1. Recall that an ideal $I \subseteq k\left[Z_{0}, \ldots, Z_{n}\right]$ is called a homogeneous ideal if, for every $f \in I$, when we write out f as a sum of homogeneous pieces, $f=F_{0}+F_{1}+F_{2}+\cdots+F_{d}$, then each F_{j} is also in I.
In this problem we will show that an ideal I is homogeneous if and only if I can be generated by homogenous polynomials, i.e., if and only if there are homogeneous polynomials $G_{1}, \ldots, G_{s} \in k\left[Z_{0}, \ldots, Z_{n}\right]$ such that $I=\left\langle G_{1}, \ldots, G_{s}\right\rangle$.
(a) Assume that I is a homogeneous ideal. Show that I may be generated by homogeneous polynomials. (Suggestion: since I is an ideal in $k\left[Z_{0}, \ldots, Z_{n}\right]$ it may be generated by finitely many polynomials. Apply the 'homogeneous ideal' condition to these generators.)
(b) Suppose that $I=\left\langle G_{1}, \ldots, G_{s}\right\rangle$ with each G_{i} a homogenous polynomial. Show that I is a homogeneous ideal. (Suggestion: Any $f \in I$ can be written as $f=h_{1} G_{1}+\cdots+h_{s} G_{s}$ with the h_{i} polynomials in Z_{0}, \ldots, Z_{n}. Write each h_{i} as a sum of homogeneous pieces, expand the sum $\sum h_{i} G_{i}$, collect pieces of the same degree and compare with the homogeneous pieces of f.)
(c) Is the ideal $\left\langle X^{3}-5 X Z^{2}+Y^{2}+X Y, X^{3}-5 X Z^{2}-Y^{2}-X Y\right\rangle \subset \mathbb{Q}[X, Y, Z]$ homogeneous?

Solution.

(a) Since I is an ideal of $k\left[Z_{0}, \ldots, Z_{n}\right]$, by the Hilbert Basis Theorem there are finitely many polynomials f_{1}, \ldots, f_{r} such that $I=\left(f_{1}, \ldots, f_{r}\right)$. Write each f_{i} as a sum of homogeneous pieces

$$
f_{i}=F_{i, 0}+F_{i, 1}+\cdots+F_{i, j}+\cdots F_{i, d_{i}}
$$

with each $F_{i, j}$ homogeneous of degree j.
By assumption, I is a homogeneous ideal, so each $F_{i, j} \in I$. The ideal generated by the $F_{i, j}$ is contained in I, since each $F_{i j}$ is in I. However this ideal also contains the f_{j}, so must contain I. Thus $I=\left(\left\{F_{i j}\right\}_{i=1, j=0}^{i=r, j=d_{i}}\right)$ is generated by finitely many homogeneous elements.
(b) Suppose that $I=\left(G_{1}, \ldots, G_{s}\right)$, with each G_{j} homogeneous of degree d_{j}. Suppose that $f \in I$, and write f as as sum of homogeneous pieces,

$$
f=F_{0}+F_{1}+\cdots+F_{d}
$$

with F_{j} homogeneous of degree j. Since G_{1}, \ldots, G_{s} generate I, there are polynomials $h_{1}, \ldots, h_{s} \in k\left[Z_{0}, \ldots, Z_{n}\right]$ such that $f=h_{1} G_{1}+h_{2} G_{2}+\cdots+h_{s} G_{s}$. Write each h_{j} as a sum of homogeneous pieces

$$
h_{j}=H_{j, 0}+H_{j, 1}+\cdots+H_{j, e_{j}}
$$

with each $H_{j, i}$ homogeneous of degree i. Expanding $h_{1} G_{1}+\cdots+h_{s} G_{s}$ and collecting homogeneous pieces of the same degree, we see that the homogeneous piece of degree k of this sum is $\sum_{j=1}^{s} H_{j, k-d_{j}} G_{j}$. (Here $H_{k, k-d_{j}}=0$ of $k-d_{j}$ is not in the range 0 to e_{j}.) Comparing with the homogeneous pieces of of f, we get the equality

$$
F_{k}=\sum_{j=1}^{s} H_{j, k-d_{j}} G_{j}
$$

for each $k=0, \ldots, d$. Thus, each F_{k} is a combination of the generators of I and so is in I. Therefore, I is a homogeneous ideal.
(c) Yes, the ideal $I=\left\langle X^{3}-5 X Z^{2}+Y^{2}+X Y, X^{3}-5 X Z^{2}-Y^{2}-X Y\right\rangle \subset \mathbb{Q}[X, Y, Z]$ is a homogeneous ideal.

