
Math 413/813 Answers for Homework 9

1. Recall that an ideal I ⊆ k[Z0, . . . , Zn] is called a homogeneous ideal if, for every f ∈ I,
when we write out f as a sum of homogeneous pieces, f = F0+F1+F2+ · · ·+Fd, then
each Fj is also in I.

In this problem we will show that an ideal I is homogeneous if and only if I can be gener-
ated by homogenous polynomials, i.e., if and only if there are homogeneous polynomials
G1,. . . , Gs ∈ k[Z0, . . . , Zn] such that I = 〈G1, . . . , Gs〉.

(a) Assume that I is a homogeneous ideal. Show that I may be generated by homo-
geneous polynomials. (Suggestion: since I is an ideal in k[Z0, . . . , Zn] it may be
generated by finitely many polynomials. Apply the ‘homogeneous ideal’ condition
to these generators.)

(b) Suppose that I = 〈G1, . . . , Gs〉 with each Gi a homogenous polynomial. Show
that I is a homogeneous ideal. (Suggestion: Any f ∈ I can be written as
f = h1G1 + · · · + hsGs with the hi polynomials in Z0,. . . , Zn. Write each hi as
a sum of homogeneous pieces, expand the sum

∑
hiGi, collect pieces of the same

degree and compare with the homogeneous pieces of f .)

(c) Is the ideal 〈X3 − 5XZ2 + Y 2 + XY, X3 − 5XZ2 − Y 2 − XY 〉 ⊂ Q[X, Y, Z]
homogeneous?

Solution.

(a) Since I is an ideal of k[Z0, . . . , Zn], by the Hilbert Basis Theorem there are finitely
many polynomials f1,. . . , fr such that I = (f1, . . . , fr). Write each fi as a sum of
homogeneous pieces

fi = Fi,0 + Fi,1 + · · ·+ Fi,j + · · ·Fi,di,

with each Fi,j homogeneous of degree j.

By assumption, I is a homogeneous ideal, so each Fi,j ∈ I. The ideal generated by
the Fi,j is contained in I, since each Fij is in I. However this ideal also contains

the fj , so must contain I. Thus I = ({Fij}
i=r,j=di
i=1,j=0

) is generated by finitely many
homogeneous elements.

(b) Suppose that I = (G1, . . . , Gs), with each Gj homogeneous of degree dj. Suppose
that f ∈ I, and write f as as sum of homogeneous pieces,

f = F0 + F1 + · · ·+ Fd
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with Fj homogeneous of degree j. Since G1,. . . , Gs generate I, there are polyno-
mials h1,. . . , hs ∈ k[Z0, . . . , Zn] such that f = h1G1 + h2G2 + · · ·+ hsGs. Write
each hj as a sum of homogeneous pieces

hj = Hj,0 +Hj,1 + · · ·+Hj,ej

with eachHj,i homogeneous of degree i. Expanding h1G1+· · ·+hsGs and collecting
homogeneous pieces of the same degree, we see that the homogeneous piece of
degree k of this sum is

∑s

j=1
Hj,k−djGj . (Here Hk,k−dj = 0 of k − dj is not in

the range 0 to ej.) Comparing with the homogeneous pieces of of f , we get the
equality

Fk =
s∑

j=1

Hj,k−djGj

for each k = 0,. . . , d. Thus, each Fk is a combination of the generators of I and
so is in I. Therefore, I is a homogeneous ideal.

(c) Yes, the ideal I = 〈X3− 5XZ2+Y 2+XY, X3− 5XZ2−Y 2 −XY 〉 ⊂ Q[X, Y, Z]
is a homogeneous ideal.

Write

f1 = X3 − 5XZ2 + Y 2 +XY, and f2 = X3 − 5XZ2 − Y 2 −XY

set
G1 =

1

2
(f1 + f2) = X3 − 5XZ2 and G2 =

1

2
(f1 − f2) = Y 2 +XY.

Since G1, G2 ∈ 〈f1, f2〉 we have 〈G1, G2〉 ⊆ I. On the other hand, since f1 =
G1 +G2 and f2 = G1 −G2, we also have the opposite inclusion I ⊆ 〈G1, G2〉, and
therefore I = 〈G1, G2〉.

Since the ideal I can be generated by homogeneous polynomials, part (b) shows
that I is a homogeneous ideal.

