1. Let $X = \mathbb{A}^n$ and for $2 \leq s \leq n$ let V_s be the open subset of X which is the complement of the linear space $x_1 = x_2 = x_3 = \cdots = x_s = 0$. Compute (analogously to the computation for \mathbb{A}^2 and s = 2) the ring of functions $\mathcal{O}_X(V_s)$. (You can make your life easier in the case s > 2 by appealing to your answer for s = 2.)

Solution. First consider the case that s = 2. Then V_2 is covered by the two principal open sets $x_1 \neq 0$ and $x_2 \neq 0$ with respective coordinate rings $k[x_1, \ldots, x_n, \frac{1}{x_1}]$ and $k[x_1, \ldots, x_n, \frac{1}{x_2}]$. By construction, an element of $\mathcal{O}_{\mathbb{A}^n}(V_2)$ is a pair $g_1 \in \mathcal{O}_{\mathbb{A}^n}(U_{x_1})$ and $g_2 \in \mathcal{O}_{\mathbb{A}^n}(U_{x_2})$ which agree on the intersection. Write g_1 as a polynomial in x_1 and x_2 whose coefficients are in $k[x_3, x_4, \ldots, x_n]$, i.e. as

$$g_1 = \sum b_{ij}(x_3, \cdots, x_n) x_1^i x_2^j$$

with $b_{ij}(x_2, \ldots, x_n) \in k[x_3, \ldots, x_n], j \ge 0$ and $i \in \mathbb{Z}$. Similarly we can write

$$g_2 = \sum c_{ij}(x_3, \cdots, x_n) x_1^i x_2^j$$

with $c_{ij}(x_2,\ldots,x_n) \in k[x_3,\ldots,x_n], i \ge 0$ and $j \in \mathbb{Z}$.

In order for g_1 and g_2 to agree in $\mathcal{O}_{\mathbb{A}^n}(U_{x_1x_2}) = k[x_1, \ldots, x_n, \frac{1}{x_1}, \frac{1}{x_2}]$ the coefficients of each monomial $x_1^i x_2^j$ must agree. That is, we must have $b_{ij} = c_{ij}$ for all i and j. Since $c_{ij} = 0$ when i < 0, we have $b_{ij} = 0$ for negative i as well. Thus $b_{ij} \neq 0$ only for nonnegative i and j. By the equality $c_{ij} = b_{ij}$ the same is true for c_{ij} . Thus both g_1 and g_2 are polynomials in x_1, \ldots, x_n (and the same polynomial). Therefore $\mathcal{O}_{\mathbb{A}^n}(V_2) = k[x_1, \ldots, x_n]$.

To deal with the case s > 2, we could repeat this type of computation, or take a shortcut. We have $V_2 \subset V_3 \subset V_4 \subset \cdots \subset V_n$. Hence, when s > 2 we have an inclusion $V_2 \subset V_s$, and therefore a restriction map $\mathcal{O}_{\mathbb{A}^n}(V_s) \longrightarrow \mathcal{O}_{\mathbb{A}^n}(V_2)$. We also have a restriction map $\mathcal{O}_{\mathbb{A}^n}(\mathbb{A}^n) \longrightarrow \mathcal{O}_{\mathbb{A}^n}(V_s)$. By the first part of this problem, the composite map

$$k[x_1,\ldots,x_n] = \mathcal{O}_{\mathbb{A}^n}(\mathbb{A}^n) \longrightarrow \mathcal{O}_{\mathbb{A}^n}(V_s) \longrightarrow \mathcal{O}_{\mathbb{A}^n}(V_2) = k[x_1,\ldots,x_n]$$

is an isomorphism. Since \mathbb{A}^n is a domain, the restriction map $\mathcal{O}_{\mathbb{A}^n}(V_s) \longrightarrow \mathcal{O}_{\mathbb{A}^n}(V_2)$ is an inclusion. By the above composition map, above, the map $\mathcal{O}_{\mathbb{A}^n}(V_s) \longrightarrow \mathcal{O}_{\mathbb{A}^n}(V_2)$ is a surjection as well. Thus the map $\mathcal{O}_{\mathbb{A}^n}(V_s) \longrightarrow \mathcal{O}_{\mathbb{A}^n}(V_2)$ is an isomorphism, and so $\mathcal{O}_{\mathbb{A}^n}(V_s) = \mathcal{O}_{\mathbb{A}^n}(V_2) = k[x_1, \ldots, x_n].$

2. Let X be the affine variety described by the equation $xy - z^2 = 0$ in \mathbb{A}^3 , and let $U \subset X$ be the complement of $(0,0,0) \in X$. In this problem we will compute $\mathcal{O}_X(U)$ and see that it is equal to R[X].

