
Math 413/813 Answers for Homework 11

1. Here is an extremely simple example of a map between Riemann surfaces (aka
“algebraic curves”). Fix an integer n > 1 and define a map ϕ : P1 −→ P1 by the formula
[X : Y ] −→ [Xn : Y n].

(a) Check that ϕ is well-defined, that is () ϕ doesn’t depend on the choice of rep-
resentative we use for [X : Y ], and () no point of P1 is sent to [0 : 0] by these
instructions.

In order to see that this is a map of Riemann surfaces, let us look in coordinate charts.

(b) Check that ϕ−1(U0) = U0 and that ϕ−1(U1) = U1, i.e, that ϕ maps the standard
coordinate charts to the standard coordinate charts.

(c) In each of U0 and U1 write out (in the coordinates of each chart) what ϕ is doing.
Is ϕ an algebraic map?

(d) Find all the ramification points of ϕ and their ramification degrees.

Solution.

(a) () Suppose that p = [X : Y ] ∈ P1. For any λ ∈ C∗, [λX : λY ] represents the
same point p. Since the coordinates of ϕ([(λX)n : (λY )n]) = [λnX : λnY ] are
a λn times the coordinates of ϕ([X : Y ]) = [Xn : Y n], they represent the same
point in P1. Therefore the instructions for ϕ, do not depend on the homogeneous
coordinates chosen to represent p.

() The only way that ϕ([X : Y ]) = [Xn : Y n] = [0 : 0] is if Xn = 0 and Y n = 0,
which implies that X = 0 and Y = 0. Since X = 0, Y = 0 is not a point of P1,
we conclude that there is no point [X : Y ] ∈ P1 so that ϕ([X : Y ]) = [0 : 0], and
so ϕ gives a well defined map of sets from P1 to P1.

(b) The coordinate chart U0 is defined by the condition X 6= 0, so [X : Y ] ∈ ϕ−1(U0)
exactly when ϕ([X : Y ]) = [Xn : Y n] satisfies Xn 6= 0, which is the same condition
as X 6= 0. In other words, [X : Y ] ∈ ϕ−1(U0) if and only if [X : Y ] ∈ U0, so
ϕ−1(U0) = U0.

Similarly, the coordinate chart U1 is defined by the condition that Y 6= 0. Therefore
[X : Y ] ∈ ϕ−1(U1) if and ony if ϕ([X : Y ]) = [Xn : Y n] satisfies the condition
Y n 6= 0, which is the same as asking that Y 6= 0. Therefore, [X : Y ] ∈ ϕ−1(U1) if
and only if [X : Y ] ∈ U1 and so ϕ−1(U1) = U1.
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(c) On U0 the coordinate is z = Y
X
. From the point of U0, the map ϕ is the composite

z ↔ [1 : z]
ϕ
7→ [1n : zn] = [1 : zn] ↔ zn ∈ U0.

That is, on U0, ϕ is given by ϕ(z) = zn.

Similarly, on U1 with coordinate w = X
Y
, ϕ is the composite

w ↔ [w : 1]
ϕ
7→ [wn : 1n] = [wn : 1] ↔ wn ∈ U1,

so that ϕ(w) = wn on U1.

From this description, ϕ is certainly an algebraic map!

(d) In chart U0, the only ramification point is at 0 (corresponding to the point p0 =
[1 : 0] ∈ P1). From the coordinate description z 7→ zn, the ramification degree at
p0 is kp0 = n.

In chart U1, the only ramification point is at 0 (corresponding to the point p1 =
[0 : 1] ∈ P1). From the coordinate description w 7→ wn, the ramification degree at
p0 is kp1 = n.

Note: The map ϕ is a map from P1 to P1 of degree n. As a check on our computations
of the number and ramification degree of the ramification points of ϕ we should see that
the Riemann-Hurwitz formula holds with this data. The computation is:

−2 = 2(0− 1) = 2(g(P1)− 1)
R–H

== n · 2(g(P1)− 1) +
∑

p

(kp − 1)

= n · 2(0− 1) + (n− 1) + (n− 1) = −2n+ (2n− 2) = −2.

So, our computation seems reasonable – the Riemann-Hurwitz formula agrees that hav-
ing two ramification points of degree n is compatible with a degree n cover from P

1 to
P1.

2. Use the Riemann-Hurwitz formula to find the genus of X , the genus of Y , or the
number of ramification points, as required.

(a) π : X −→ P1 is a degree 3 cover, with two ramification points, both with ramifi-
cation index kp = 3. Find the genus of X .