Note: The purpose of part (c) was to draw attention to the quantifiers in the charac-
terization of homogeneous ideals : an ideal I is homogeneous if and only if there exists
a set of homogeneous generators. This is not the same thing as saying that every set of
generators of I must be homogeneous.

2. Recall that a subvariety Y ⊆ An is called a cone if whenever p ∈ Y then λp ∈ Y

for all λ ∈ k∗, where λp means the point obtained by scaling all the coordinates of p by
λ. In this problem we will show that Y is a cone if and only if JY , the ideal of Y , is a
homogeneous ideal. For this question we assume that k is an infinite field.

First suppose that Y is a cone, let f be an element of JY and write f as a sum of
homogeneous pieces, f = F0 +F1 + · · ·+Fd, with each Fj homogeneous of degree j. To
show that JY is a homogeneous ideal, we need to show that each Fj ∈ JY .
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(a) Explain why it is sufficient to show that Fj(p) = 0 for all p ∈ Y .

(b) Fix p ∈ Y . By considering f(λp), explain why

0 = F0(p) + λF1(p) + λ2F2(p) + · · ·+ λdF (p)

for all λ ∈ k∗.

(c) Considering the expression in (b) as a polynomial in λ, explain why we must
have Fj(p) = 0 for each j, and hence (from the reductions above) that JY is a
homogenous ideal.

(d) Now prove the other direction : assume that Y ⊆ An is a variety such that JY is
a homogeneous ideal, and prove that Y is a cone. (The equivalence in question 1
may help.)

Solution.

(a) By definition of JY , a polynomial g is in JY if and only if g(p) = 0 for all p ∈ Y .
Thus, showing that Fj(p) = 0 for all p ∈ Y shows that Fj ∈ JY .

(b) Since Y is a cone, λp ∈ Y for all λ ∈ k∗, and so, since f ∈ JY , f(λp) = 0 for all
λ ∈ k∗. But by definition the Fj , f(λp) = F0(λp) + F1(λp) + · · ·+ Fd(λp). Since
Fj is homogeneous of degree j, Fj(λp) = λjFj(p). Putting these steps together we
obtain

0 = f(λp) = F0(p) + λF1(p) + λ2F2(p) + · · ·+ λdFd(p)

for all λ ∈ k∗.

(c) By part (b) the polynomial

F0(p) + λF1(p) + λ2F2(p) + · · ·+ λdFd(p)

is zero for all λ ∈ k∗. Since k is infinite, this means the polynomial has infinitely
many roots, and that is only possible if the polynomial is the zero polynomial.
Therefore its coefficients F0(p), F1(p), . . . , Fd(p) are zero. Since p ∈ Y was
arbitrary, this shows (by part (a)) that each Fj ∈ JY , and so JY is a homogeneous
ideal.

(d) Conversely suppose that JY is homogeneous ideal. By Q1(b) this means we can
assume that JY = 〈G1, G2, . . . , Gs〉 for homogeneous polynomials G1,. . . , Gs, say
of degrees d1, d2, . . . , ds.

We now show that Y is a cone. Suppose that p ∈ Y . By definition of JY this
means that G1(p) = 0, G2(p) = 0, . . . , Gs(p) = 0. For any λ ∈ k∗ we then have
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G1(λp) = λd1G1(p) = λd1 · 0 = 0,

G2(λp) = λd2G2(p) = λd2 · 0 = 0,

all the way down to

Gs(λp) = λdsGs(p) = λds · 0 = 0.

We conclude that λp ∈ Y , and so Y is a cone.

3. Suppose that U0, U1, and U2 are the standard open subsets in P2, and that we have
varieties Y0 ⊂ U0, Y1 ⊂ U1, and Y2 ⊂ U2, which agree on intersections. This means
that Yi|Ui∩Uj

= Yj |Ui∩Uj
for any i, j. In this question we will prove that there is a

homogeneous ideal I in k[X, Y, Z] so that if we set Y = V (I) then Y ∩ Ui = Yi for
i = 0, 1, 2. I.e., we will show that if we define a subvariety of P2 as something obtained
by glueing together affine varieties on the pieces, then this agrees with our definition of
subvariety as something obtained by homogeneous polynomials.

