1. Here is an extremely simple example of a map between Riemann surfaces (aka "algebraic curves"). Fix an integer $n \geqslant 1$ and define a map $\varphi: \mathbb{P}^{1} \longrightarrow \mathbb{P}^{1}$ by the formula $[X: Y] \longrightarrow\left[X^{n}: Y^{n}\right]$.
(a) Check that φ is well-defined, that is (1) φ doesn't depend on the choice of representative we use for $[X: Y]$, and (2) no point of \mathbb{P}^{1} is sent to $[0: 0]$ by these instructions.

In order to see that this is a map of Riemann surfaces, let us look in coordinate charts.
(b) Check that $\varphi^{-1}\left(U_{0}\right)=U_{0}$ and that $\varphi^{-1}\left(U_{1}\right)=U_{1}$, i.e, that φ maps the standard coordinate charts to the standard coordinate charts.
(c) In each of U_{0} and U_{1} write out (in the coordinates of each chart) what φ is doing. Is φ an algebraic map?
(d) Find all the ramification points of φ and their ramification degrees.

Solution.

(a) (1) Suppose that $p=[X: Y] \in \mathbb{P}^{1}$. For any $\lambda \in \mathbb{C}^{*},[\lambda X: \lambda Y]$ represents the same point p. Since the coordinates of $\varphi\left(\left[(\lambda X)^{n}:(\lambda Y)^{n}\right]\right)=\left[\lambda^{n} X: \lambda^{n} Y\right]$ are a λ^{n} times the coordinates of $\varphi([X: Y])=\left[X^{n}: Y^{n}\right]$, they represent the same point in \mathbb{P}^{1}. Therefore the instructions for φ, do not depend on the homogeneous coordinates chosen to represent p.
(2) The only way that $\varphi([X: Y])=\left[X^{n}: Y^{n}\right]=[0: 0]$ is if $X^{n}=0$ and $Y^{n}=0$, which implies that $X=0$ and $Y=0$. Since $X=0, Y=0$ is not a point of \mathbb{P}^{1}, we conclude that there is no point $[X: Y] \in \mathbb{P}^{1}$ so that $\varphi([X: Y])=[0: 0]$, and so φ gives a well defined map of sets from \mathbb{P}^{1} to \mathbb{P}^{1}.
(b) The coordinate chart U_{0} is defined by the condition $X \neq 0$, so $[X: Y] \in \varphi^{-1}\left(U_{0}\right)$ exactly when $\varphi([X: Y])=\left[X^{n}: Y^{n}\right]$ satisfies $X^{n} \neq 0$, which is the same condition as $X \neq 0$. In other words, $[X: Y] \in \varphi^{-1}\left(U_{0}\right)$ if and only if $[X: Y] \in U_{0}$, so $\varphi^{-1}\left(U_{0}\right)=U_{0}$.

Similarly, the coordinate chart U_{1} is defined by the condition that $Y \neq 0$. Therefore $[X: Y] \in \varphi^{-1}\left(U_{1}\right)$ if and ony if $\varphi([X: Y])=\left[X^{n}: Y^{n}\right]$ satisfies the condition $Y^{n} \neq 0$, which is the same as asking that $Y \neq 0$. Therefore, $[X: Y] \in \varphi^{-1}\left(U_{1}\right)$ if and only if $[X: Y] \in U_{1}$ and so $\varphi^{-1}\left(U_{1}\right)=U_{1}$.
(c) On U_{0} the coordinate is $z=\frac{Y}{X}$. From the point of U_{0}, the map φ is the composite

$$
z \leftrightarrow[1: z] \stackrel{\varphi}{\mapsto}\left[1^{n}: z^{n}\right]=\left[1: z^{n}\right] \leftrightarrow z^{n} \in U_{0} .
$$

That is, on U_{0}, φ is given by $\varphi(z)=z^{n}$.
Similarly, on U_{1} with coordinate $w=\frac{X}{Y}, \varphi$ is the composite

$$
w \leftrightarrow[w: 1] \stackrel{\varphi}{\mapsto}\left[w^{n}: 1^{n}\right]=\left[w^{n}: 1\right] \leftrightarrow w^{n} \in U_{1},
$$

so that $\varphi(w)=w^{n}$ on U_{1}.
From this description, φ is certainly an algebraic map!
(d) In chart U_{0}, the only ramification point is at 0 (corresponding to the point $p_{0}=$ $[1: 0] \in \mathbb{P}^{1}$). From the coordinate description $z \mapsto z^{n}$, the ramification degree at p_{0} is $k_{p_{0}}=n$.