(b) π : X −→ P1 is a degree 3 cover, with three ramification points, all with ramifica-
tion index kp = 3. Find the genus of X .
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(c) π : X −→ Y is a map of degree d, X has genus 1, and there are no ramification
points. Find the genus of Y .

(d) X is of genus g, Y is of genus 1, the map π : X −→ Y is of degree d, and all
ramification points p in X are of index 2. Find the number of ramification points
(the answer turns out, in this case, not to depend on the degree d).

Can you think of a map X −→ P1 satisfying the description in part (a)?

Solution.

(a) By the Riemann-Hurwitz formula,

2(gX − 1) = 3 · 2(0− 1) + (3− 1) + (3− 1) = −6 + 4 = −2,

so that gX = 0.

(b) By the Riemann-Hurwitz formula,

2(gX − 1) = 3 · 2(0− 1) + (3− 1) + (3− 1) + (3− 1) = −6 + 6 = 0,

so that gX = 1.

(c) By the Riemann-Hurwitz formula,

0 = 2(1− 1) = d · 2(gY − 1) + 0 = 2(gY − 1),

so that gY = 1.

(d) Since gX = g, gY = 1, and kp = 2 for all ramification points, the Riemann-Hurwitz
formula gives us

2g − 2 = 2 · (gX − 1) = d · 2(1− 1) +
∑

p

(kp − 1) = 0 + (# ramification points),

so that the number of ramification points is 2g − 2.

The map in (a) is a map π : P1 −→ P1 of degree 3, with two ramification points, each of
ramification index kp = 3. An example of such a map is the map considered in question
1 with n = 3, i.e,. the map ϕ : P1 −→ P1 given by ϕ([X : Y ]) = [X3 : Y 3].
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3. In this question we will complete the proof of the theorem describing the “global”
picture of a non-constant map ϕ : X −→ Y between Riemann surfaces. The key missing
step of the theorem was this : to show that there exists a positive integer d, such that
for any q ∈ Y ,

∑

p∈ϕ−1(q) kp = d. Here the sum is over all p such that ϕ(p) = q, and kp
denotes the ramification index of ϕ at p.

To reduce notation somewhat, let us define the function D : Y −→ N by D(q) =
∑

p∈ϕ−1(q) kp. The goal of this problem is then to show that D is a constant function.

Lemma : For each q ∈ Y there is a small neighbourhood (= open set around) V of q
such that D is constant on V .

First let us see how to prove the result using the lemma.

(a) Use the lemma to show that for each d ∈ N the set

D−1(d) =
{

q ∈ Y D(q) = d
}

is open.

(b) Use (a) to show that for each d ∈ N the set D−1(d) is closed. (Suggestion: this
is the same as showing that the complement is open.)

(c) Use (a)+(b) to show that for each d ∈ N, D−1(d) is either Y or the empty set.

(d) Conclude that there is a unique d ∈ N such that D−1(d) = Y , i.e., conclude that
D is constant on Y .

We now work on proving the lemma.

Fix q ∈ Y , and suppose that ϕ−1(q) = {p1, p2, . . . , pr}. From our local picture we know
that there is an open set V around q, and open sets U1, . . . , Ur around p1,. . . , pr such

that ϕ(Ui) ⊂ V for each i = 1,. . . , r, and that on each Ui the map ϕ looks like zi 7→ z
kpi
i ,

where zi is a local coordinate on Ui, and kpi the ramification index at pi.

Given these Ui and V , for q ∈ V let us split our function D into the sum of two functions.
For q′ ∈ V , by definition D(q′) is the sum over p′ ∈ ϕ−1(q′) of the ramification indices
kp′. We will split the sum into pieces according to whether p′ is in U1 ∪U2 ∪ · · · ∪ Ur or
outside it. Set U = U1 ∪ U2 ∪ · · · ∪ Ur and define :

DU(q
′) =

∑

p′∈ϕ−1(q′)∩U

kp′ and Dc
U

∑

p′∈ϕ−1(q′), p 6∈U

kp′,

so that D(q′) = DU(q
′) +Dc

U(q
′). (The “c” is for ”complement.)

Set d = D(q) = kp1 + kp2 + · · ·+ kpr .
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(e) Show that for q′ sufficiently close to q, DU(q
′) = d.

Claim: For q′ sufficiently close to q, all points of ϕ−1(q′) are in U . (This then shows
that for those points Dc

U(q
′) = 0, and hence using D = DU +Dc

U and (e) that D(q′) = d

for all points q′ sufficiently close to q, thus proving the lemma.)

