
Math 413/813 Answers for Homework 10

1. Suppose that C ⊂ P
2 is a curve, q ∈ P

2 a point not on C, and ℓ a line not containing
q. In class we saw how to use this setup to define a map ϕ : C −→ ℓ. (The procedure
was: for any p ∈ C, let pq be the line containing p and q, and define ϕ(p) to be the
intersection of C and ℓ.) In this question we will check that such a map is really a map
of affine varieties.

We can make a useful simplification: We don’t really need to think about C at all. Let
V = P

2 \ {q}. Then the procedure above really defines a map ψ : V −→ ℓ. The map ϕ
is the composite of ψ with the inclusion C →֒ V . Since inclusion is an algebraic map,
and compositions of algebraic maps are algebraic maps, all we really need to do is to
verify that ψ is an algebraic map.

Let q = [0 : 0 : 1] and ℓ be the line Z = 0.

(a) Let p = [α : β : γ] be a point of V . Write down the equation of the unique line in
P
2 which contains p and q.

(b) Compute the intersection of the line above with ℓ (i.e., calculate ψ(p)).

From your answer in (b), it will be clear that projection from q looks like an algebraic
map. However, let’s practice computing in coordinates by examining this map in co-
ordinate charts. The open set V is covered by the standard coordinate charts U0 and
U1.

(c) Explain what the line ℓ looks like in the coordinate system of U0, and then write
down the formula for the map U0 −→ (ℓ ∩ U0) given by restricting ψ to U0. (I.e,
if p = (y0, z0) is a point of U0, what point on (U0 ∩ ℓ) is ψ(p)?)

(d) Do the same thing for U1.

Now let see what ϕ looks like near p ∈ C. We will also have to deal with an issue not
raised in class : when q = p, what does the “line containing p and q” mean? By taking
the limit as q → p, you may be convinced that this should mean : use the tangent line
to C at p (and that is what it should mean).

Rather than do the general case, we will pick a specific curve and see that the construc-
tion works there. Let C be the conic given by Y Z − X2 = 0 (and p and L as above).
Let us look at C in the remaining chart, U2. In this chart p becomes the point (0, 0),
while the line L, given by Z = 0, does not appear in U2.

(e) Dehomogenize the equation of C on the chart U2 (i.e., with respect to Z).
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(f) Suppose that q ∈ C ∩ U2, q 6= p, writing q = (x, y) (=[x : y : 1]), where does your
formula from (a) say that pq intersects the “line at infinity” L?

(g) Find the limit of your answer in (f) as q → p. You will probably have to use the
fact that the x and y coordinates of q satisfy the equation you found in (e).

(h) Find the tangent line to C at p in the chart U2, and verify that the intersection of
the tangent line and L is the same as your answer from (g).

Solution.

(a) [α : β : γ] 6= [0 : 0 : 1] (by hypothesis), at least one of α and β is nonzero. The
equation βX − αY = 0 is therefore nonzero and defines a line. By plugging in
to the equation, we see that the line contains the points [α : β : γ] and the point
[0 : 0 : 1]. Thus this is the unique line containing these two points.

(b) The equations βX − αY = 0 and Z = 0 are not scalar multiples of each other
and so define distinct lines. The point [α : β : 0] satisfies both equations and
so must be the unique point of intersection of the two lines. Thus, for a point
[α : β : γ] ∈ V we have ψ ([α : β : γ]) = [α : β : 0] ∈ ℓ. In other words, in these
coordinates, the map ψ is simply “set the last coordinate to 0”.

(c) On U0, where X 6= 0, the coordinates are y0 =
Y
X

and z0 =
Z
X
. The line Z = 0 in

P
2 is the line z0 = 0 in U0. The point [α : β : γ] is (if α 6= 0) the point

(

β

α
, γ
α

)

in

U0. The map ψ sends this point to [α : β : 0], which is the point
(

β

α
, 0
)

in U0. In
other words, on U0 the map ψ looks like

ψ(y0, z0) = (y0, 0).