The variety X is covered by the principal open sets U_x and U_y , with coordinate rings $k[x, y, z, 1/x]/(xy - z^2) \cong k[x, 1/x, z]$ and $k[x, y, z, 1/y]/(xy - z^2) \cong k[y, 1/y, z]$ respectively. Any function $g_1 \in R[U_x]$ can be written as a finite sum $g_1 = \sum a_{ij}x^iz^j$ and any function $g_2 \in R[U_y]$ can be written as a finite sum $g_2 = \sum b_{k\ell}y^kz^\ell$.

(a) What range of indices are valid in the expressions for g_1 and g_2 above?

We want to look at pairs (g_1, g_2) which agree on $U_x \cap U_y$. The expressions for g_1 and g_2 above are with respect to different variables. To compare them we need to write them in terms of the same variables.

- (b) Use the relation $y = \frac{z^2}{x}$ (valid on U_x , and hence also on $U_x \cap U_y$) to write g_2 in terms of the variables x and z.
- (c) In order for g_1 to be equal to g_2 , what must be the relation between the a_{ij} and the $b_{k\ell}$?
- (d) Considering the restrictions on the indices from part (a), your formula from (c) will imply additional restrictions on i and j. What are they?
- (e) For each *i* and *j* satisfying the conditions above, show that there is a monomial $x^p y^q z^r$ which is equal to $x^i z^j$ on U_x .
- (f) Explain why this means that the restriction homomorphism $R[X] \longrightarrow \mathcal{O}_X(U)$ is surjective.

Solution.

(a) The ranges are $i \in \mathbb{Z}$ and $j \ge 0$ for g_1 and $k \in \mathbb{Z}$ and $\ell \ge 0$ for g_2 .

(b)
$$g_2 = \sum b_{k\ell} y^k z^\ell = \sum b_{k\ell} \left(\frac{z^2}{x}\right)^k z^\ell = \sum b_{k\ell} x^{-k} z^{\ell+2k}.$$

- (c) In order for g_1 and g_2 to agree, the coefficients of each monomial must match up. Thus we must have $b_{k\ell} = a_{-k,\ell+2k}$ for all k and ℓ , or reversing the formula, that $a_{ij} = b_{-i,j+2i}$.
- (d) Since $b_{k\ell} = 0$ when $\ell < 0$, we have $a_{ij} = 0$ for j + 2i < 0. Thus nonzero a_{ij} occur only when $j + 2i \ge 0$. Here is a picture of the pairs (i, j) satisfying this condition (as well as $j \ge 0, i \in \mathbb{Z}$):

(e) Consider a monomial $x^i y^j$ with $i \in \mathbb{Z}$, $j \ge 0$, and $j + 2i \ge 0$. If j is even set $q = \frac{j}{2}$ and $p = i + \frac{j}{2}$. Then $q \ge 0$ since $j \ge 0$, and $p \ge 0$ since $2p = 2i + j \ge 0$. The monomial $x^p y^q$ therefore belongs to $\mathcal{O}_X(X)$. Its restriction to U_x is equal to

$$x^{p}\left(\frac{z^{2}}{x}\right)^{q} = x^{p-q}z^{2q} = x^{(i+\frac{j}{2})-\frac{j}{2}}z^{2(\frac{j}{2})} = x^{i}y^{j}.$$

On the other hand, if j is odd, set $q = \frac{j-1}{2}$, $p = i + \frac{j-1}{2}$. Since $j \ge 0$ and is odd, $j \ge 1$ and therefore $q \ge 0$. Since 2i + j is ≥ 0 and odd (j is odd, and 2i even), 2i + j is ≥ 1 and therefore $2i + j \ge 1$ and so $2p = 2i + (j - 1) \ge 0$. The monomial $x^p y^q z$ therefore belongs to $\mathcal{O}_X(X)$. Its restriction to U_x is

$$x^{p}\left(\frac{z^{2}}{x}\right)^{q}z = x^{p-q}z^{2q+1} = x^{\left(i+\frac{j-1}{2}\right)-\frac{j-1}{2}}z^{2\left(\frac{j-1}{2}\right)+1} = x^{i}y^{j}.$$