Write

$$
f_{1}=X^{3}-5 X Z^{2}+Y^{2}+X Y, \text { and } f_{2}=X^{3}-5 X Z^{2}-Y^{2}-X Y
$$

set

$$
G_{1}=\frac{1}{2}\left(f_{1}+f_{2}\right)=X^{3}-5 X Z^{2} \text { and } G_{2}=\frac{1}{2}\left(f_{1}-f_{2}\right)=Y^{2}+X Y
$$

Since $G_{1}, G_{2} \in\left\langle f_{1}, f_{2}\right\rangle$ we have $\left\langle G_{1}, G_{2}\right\rangle \subseteq I$. On the other hand, since $f_{1}=$ $G_{1}+G_{2}$ and $f_{2}=G_{1}-G_{2}$, we also have the opposite inclusion $I \subseteq\left\langle G_{1}, G_{2}\right\rangle$, and therefore $I=\left\langle G_{1}, G_{2}\right\rangle$.

Since the ideal I can be generated by homogeneous polynomials, part (b) shows that I is a homogeneous ideal.

Note: The purpose of part (c) was to draw attention to the quantifiers in the characterization of homogeneous ideals : an ideal I is homogeneous if and only if there exists a set of homogeneous generators. This is not the same thing as saying that every set of generators of I must be homogeneous.
2. Recall that a subvariety $Y \subseteq \mathbb{A}^{n}$ is called a cone if whenever $p \in Y$ then $\lambda p \in Y$ for all $\lambda \in k^{*}$, where λp means the point obtained by scaling all the coordinates of p by λ. In this problem we will show that Y is a cone if and only if J_{Y}, the ideal of Y, is a homogeneous ideal. For this question we assume that k is an infinite field.

First suppose that Y is a cone, let f be an element of J_{Y} and write f as a sum of homogeneous pieces, $f=F_{0}+F_{1}+\cdots+F_{d}$, with each F_{j} homogeneous of degree j. To show that J_{Y} is a homogeneous ideal, we need to show that each $F_{j} \in J_{Y}$.
(a) Explain why it is sufficient to show that $F_{j}(p)=0$ for all $p \in Y$.
(b) Fix $p \in Y$. By considering $f(\lambda p)$, explain why

$$
0=F_{0}(p)+\lambda F_{1}(p)+\lambda^{2} F_{2}(p)+\cdots+\lambda^{d} F(p)
$$

for all $\lambda \in k^{*}$.
(c) Considering the expression in (b) as a polynomial in λ, explain why we must have $F_{j}(p)=0$ for each j, and hence (from the reductions above) that J_{Y} is a homogenous ideal.
(d) Now prove the other direction : assume that $Y \subseteq \mathbb{A}^{n}$ is a variety such that J_{Y} is a homogeneous ideal, and prove that Y is a cone. (The equivalence in question 1 may help.)

Solution.

(a) By definition of J_{Y}, a polynomial g is in J_{Y} if and only if $g(p)=0$ for all $p \in Y$. Thus, showing that $F_{j}(p)=0$ for all $p \in Y$ shows that $F_{j} \in J_{Y}$.
(b) Since Y is a cone, $\lambda p \in Y$ for all $\lambda \in k^{*}$, and so, since $f \in J_{Y}, f(\lambda p)=0$ for all $\lambda \in k^{*}$. But by definition the $F_{j}, f(\lambda p)=F_{0}(\lambda p)+F_{1}(\lambda p)+\cdots+F_{d}(\lambda p)$. Since F_{j} is homogeneous of degree $j, F_{j}(\lambda p)=\lambda^{j} F_{j}(p)$. Putting these steps together we obtain

$$
0=f(\lambda p)=F_{0}(p)+\lambda F_{1}(p)+\lambda^{2} F_{2}(p)+\cdots+\lambda^{d} F_{d}(p)
$$

for all $\lambda \in k^{*}$.
(c) By part (b) the polynomial

$$
F_{0}(p)+\lambda F_{1}(p)+\lambda^{2} F_{2}(p)+\cdots+\lambda^{d} F_{d}(p)
$$

is zero for all $\lambda \in k^{*}$. Since k is infinite, this means the polynomial has infinitely many roots, and that is only possible if the polynomial is the zero polynomial. Therefore its coefficients $F_{0}(p), F_{1}(p), \ldots, F_{d}(p)$ are zero. Since $p \in Y$ was arbitrary, this shows (by part (a)) that each $F_{j} \in J_{Y}$, and so J_{Y} is a homogeneous ideal.
(d) Conversely suppose that J_{Y} is homogeneous ideal. By Q1(b) this means we can assume that $J_{Y}=\left\langle G_{1}, G_{2}, \ldots, G_{s}\right\rangle$ for homogeneous polynomials G_{1}, \ldots, G_{s}, say of degrees $d_{1}, d_{2}, \ldots, d_{s}$.