(d) On U1, where Y 6= 0, the coordinates are x1 =
X
Y

and z1 =
X
Y
. The line Z = 0 in

P
2 is the line z1 = 0 in U1. The point [α : β : γ] is (if β 6= 0) the point

(

α
β
, γ
β

)

in

U1. The map ψ sends this point to [α : β : 0], which is the point
(

α
β
, 0
)

in U1. In

other words, on U1 the map ψ looks like

ψ(x1, z1) = (x1, 0).

(e) Dehomogenizing Y Z −X2 with respect to Z we get y − x2, so that y − x2 = 0 is
the parabola y = x2.

(f) If q = (x, y) = [x : y : 1], then the formula from (a) says that pq intersects L at
[x : y : 0].
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(g) If q is also on C, then y = x2, so q is of the form (x, x2) and ϕ(q) = [x : x2 :
0] = [1 : x : 0]. The point p is the point (0, 0) in U2. Taking the limit of ϕ(q)
as q → p is taking the limit as x → 0 of [1 : x : 0], and the limit is clearly
limx→0[1 : x : 0] = [1 : 0 : 0].

(h) The tangent line to y = x2 at (0, 0) is the x-axis, namely y = 0. Homogonizing,
this is the line Y = 0, and intersects the line L (which is Z = 0), in the point
[1 : 0 : 0], just as we found in (g).

These maps are “projection onto Z = 0” in there respective coordinates, and are cer-
tainly algebraic maps.

2. Singular points and the topology of a curve.

(a) Find the unique singular point of the curve 6Y 2Z2 = 6X2Z2−8X3Z+4Y 3Z+3X4

in P
2. Look at the equation in an affine chart of the singular point, and show that

analytically it is a node.

(b) Draw a “balloon picture” of the topological shape of this curve. (Hints: The
curve has degree 4, so you know what it looks like when it is smoothed. The curve
is also irreducible, so only has one piece.)

Solution.

(a) Let F = 6Y 2Z2 − 6X2Z2 + 8X3Z − 4Y 3Z − 3X4. Then the conditions are:

FX = −12XZ2 + 24X2Z − 12X3 = 0 =⇒ −12X(X − Z)2 = 0
so X = 0 or X = Z

FY = 12Y Z2 = 0 =⇒ Y = 0 or Z = 0
FZ = 12Y 2Z − 12X2Z + 8X3 − 4Y 3 = 0

We consider several cases, starting with the condition imposed by FY = 0, that
either Y = 0 or Z = 0.

Z = 0 : Then the FX condition implies that either X = 0 or X = Z = 0, so in
either case X = 0. But then the FZ condition becomes −4Y 3 = 0 so that Y = 0.
Since [0 : 0 : 0] is not a point of P2 we conclude that there are no solutions with
Z = 0.

Y = 0 : Then the FX condition implies that either X = 0 or X = Z. Let us deal
with each of these subcases in turn.
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◦ X = 0 : Substituting X = 0 and Y = 0 into FZ results in 0. Thus, when
X = Y = 0, FX = FY = FZ = 0, and therefore the point [0 : 0 : 1] is a
singular point of F = 0.

◦ X = Z : Substituting Y = 0 and X = Z in to FZ gives −4Z3, so the
condition FZ = 0 implies that Z = 0. But then because X = Z we have
X = 0 too. However X = Y = Z = 0 is not a point of P2, so this is not a
solution.

Thus the unique singular point of F = 0 is p = [0 : 0 : 1]. Dehomogenizing with
respect to Z, F becomes

f = 6(y2 − x2) + (8x3 − 4y3) + 3x4,

(the grouping above is by degree of homogenous piece). In this chart the singular
point is (0, 0). The polynomial f has no linear term and so is certainly singular
at (0, 0). The degree two homogeneous piece factors as 6(x+ y)(x− y). Since the
factorization has two distinct linear factors, the singularity must be a node, as was
mentioned in class. We now check this by making changes of variables.

First, regroup the monomials in f , collecting powers of x and y separately.

f = y2(6− 4y)− x2(6− 8x− 3x2).