(f) Given any g_1 and g_2 which agree on U_{xy} as above, part (c) shows us that $g_1 = \sum a_{ij}x^iy^j$ with $i \in \mathbb{Z}, j \ge 0$, and $j+2i \ge 0$. By part (e) any such monomial x^iy^j is the restriction of a monomial of the form $x^py^qz^r$, with $p, q, r \ge 0$, is the restriction of something in $R[X] = \mathcal{O}_X(X)$. Thus the restriction map $R[X] = \mathcal{O}_X(X) \longrightarrow \mathcal{O}_X(U)$ is surjective.

3. Given a ring A and an element $f \in A$ we have been looking at the ring A[1/f] obtained by adjoining the additional element 1/f to A (and of course using ring operations to get more elements). More precisely the ring A[1/f] is the ring A[y]/((1-yf)). There is a natural ring homomorphism $A \longrightarrow A[1/f]$, and we have seen in class that this is not always injective. For instance, if $h \in A$ is an element so that $h \cdot f^n = 0$ for some $n \ge 1$, then in A[1/f] we compute that $h = (h \cdot f^n) \cdot \frac{1}{f^n} = 0 \cdot \frac{1}{f^n} = 0$.

The purpose of this question is to prove the converse direction: An element $h \in A$ is in the kernel of the map $A \longrightarrow A[1/f]$ only if there is an $n \ge 1$ such that $h \cdot f^n = 0$ in A.

Suppose that h is such an element. This means that the image of h under the inclusion $A \hookrightarrow A[y]$ must be in the ideal (yf-1) in A[y]. Therefore there is a polynomial $g \in A[y]$ such that h = g(yf-1). Since $g \in A[y]$ we can write g as $g = g_0 + g_1y + g_2y^2 + \cdots + g_ny^n$ with each $g_j \in A$.

- (a) Expand $g \cdot (yf 1)$ as a polynomial in y.
- (b) As a polynomial in y, h has degree 0. Since we have $h = g \cdot (yf 1)$, the coefficients of powers of y on both sides of the equality must be the same. Comparing coefficients, write down all the relations you obtain.
- (c) Show that $h \cdot f^{n+1} = 0$.

Solution.

(a)
$$g(yf-1) = (g_0 + g_1y + g_2y^2 + \dots + g_ny^n)(yf-1)$$

= $-g_0 + (fg_0 - g_1)y + (fg_1 - g_2)y^2 + \dots + (fg_{n-1} - g_n)y^n + (fg_n)y^{n+1}$.

(b) Comparing powers of y we have:

$$h = -g_0,$$

$$0 = fg_0 - g_1,$$

$$0 = fg_1 - g_2,$$

$$\vdots \vdots \vdots$$

$$0 = fg_{n-1} - g_n,$$

$$0 = fg_n.$$

(c) From the second through last equations we have $g_1 = fg_0$, $g_2 = fg_1 = f^2g_0$, $g_3 = fg_2 = f^3g_0$, ..., $g_n = fg_{n-1} = f^ng_0$, and finally $0 = fg_n = f^{n+1}g_0$. From the first equation we have $h = -g_0$, and therefore $f^{n+1} \cdot h = -f^n \cdot g_0 = 0$.

4. A topological space X is called *quasi-compact* if whenever $\{U_i\}_{i\in S}$ are a family of open subsets such that $\bigcup_{i\in S} U_i = X$ then there are a finite number of U_i 's which actually cover X. (The term *compact* is reserved for Hausdorff topological spaces with this finite subcover property. A topological space with the finite subcover property alone is called quasi-compact.) In this question we will show that affine varieties are quasi-compact.