Since Y0, Y1, and Y2 are each affine varieties (in U0, U1, and U2 respectively) each of
them are given by ideals in their respective polynomial rings. Let I0, I1, and I2 be these
ideals. Then let Ĩ0, Ĩ1, and Ĩ2 be the homogenization of these ideals; namely the ideal
obtained by homogenizing the polynomials in I0, I1, and I2 respectively. These ideals
have the property that V (Ĩj) ∩ Uj = Yj for each j. In other words, they each define
projective varieties which restrict (separately) to the varieties we want on one of the

open sets. However we do not know that V (Ĩj) ∩Ui = Yi when i 6= j, so these ideals by
themselves do not solve the problem.

Recall that U0 = P2 \ {X = 0}, U1 = P2 \ {Y = 0}, and U2 = P2 \ {Z = 0}. Let Ĩ0X

be the ideal obtained by multiplying all the elements of Ĩ0 by X . If we look at V (Ĩ0X),
this variety contains all the points of X = 0 (i.e., all the points off of U0), while we still

have V (Ĩ0X) ∩ U0 = Y0. Similar statements hold for V (Ĩ1Y ) and V (Ĩ2Z) (with similar

definitions for Ĩ1Y and Ĩ2Z).

Finally define I = Ĩ0X + Ĩ1Y + Ĩ2Z, and set Y = V (I). By our relation between
subvarieties and geometric operations, this means that

Y = V (I) = V (Ĩ0X) ∩ V (Ĩ1Y ) ∩ V (Ĩ2Z).

We now want to show that Y ∩ Ui = Yi for each i. By symmetry of the construction it
is enough to do this for i = 0.

(a) Show that Y ∩ U0 ⊆ Y0.
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(b) Show that Y0 ⊆ Y ∩ U0.

The proofs of both statements involve only elementary considerations about intersec-
tions, and inclusions, and the way that Y was defined. In particular, part (a) should be
very straightforward. For part (b) you will need the condition that Yi|Ui∩Uj

= Yj|Ui∩Uj
.

Solution.

(a) From the condition that V (Ĩ0X) ∩ U0 = Y0, and the definition of Y we get

Y ∩ U0 = V (Ĩ0X) ∩ V (Ĩ1Y ) ∩ V (Ĩ2Z) ∩ U0

=
(
V (Ĩ0X) ∩ U0

)
∩ V (Ĩ1Y ) ∩ V (Ĩ2Z)

= Y0 ∩ V (Ĩ1Y ) ∩ V (Ĩ2Z) ⊆ Y0.

(b) Conversely, suppose that p ∈ Y0. Since Y is the intersection of V (Ĩ0X), V (Ĩ1Y ),

V (Ĩ2Z), to show that p ∈ Y , it suffices to show that p is in each of the varieties
we are intersecting. Furthermore, since p ∈ U0, it suffices to show that p is in each
of V (Ĩ0X) ∩ U0, V (Ĩ1Y ) ∩ U0, and V (Ĩ2Z) ∩ U0. Let us consider each of these in
turn.

◦ Since p ∈ Y0, and since V (Ĩ0X)∩U0 = Y0, we certainly have p ∈ V (Ĩ0X)∩U0.

◦ Consider two cases :

– If p is on the line Y = 0, then p ∈ V (Ĩ1Y ), since V (Ĩ1Y ) contains the
line Y = 0.

– On the other hand, if p is not on the line Y = 0, then p ∈ U1 and so p ∈
U0∩U1. From p ∈ Y0 and the condition that Y0|U0∩U1

= Y1|U0∩U1
we then

conclude that p ∈ Y1, and then from the condition that V (Ĩ1Y )∩U1 = Y1,

that p ∈ V (Ĩ1Y ).

Thus, in either case, p ∈ V (Ĩ1Y ).

◦ Similarly, for V (Ĩ2Z) we consider two cases.

– If p is on the line Z = 0, then p ∈ V (Ĩ2Z), since V (Ĩ2Z) contains the line
Z = 0.

– On the other hand, if p is not on the line Z = 0, then p ∈ U2 and so p ∈
U0∩U2. From p ∈ Y0 and the condition that Y0|U0∩U2

= Y2|U0∩U2
we then

conclude that p ∈ Y2, and then from the condition that V (Ĩ2Z)∩U2 = Y2,

that p ∈ V (Ĩ2Z).

Again we conclude that p ∈ V (Ĩ2Z).

Thus, p ∈ V (Ĩ0X)∩V (Ĩ1Y )∩V (Ĩ2Z) = Y . Since p ∈ Y0 was arbitrary, we conclude
that Y0 ⊆ Y ∩ U0.
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