The negation of this claim is that there is a sequence of points q′1, q
′
2, . . . , converging to

q, and for each q′i a point p′i ∈ ϕ−1(q′i) which is outside of U . Since X is compact, such
a sequence would have a limit point p ∈ X .

(f) Explain why we would have ϕ(p) = q.

(g) Explain why this means that p ∈ {p1, p2, . . . , pr}.

(h) Explain why this means that some p′i (in fact, infinitely many p′i) would have to
be in U .

(i) Explain why this is a contradiction, thus establishing the claim, the lemma, and
finally the theorem from class.

Solution.

(a) By definition a set S is open if for each points q ∈ S, there is an open set V ⊆ S

which contains q.

Fix d ∈ N and set S = D−1(d). If q ∈ S then D(q) = d (by definition of S). By
the lemma, there is an open set V containing q so that D is constant on V , i.e.,
D(q′) = d for all q′ ∈ V . Thus V ⊆ S, and so S is open.

(b) One way to prove that a set S is open is to prove that its complement is closed.
Fix d ∈ N and set S = D−1(d). Let Sc = Y \S be the complement of S in Y . From
the definition, a point q ∈ Sc if and only if q 6∈ S, i.e., if and only if D(q) 6= d.
From this we see that

Sc =
⋃

e∈N,e 6=d

D−1(e).

By part (a) each of the sets D−1(e) is open, and an arbitrary union of open sets
is open, therefore Sc is open, and so S is closed.

(c) By (a) and (b), for each d ∈ N the set D−1(d) is both open and closed in Y . For a
connected topological space (like Y ), the only sets which are both open and closed
are ∅ and Y . Thus, for each d ∈ N, D−1(d) is either empty or all of Y .

(d) Let q be any point of Y , and d = D(q). Then q ∈ D−1(d), so D−1(d) 6= ∅. By
part (c) this means that D−1(d) = Y , i.e., that for all q′ ∈ Y , D(q′) = d, so that
D is constant on Y .
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(e) On each Ui we know that ϕ looks like the map zi 7→ z
kpi
i . As long as q′ is close

enough to q so that q′ ∈ ϕ(Ui), then ϕ−1(q′)∩Ui is the solutions to zk1i = w, where
w is the number corresponding to q′ in the coordinate system on V .

Thus, once q′ is close enough to q, ϕ−1(q′) ∩ Ui contains ki points, since zki = w

has exactly ki solutions in C when w 6= 0 (i.e, when q′ 6= q). Here is the usual
picture of the map z → zk illustrating this :

p q

z 7→ zk
q′p

′

1

p
′

2

p
′

3

p
′

4

p
′

5

Thus, once q′ is close enough to q to be inside all ϕ(Ui) (i.e, q′ ∈
⋂r

i=1 ϕ(Ui)),
and when q 6= q′, then ϕ−1(q′) have exactly kpi points in Ui, and so a total of
∑r

i=1 kpi = d points in U .

However, each of those points is unramified, i.e., their ramification index is 1. (We
saw this in class by a local description of what the “k” in the ramification index
means.) Thus DU(q

′), which is the some of the ramification indices of the points
of ϕ−1(q′)∩U is the sum of the number 1 over the d points in ϕ−1(q′)∩U , and so
DU(q

′) = d. (If q′ = q then we already know that the points {p1, . . . , pr} of ϕ−1(q)
all lie in U , and that their ramfication indices sum to d — that is how we defined
d!)

Therefore, for all q′ sufficiently close to q (including q′ = q) DU(q
′) = d.

(f) To make the notation easier, let us assume that we have already passed to a
subsequence of the p′i which converges to p, i.e., that limi→∞ p′i = p.

We know that the q′i converge to q, and that ϕ(p′i) = q′i for each i. Since ϕ is a
continuous map we therefore have

ϕ(p) = ϕ
(

lim
i→∞

p′i

)

= lim
i→∞

ϕ(p′i) = lim
i→∞

q′i = q.

(g) Since ϕ(p) = q, p ∈ ϕ−1(q) = {p1, p2, . . . , pr}.

(h) By (g), p = pj for some j, 1 6 j 6 r, and by definition Uj is an open set around
pj . Since the sequence {p′i} is converging to p = pj, then there is some N so that
for all i > N , p′i ∈ Uj .

(i) The p′i were chosen so that no p′i lies in any Uj . The conclusion above is therefore
a contradiction, and so there is no such sequence q′i converging to q, establishing
the claim. (And therefore the lemma, and then the theorem!)
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