- (a) Show that if U_{f_i} , $i \in S$ is a family of principal open subsets which cover an affine variety X, then there is a finite number which cover X. (SUGGESTION: Think about what the condition "the U_{f_i} cover X" means about the complement.)
- (b) Given an arbitrary cover of X by open sets $\{U_j\}, j \in S$, use the fact that the principal open subsets are a basis for the Zariski topology and part (a) to show that a finite number of the U_j are sufficient to cover X.

Solution.

(a) The condition that the " U_{f_i} cover X" means that the complement $V(f_i)$ is empty, which is equivalent to the statement that the f_i generate the ideal $R[X] = \mathcal{O}_x(X)$ (i.e. the whole ring). Since an ideal is equal to the whole ring if and only if 1 is in the ideal, this means that we must be able to write $1 = g_{i_1}f_{i_1} + g_{i_2}f_{i+2} + \cdots + g_{i_s}f_{i_s}$ for some finite number of f_{i_1}, \ldots, f_{i_s} . (The elements in an ideal generated by an infinite set are finite linear combinations of elements from the set.) Thus $(f_{i_1}, \ldots, f_{i_s}) = R[X]$ too, since 1 is in the ideal. But this means that $V(f_{i_1}, \ldots, f_{i_s}) = \emptyset$, or that $U_{f_{i_1}}, \ldots, U_{f_{i_s}}$ cover X.

NOTE: The finiteness argument above using the fact that 1 must be in the ideal generated by the f_i may be replaced by a Notherian argument: We have a nested sequence of closed sets $V(f_1) \supseteq V(f_1, f_2) \supseteq V(f_1, f_2, f_3) \supseteq \cdots$ which can only have finitely many distinct elements (otherwise we would get an infinite sequence of distinct decreasing closed sets, which can't happen in a Notherian topology). Thus we only need finitely many of the f_i to get down to the smallest closed set in the chain, the empty set.

(b) Suppose that $\{U_j\}$ is an arbitrary cover of X by open sets. Since the principal open sets form a basis for the Zariski topology, we may cover each U_j by principal open sets. This gives us a collection of principal open sets which also cover X (since they cover the U_j , which cover X). By part (a), we only need finitely many of the principal open sets to cover X. For each principal open set in a finite subcover, take a U_j which contains it. The union of these U_j then contains X, since the principal open sets they contain cover X.

5. In class we have seen that if X is an affine variety and U_f a principal open subset, then U_f is an affine variety. Perhaps every open subset is an affine variety? The purpose of this question is to show that the answer to this is no. Let $U = \mathbb{A}^2 \setminus \{(0,0)\}$. Recall that we have computed that $\mathcal{O}_{\mathbb{A}^2}(U) = k[x, y] = \mathcal{O}_{\mathbb{A}^2}(\mathbb{A}^2)$.

(a) Let $\varphi \colon U \hookrightarrow \mathbb{A}^2$ be the inclusion map. Compute the ring homomorphism φ^* .

- (b) Maps between affine varieties are completely determined by the pullback maps. If U were an affine variety, explain why φ would have to be an isomorphism.
- (c) Show that U is not an affine variety.

Solution.

(a) The inclusion map $\varphi \colon U \longrightarrow \mathbb{A}^2$ is given by $\varphi(x_0, y_0) = (x_0, y_0) \in \mathbb{A}^2$. The map φ^* therefore satisfies $\varphi^*(x) = x$ (since $\varphi^*(x)(x_0, y_0) = x(\varphi(x_0, y_0) = x_0$ for each $(x_0, y_0 \in \mathbb{A}^2)$. Similarly $\varphi^*(y) = y$. Thus the pullback map φ^* is the identity map on

$$k[x,y] = \mathcal{O}_{\mathbb{A}^2}(\mathbb{A}^2) \xrightarrow{\varphi} \mathcal{O}_{\mathbb{A}^2}(U) = k[x,y].$$

- (b) As part of proving the correspondence between maps between affine varieties and ring homomorphisms between their coordinate rings, we showed that φ^* is an isomorphism if and only if φ is an isomorphism. (See for instance Homework 3, question 1(d).)
- (c) The map $\varphi \colon U \longrightarrow \mathbb{A}^2$ is not an isomorphism, since φ is not surjective: (0,0) is not in the image. Therefore there can certainly not be any inverse map $\varphi^{-1} \colon \mathbb{A}^2 \longrightarrow U$, since there is nowhere to send (0,0).