We now show that Y is a cone. Suppose that $p \in Y$. By definition of J_{Y} this means that $G_{1}(p)=0, G_{2}(p)=0, \ldots, G_{s}(p)=0$. For any $\lambda \in k^{*}$ we then have

$$
\begin{aligned}
& G_{1}(\lambda p)=\lambda^{d_{1}} G_{1}(p)=\lambda^{d_{1}} \cdot 0=0, \\
& G_{2}(\lambda p)=\lambda^{d_{2}} G_{2}(p)=\lambda^{d_{2}} \cdot 0=0,
\end{aligned}
$$

all the way down to

$$
G_{s}(\lambda p)=\lambda^{d_{s}} G_{s}(p)=\lambda^{d_{s}} \cdot 0=0
$$

We conclude that $\lambda p \in Y$, and so Y is a cone.
3. Suppose that U_{0}, U_{1}, and U_{2} are the standard open subsets in \mathbb{P}^{2}, and that we have varieties $Y_{0} \subset U_{0}, Y_{1} \subset U_{1}$, and $Y_{2} \subset U_{2}$, which agree on intersections. This means that $\left.Y_{i}\right|_{U_{i} \cap U_{j}}=\left.Y_{j}\right|_{U_{i} \cap U_{j}}$ for any i, j. In this question we will prove that there is a homogeneous ideal I in $k[X, Y, Z]$ so that if we set $Y=V(I)$ then $Y \cap U_{i}=Y_{i}$ for $i=0,1,2$. I.e., we will show that if we define a subvariety of \mathbb{P}^{2} as something obtained by glueing together affine varieties on the pieces, then this agrees with our definition of subvariety as something obtained by homogeneous polynomials.

Since Y_{0}, Y_{1}, and Y_{2} are each affine varieties (in U_{0}, U_{1}, and U_{2} respectively) each of them are given by ideals in their respective polynomial rings. Let I_{0}, I_{1}, and I_{2} be these ideals. Then let $\widetilde{I}_{0}, \widetilde{I}_{1}$, and \widetilde{I}_{2} be the homogenization of these ideals; namely the ideal obtained by homogenizing the polynomials in I_{0}, I_{1}, and I_{2} respectively. These ideals have the property that $V\left(\widetilde{I}_{j}\right) \cap U_{j}=Y_{j}$ for each j. In other words, they each define projective varieties which restrict (separately) to the varieties we want on one of the open sets. However we do not know that $V\left(\widetilde{I}_{j}\right) \cap U_{i}=Y_{i}$ when $i \neq j$, so these ideals by themselves do not solve the problem.
Recall that $U_{0}=\mathbb{P}^{2} \backslash\{X=0\}, U_{1}=\mathbb{P}^{2} \backslash\{Y=0\}$, and $U_{2}=\mathbb{P}^{2} \backslash\{Z=0\}$. Let $\widetilde{I}_{0} X$ be the ideal obtained by multiplying all the elements of \widetilde{I}_{0} by X. If we look at $V\left(\widetilde{I}_{0} X\right)$, this variety contains all the points of $X=0$ (i.e., all the points off of U_{0}), while we still have $V\left(\widetilde{I}_{0} X\right) \cap U_{0}=Y_{0}$. Similar statements hold for $V\left(\widetilde{I}_{1} Y\right)$ and $V\left(\widetilde{I}_{2} Z\right)$ (with similar definitions for $\widetilde{I}_{1} Y$ and $\left.\widetilde{I}_{2} Z\right)$.
Finally define $I=\widetilde{I}_{0} X+\widetilde{I}_{1} Y+\widetilde{I}_{2} Z$, and set $Y=V(I)$. By our relation between subvarieties and geometric operations, this means that

$$
Y=V(I)=V\left(\widetilde{I}_{0} X\right) \cap V\left(\widetilde{I}_{1} Y\right) \cap V\left(\widetilde{I}_{2} Z\right)
$$

We now want to show that $Y \cap U_{i}=Y_{i}$ for each i. By symmetry of the construction it is enough to do this for $i=0$.
(a) Show that $Y \cap U_{0} \subseteq Y_{0}$.
(b) Show that $Y_{0} \subseteq Y \cap U_{0}$.

