}_{x}(X)$ (i.e. the whole ring). Since an ideal is equal to the whole ring if and only if 1 is in the ideal, this means that we must be able to write $1=g_{i_{1}} f_{i_{1}}+g_{i_{2}} f_{i+2}+$ $\cdots+g_{i_{s}} f_{i_{s}}$ for some finite number of $f_{i_{1}}, \ldots, f_{i_{s}}$. (The elements in an ideal generated by an infinite set are finite linear combinations of elements from the set.) Thus $\left(f_{i_{1}}, \ldots, f_{i_{s}}\right)=R[X]$ too, since 1 is in the ideal. But this means that $V\left(f_{i_{1}}, \ldots, f_{i_{s}}\right)=\varnothing$, or that $U_{f_{i_{1}}}, \ldots, U_{f_{i_{s}}}$ cover X.

Note: The finiteness argument above using the fact that 1 must be in the ideal generated by the f_{i} may be replaced by a Notherian argument: We have a nested sequence of closed sets $V\left(f_{1}\right) \supseteq V\left(f_{1}, f_{2}\right) \supseteq V\left(f_{1}, f_{2}, f_{3}\right) \supseteq \cdots$ which can only have finitely many distinct elements (otherwise we would get an infinite sequence of distinct decreasing closed sets, which can't happen in a Notherian topology). Thus we only need finitely many of the f_{i} to get down to the smallest closed set in the chain, the empty set.
(b) Suppose that $\left\{U_{j}\right\}$ is an arbitrary cover of X by open sets. Since the principal open sets form a basis for the Zariski topology, we may cover each U_{j} by principal open sets. This gives us a collection of principal open sets which also cover X (since they cover the U_{j}, which cover X). By part (a), we only need finitely many of the principal open sets to cover X. For each principal open set in a finite subcover, take a U_{j} which contains it. The union of these U_{j} then contains X, since the principal open sets they contain cover X.
5. In class we have seen that if X is an affine variety and U_{f} a principal open subset, then U_{f} is an affine variety. Perhaps every open subset is an affine variety? The purpose of this question is to show that the answer to this is no. Let $U=\mathbb{A}^{2} \backslash\{(0,0)\}$. Recall that we have computed that $\mathcal{O}_{\mathbb{A}^{2}}(U)=k[x, y]=\mathcal{O}_{\mathbb{A}^{2}}\left(\mathbb{A}^{2}\right)$.
(a) Let $\varphi: U \hookrightarrow \mathbb{A}^{2}$ be the inclusion map. Compute the ring homomorphism φ^{*}.
(b) Maps between affine varieties are completely determined by the pullback maps. If U were an affine variety, explain why φ would have to be an isomorphism.
(c) Show that U is not an affine variety.

Solution.

(a) The inclusion map $\varphi: U \longrightarrow \mathbb{A}^{2}$ is given by $\varphi\left(x_{0}, y_{0}\right)=\left(x_{0}, y_{0}\right) \in \mathbb{A}^{2}$. The map φ^{*} therefore satisfies $\varphi^{*}(x)=x$ (since $\varphi^{*}(x)\left(x_{0}, y_{0}\right)=x\left(\varphi\left(x_{0}, y_{0}\right)=x_{0}\right.$ for each $\left(x_{0}, y_{0} \in \mathbb{A}^{2}\right)$. Similarly $\varphi^{*}(y)=y$. Thus the pullback map φ^{*} is the identity map on

$$
k[x, y]=\mathcal{O}_{\mathbb{A}^{2}}\left(\mathbb{A}^{2}\right) \xrightarrow{\varphi^{*}} \mathcal{O}_{\mathbb{A}^{2}}(U)=k[x, y] .
$$

(b) As part of proving the correspondence between maps between affine varieties and ring homomorphisms between their coordinate rings, we showed that φ^{*} is an isomorphism if and only if φ is an isomorphism. (See for instance Homework 3, question 1(d).)
(c) The $\operatorname{map} \varphi: U \longrightarrow \mathbb{A}^{2}$ is not an isomorphism, since φ is not surjective: $(0,0)$ is not in the image. Therefore there can certainly not be any inverse map $\varphi^{-1}: \mathbb{A}^{2} \longrightarrow U$, since there is nowhere to send $(0,0)$.