In chart U_{1}, the only ramification point is at 0 (corresponding to the point $p_{1}=$ $[0: 1] \in \mathbb{P}^{1}$). From the coordinate description $w \mapsto w^{n}$, the ramification degree at p_{0} is $k_{p_{1}}=n$.

Note: The map φ is a map from \mathbb{P}^{1} to \mathbb{P}^{1} of degree n. As a check on our computations of the number and ramification degree of the ramification points of φ we should see that the Riemann-Hurwitz formula holds with this data. The computation is:

$$
\begin{aligned}
-2=2(0-1) & =2\left(g\left(\mathbb{P}^{1}\right)-1\right) \xlongequal{\mathrm{R}-\mathrm{H}} n \cdot 2\left(g\left(\mathbb{P}^{1}\right)-1\right)+\sum_{p}\left(k_{p}-1\right) \\
& =n \cdot 2(0-1)+(n-1)+(n-1)=-2 n+(2 n-2)=-2 .
\end{aligned}
$$

So, our computation seems reasonable - the Riemann-Hurwitz formula agrees that having two ramification points of degree n is compatible with a degree n cover from \mathbb{P}^{1} to \mathbb{P}^{1}.
2. Use the Riemann-Hurwitz formula to find the genus of X, the genus of Y, or the number of ramification points, as required.
(a) $\pi: X \longrightarrow \mathbb{P}^{1}$ is a degree 3 cover, with two ramification points, both with ramification index $k_{p}=3$. Find the genus of X.
(b) $\pi: X \longrightarrow \mathbb{P}^{1}$ is a degree 3 cover, with three ramification points, all with ramification index $k_{p}=3$. Find the genus of X.
(c) $\pi: X \longrightarrow Y$ is a map of degree d, X has genus 1 , and there are no ramification points. Find the genus of Y.
(d) X is of genus g, Y is of genus 1 , the map $\pi: X \longrightarrow Y$ is of degree d, and all ramification points p in X are of index 2. Find the number of ramification points (the answer turns out, in this case, not to depend on the degree d).

Can you think of a map $X \longrightarrow \mathbb{P}^{1}$ satisfying the description in part (a)?

Solution.

(a) By the Riemann-Hurwitz formula,

$$
2\left(g_{X}-1\right)=3 \cdot 2(0-1)+(3-1)+(3-1)=-6+4=-2
$$

so that $g_{X}=0$.
(b) By the Riemann-Hurwitz formula,

$$
2\left(g_{X}-1\right)=3 \cdot 2(0-1)+(3-1)+(3-1)+(3-1)=-6+6=0
$$

so that $g_{X}=1$.
(c) By the Riemann-Hurwitz formula,

$$
0=2(1-1)=d \cdot 2\left(g_{Y}-1\right)+0=2\left(g_{Y}-1\right)
$$

so that $g_{Y}=1$.
(d) Since $g_{X}=g, g_{Y}=1$, and $k_{p}=2$ for all ramification points, the Riemann-Hurwitz formula gives us

$$
2 g-2=2 \cdot\left(g_{X}-1\right)=d \cdot 2(1-1)+\sum_{p}\left(k_{p}-1\right)=0+(\# \text { ramification points }),
$$

so that the number of ramification points is $2 g-2$.

The map in (a) is a map $\pi: \mathbb{P}^{1} \longrightarrow \mathbb{P}^{1}$ of degree 3 , with two ramification points, each of ramification index $k_{p}=3$. An example of such a map is the map considered in question 1 with $n=3$, i.e,. the map $\varphi: \mathbb{P}^{1} \longrightarrow \mathbb{P}^{1}$ given by $\varphi([X: Y])=\left[X^{3}: Y^{3}\right]$.
3. In this question we will complete the proof of the theorem describing the "global" picture of a non-constant map $\varphi: X \longrightarrow Y$ between Riemann surfaces. The key missing step of the theorem was this: to show that there exists a positive integer d, such that for any $q \in Y, \sum_{p \in \varphi^{-1}(q)} k_{p}=d$. Here the sum is over all p such that $\varphi(p)=q$, and k_{p} denotes the ramification index of φ at p.
To reduce notation somewhat, let us define the function $D: Y \longrightarrow \mathbb{N}$ by $D(q)=$ $\sum_{p \in \varphi^{-1}(q)} k_{p}$. The goal of this problem is then to show that D is a constant function.
Lemma : For each $q \in Y$ there is a small neighbourhood ($=$ open set around) V of q such that D is constant on V.
First let us see how to prove the result using the lemma.
(a) Use the lemma to show that for each $d \in \mathbb{N}$ the set

$$
D^{-1}(d)=\{q \in Y \mid D(q)=d\}
$$

is open.
(b) Use (a) to show that for each $d \in \mathbb{N}$ the set $D^{-1}(d)$ is closed. (Suggestion: this is the same as showing that the complement is open.)
(c) Use (a) $+(\mathrm{b})$ to show that for each $d \in \mathbb{N}, D^{-1}(d)$ is either Y or the empty set.
(d) Conclude that there is a unique $d \in \mathbb{N}$ such that $D^{-1}(d)=Y$, i.e., conclude that D is constant on Y.