The proofs of both statements involve only elementary considerations about intersections, and inclusions, and the way that Y was defined. In particular, part (a) should be very straightforward. For part (b) you will need the condition that $\left.Y_{i}\right|_{U_{i} \cap U_{j}}=\left.Y_{j}\right|_{U_{i} \cap U_{j}}$.

Solution.

(a) From the condition that $V\left(\widetilde{I}_{0} X\right) \cap U_{0}=Y_{0}$, and the definition of Y we get

$$
\begin{aligned}
Y \cap U_{0} & =V\left(\widetilde{I}_{0} X\right) \cap V\left(\widetilde{I}_{1} Y\right) \cap V\left(\widetilde{I}_{2} Z\right) \cap U_{0} \\
& =\left(V\left(\widetilde{I}_{0} X\right) \cap U_{0}\right) \cap V\left(\widetilde{I}_{1} Y\right) \cap V\left(\widetilde{I}_{2} Z\right) \\
& =Y_{0} \cap V\left(\widetilde{I}_{1} Y\right) \cap V\left(\widetilde{I}_{2} Z\right) \quad \subseteq Y_{0}
\end{aligned}
$$

(b) Conversely, suppose that $p \in Y_{0}$. Since Y is the intersection of $V\left(\widetilde{I}_{0} X\right), V\left(\widetilde{I}_{1} Y\right)$, $V\left(\widetilde{I}_{2} Z\right)$, to show that $p \in Y$, it suffices to show that p is in each of the varieties we are intersecting. Furthermore, since $p \in U_{0}$, it suffices to show that p is in each of $V\left(\widetilde{I}_{0} X\right) \cap U_{0}, V\left(\widetilde{I}_{1} Y\right) \cap U_{0}$, and $V\left(\widetilde{I}_{2} Z\right) \cap U_{0}$. Let us consider each of these in turn.

- Since $p \in Y_{0}$, and since $V\left(\widetilde{I}_{0} X\right) \cap U_{0}=Y_{0}$, we certainly have $p \in V\left(\widetilde{I}_{0} X\right) \cap U_{0}$.
- Consider two cases :
- If p is on the line $Y=0$, then $p \in V\left(\widetilde{I}_{1} Y\right)$, since $V\left(\widetilde{I}_{1} Y\right)$ contains the line $Y=0$.
- On the other hand, if p is not on the line $Y=0$, then $p \in U_{1}$ and so $p \in$ $U_{0} \cap U_{1}$. From $p \in Y_{0}$ and the condition that $\left.Y_{0}\right|_{U_{0} \cap U_{1}}=\left.Y_{1}\right|_{U_{0} \cap U_{1}}$ we then conclude that $p \in Y_{1}$, and then from the condition that $V\left(\widetilde{I}_{1} Y\right) \cap U_{1}=Y_{1}$, that $p \in V\left(\widetilde{I}_{1} Y\right)$.

Thus, in either case, $p \in V\left(\widetilde{I}_{1} Y\right)$.

- Similarly, for $V\left(\widetilde{I}_{2} Z\right)$ we consider two cases.
- If p is on the line $Z=0$, then $p \in V\left(\widetilde{I}_{2} Z\right)$, since $V\left(\widetilde{I}_{2} Z\right)$ contains the line $Z=0$.
- On the other hand, if p is not on the line $Z=0$, then $p \in U_{2}$ and so $p \in$ $U_{0} \cap U_{2}$. From $p \in Y_{0}$ and the condition that $\left.Y_{0}\right|_{U_{0} \cap U_{2}}=\left.Y_{2}\right|_{U_{0} \cap U_{2}}$ we then conclude that $p \in Y_{2}$, and then from the condition that $V\left(\widetilde{I}_{2} Z\right) \cap U_{2}=Y_{2}$, that $p \in V\left(\widetilde{I}_{2} Z\right)$.
Again we conclude that $p \in V\left(\widetilde{I}_{2} Z\right)$.
Thus, $p \in V\left(\widetilde{I}_{0} X\right) \cap V\left(\widetilde{I}_{1} Y\right) \cap V\left(\widetilde{I}_{2} Z\right)=Y$. Since $p \in Y_{0}$ was arbitrary, we conclude that $Y_{0} \subseteq Y \cap U_{0}$.