Since 6 − 4y is not zero at (0, 0), this function has a square root near (0, 0).
Similarly, 6 − 8x − 3x2 has a square root near (0, 0). Let h1 =

√
6− 4y and

h2 =
√
6− 8x− 3x2 be these square roots (they are well determined up to sign).

Using the formula
√
1− t = 1− 1

2
t− 1

8
t2 − 1

16
t3 − 5

128
t4 − · · · − 1·3·5···(2n−3)

2n·n!
tn − · · ·

from first year calculus, we compute that the power series expansions of h1 and h2
near (0, 0) are

h1(x, y) =
√
6
(

1− 1
3
y − 1

18
y2 − 1

54
y3 − · · ·

)

h2(x, y) =
√
6
(

1− 2
3
x− 17

36
x2 − 17

54
x3 − · · ·

)

.

Set x1 = x · h2(x, y) and y1 = y · h1(x, y). Then the determinant of the Jacobian
matrix of the functions x1, y1 at (0, 0) is

x1 y1

∂
∂x

√
6 0

∂
∂y

0
√
6

= 6 6= 0,
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and so x1 and y1 are valid coordinate functions near (0, 0). Changing coordinates,
the function f becomes

f = y21 − x21.

Set x2 = y1+x1 and y2 = y1−x1. The Jacobian matrix of these functions at (0, 0)
is

x2 y2

∂
∂x1

1 1
∂
∂y1

−1 1
= 2 6= 0,

and so again x2 and y2 are valid coordinate funtions near (0, 0). In these new
coordinates f becomes

f = x2y2,

so we see that f = 0 does indeed have a node at (0, 0).

(b) We know that C is irreducible (in this case this simply means that F doesn’t
factor). If we smooth C we will obtain a curve of genus

(

4−1
2

)

= 3, and thus C
must look something like this:

3. In class we figured out the genus of a degree d plane curve by taking the union of a
degree (d−1) curve and a line, and smoothing it. When seeing a new type of argument,
it is good to check for consistency: If the argument is applied (correctly) in a similar
way, it should also lead to correct conclusions. For instance, instead of smoothing a
degree (d−1) curve and a degree 1 curve, why not take the union of d lines and smooth
them?

(a) Suppose that C1,. . . , Cr are curves in P
2 of degrees d1,. . . , dr. Show that their

union is a curve of degree d1+d2+ · · ·+dr. (Suggestion: What is the definition
of a “curve of degree d”?).

(b) Now let C be the union of three distinct lines. By part (a) C is a (singular) curve
of degree 3. Draw a the real picture of an intersection of three lines. How many
nodes does C have? Draw the “balloon picture” of the nodal curve C, and then
explain which genus Riemann surface is obtained when the curve is smoothed.
Does this agree with our formula?
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(c) Do the same thing for the union of four distinct lines in P
2. You should suppose

that the lines are general enough so that all the singularities are nodes. (For
instance, while any pair of lines must intersect, three lines should never all meet
in a single point.)

Solution.

(a) By definition a curve of degree d in P
2 is given by F = 0, where F is a homogeneous

equation of degree d in X , Y , and Z. Suppose that C1,. . . , Cr are curves of degrees
given as F1 = 0, F2 = 0, . . . , Fr = 0, where each Fj is of degree dj. Then their
union is the set of zeros of F = F1F2 · · ·Fr, which is homogeneous of degree
d1 + d2 + · · ·+ dr.

(b) Three general lines will intersect like this:

From the picture, the union of three lines has 3 nodes. The corresponding “balloon
picture” and its smoothing is this:

Smooth

This agrees with our previous argument: a smooth curve in P
2 of degree 3 should

have genus 1.

(c) Four general lines in P
2 intersect in a picture something like this:
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Each pair of lines intersects in a unique point, so there are a total of
(

4
2

)

= 6 nodes.
A “balloon picture” and its smoothing is:

Smooth

This also agrees with our previous argument. A smooth curve of degree 4 in P
2

should have genus 3.
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