We now work on proving the lemma.
Fix $q \in Y$, and suppose that $\varphi^{-1}(q)=\left\{p_{1}, p_{2}, \ldots, p_{r}\right\}$. From our local picture we know that there is an open set V around q, and open sets U_{1}, \ldots, U_{r} around p_{1}, \ldots, p_{r} such that $\varphi\left(U_{i}\right) \subset V$ for each $i=1, \ldots, r$, and that on each U_{i} the map φ looks like $z_{i} \mapsto z_{i}^{k_{p_{i}}}$, where z_{i} is a local coordinate on U_{i}, and $k_{p_{i}}$ the ramification index at p_{i}.
Given these U_{i} and V, for $q \in V$ let us split our function D into the sum of two functions. For $q^{\prime} \in V$, by definition $D\left(q^{\prime}\right)$ is the sum over $p^{\prime} \in \varphi^{-1}\left(q^{\prime}\right)$ of the ramification indices $k_{p^{\prime}}$. We will split the sum into pieces according to whether p^{\prime} is in $U_{1} \cup U_{2} \cup \cdots \cup U_{r}$ or outside it. Set $U=U_{1} \cup U_{2} \cup \cdots \cup U_{r}$ and define :

$$
D_{U}\left(q^{\prime}\right)=\sum_{p^{\prime} \in \varphi^{-1}\left(q^{\prime}\right) \cap U} k_{p^{\prime}} \text { and } D_{U}^{c} \sum_{p^{\prime} \in \varphi^{-1}\left(q^{\prime}\right), p \notin U} k_{p^{\prime}},
$$

so that $D\left(q^{\prime}\right)=D_{U}\left(q^{\prime}\right)+D_{U}^{c}\left(q^{\prime}\right)$. (The " c " is for "complement.)
Set $d=D(q)=k_{p_{1}}+k_{p_{2}}+\cdots+k_{p_{r}}$.
(e) Show that for q^{\prime} sufficiently close to $q, D_{U}\left(q^{\prime}\right)=d$.

Claim: For q^{\prime} sufficiently close to q, all points of $\varphi^{-1}\left(q^{\prime}\right)$ are in U. (This then shows that for those points $D_{U}^{c}\left(q^{\prime}\right)=0$, and hence using $D=D_{U}+D_{U}^{c}$ and (e) that $D\left(q^{\prime}\right)=d$ for all points q^{\prime} sufficiently close to q, thus proving the lemma.)
The negation of this claim is that there is a sequence of points $q_{1}^{\prime}, q_{2}^{\prime}, \ldots$, converging to q, and for each q_{i}^{\prime} a point $p_{i}^{\prime} \in \varphi^{-1}\left(q_{i}^{\prime}\right)$ which is outside of U. Since X is compact, such a sequence would have a limit point $\bar{p} \in X$.
(f) Explain why we would have $\varphi(\bar{p})=q$.
(g) Explain why this means that $\bar{p} \in\left\{p_{1}, p_{2}, \ldots, p_{r}\right\}$.
(h) Explain why this means that some p_{i}^{\prime} (in fact, infinitely many p_{i}^{\prime}) would have to be in U.
(i) Explain why this is a contradiction, thus establishing the claim, the lemma, and finally the theorem from class.

Solution.

(a) By definition a set S is open if for each points $q \in S$, there is an open set $V \subseteq S$ which contains q.

Fix $d \in \mathbb{N}$ and set $S=D^{-1}(d)$. If $q \in S$ then $D(q)=d$ (by definition of S). By the lemma, there is an open set V containing q so that D is constant on V, i.e., $D\left(q^{\prime}\right)=d$ for all $q^{\prime} \in V$. Thus $V \subseteq S$, and so S is open.
(b) One way to prove that a set S is open is to prove that its complement is closed. Fix $d \in \mathbb{N}$ and set $S=D^{-1}(d)$. Let $S^{c}=Y \backslash S$ be the complement of S in Y. From the definition, a point $q \in S^{c}$ if and only if $q \notin S$, i.e., if and only if $D(q) \neq d$. From this we see that

$$
S^{c}=\bigcup_{e \in \mathbb{N}, e \neq d} D^{-1}(e)
$$

By part (a) each of the sets $D^{-1}(e)$ is open, and an arbitrary union of open sets is open, therefore S^{c} is open, and so S is closed.
(c) By (a) and (b), for each $d \in \mathbb{N}$ the set $D^{-1}(d)$ is both open and closed in Y. For a connected topological space (like Y), the only sets which are both open and closed are \varnothing and Y. Thus, for each $d \in \mathbb{N}, D^{-1}(d)$ is either empty or all of Y.
(d) Let q be any point of Y, and $d=D(q)$. Then $q \in D^{-1}(d)$, so $D^{-1}(d) \neq \varnothing$. By part (c) this means that $D^{-1}(d)=Y$, i.e., that for all $q^{\prime} \in Y, D\left(q^{\prime}\right)=d$, so that D is constant on Y.
(e) On each U_{i} we know that φ looks like the map $z_{i} \mapsto z_{i}^{k_{p_{i}}}$. As long as q^{\prime} is close enough to q so that $q^{\prime} \in \varphi\left(U_{i}\right)$, then $\varphi^{-1}\left(q^{\prime}\right) \cap U_{i}$ is the solutions to $z_{i}^{k_{1}}=w$, where w is the number corresponding to q^{\prime} in the coordinate system on V.

Thus, once q^{\prime} is close enough to $q, \varphi^{-1}\left(q^{\prime}\right) \cap U_{i}$ contains k_{i} points, since $z^{k_{i}}=w$ has exactly k_{i} solutions in \mathbb{C} when $w \neq 0$ (i.e, when $q^{\prime} \neq q$). Here is the usual picture of the map $z \rightarrow z^{k}$ illustrating this :

Thus, once q^{\prime} is close enough to q to be inside all $\varphi\left(U_{i}\right)$ (i.e, $q^{\prime} \in \bigcap_{i=1}^{r} \varphi\left(U_{i}\right)$), and when $q \neq q^{\prime}$, then $\varphi^{-1}\left(q^{\prime}\right)$ have exactly $k_{p_{i}}$ points in U_{i}, and so a total of $\sum_{i=1}^{r} k_{p_{i}}=d$ points in U.

However, each of those points is unramified, i.e., their ramification index is 1. (We saw this in class by a local description of what the " k " in the ramification index means.) Thus $D_{U}\left(q^{\prime}\right)$, which is the some of the ramification indices of the points of $\varphi^{-1}\left(q^{\prime}\right) \cap U$ is the sum of the number 1 over the d points in $\varphi^{-1}\left(q^{\prime}\right) \cap U$, and so $D_{U}\left(q^{\prime}\right)=d$. (If $q^{\prime}=q$ then we already know that the points $\left\{p_{1}, \ldots, p_{r}\right\}$ of $\varphi^{-1}(q)$ all lie in U, and that their ramfication indices sum to d - that is how we defined $d!$)

Therefore, for all q^{\prime} sufficiently close to q (including $q^{\prime}=q$) $D_{U}\left(q^{\prime}\right)=d$.
(f) To make the notation easier, let us assume that we have already passed to a subsequence of the p_{i}^{\prime} which converges to \bar{p}, i.e., that $\lim _{i \rightarrow \infty} p_{i}^{\prime}=\bar{p}$.

We know that the q_{i}^{\prime} converge to q, and that $\varphi\left(p_{i}^{\prime}\right)=q_{i}^{\prime}$ for each i. Since φ is a continuous map we therefore have

$$
\varphi(\bar{p})=\varphi\left(\lim _{i \rightarrow \infty} p_{i}^{\prime}\right)=\lim _{i \rightarrow \infty} \varphi\left(p_{i}^{\prime}\right)=\lim _{i \rightarrow \infty} q_{i}^{\prime}=q
$$

(g) Since $\varphi(\bar{p})=q, \bar{p} \in \varphi^{-1}(q)=\left\{p_{1}, p_{2}, \ldots, p_{r}\right\}$.
(h) $\mathrm{By}(\mathrm{g}), \bar{p}=p_{j}$ for some $j, 1 \leqslant j \leqslant r$, and by definition U_{j} is an open set around p_{j}. Since the sequence $\left\{p_{i}^{\prime}\right\}$ is converging to $\bar{p}=p_{j}$, then there is some N so that for all $i \geqslant N, p_{i}^{\prime} \in U_{j}$.
(i) The p_{i}^{\prime} were chosen so that no p_{i}^{\prime} lies in any U_{j}. The conclusion above is therefore a contradiction, and so there is no such sequence q_{i}^{\prime} converging to q, establishing the claim. (And therefore the lemma, and then the theorem!)

