1. Draw sketches of the following varieties in \mathbb{A}^{3} (with coordinates x, y, and z).
(a) $z^{2}-x^{2}-y^{2}=0$
(b) $y-x^{2}=0$.
(c) $\left(y-x^{2}\right)(z-1)=0$
(d) $x^{2}+y^{2}-1=0$.
(e) $x^{2}+y^{2}-1=0, z^{2}-1=0$.
(f) $x^{2}+y^{2}-1=0, z^{2}-x^{2}-y^{2}=0$.
(Of course, you only have to draw the real points, i.e, solutions in \mathbb{R}^{3}.)

2. (Computing in quotient Rings)

(a) Show that $\frac{k[x, y, z]}{\left\langle x^{2}-y, x^{3}-z\right\rangle} \cong k[x]$.

Recall that a ring A is called a domain if whenever $a_{1}, a_{2} \in A$ are not zero, then $a_{1} \cdot a_{2} \neq 0$.
(b) Show that $A=\frac{k[x, y, z]}{\left\langle\left(y-x^{2}\right)(z-1)\right\rangle}$ is not a domain.
(c) Is $B=\frac{k[x, y, z]}{\left.\left\langle x^{2}+y^{2}-1, z^{2}-x^{2}-y^{2}\right)\right\rangle}$ a domain?

Notes: (1) To show that a ring is not a domain, you need to find two elements f_{1} and f_{2} of A such that $f_{1} \neq 0, f_{2} \neq 0$, but $f_{1} f_{2}=0$. Since our rings are rings of functions on algebraic varieties, one way to show that a function is not zero is to evaluate it at a point of the corresponding variety. (2) You have already drawn pictures of the geometric shapes corresponding to the rings in $2(b, c)$.

3. (MORPHISMS)

(a) Let $\varphi: \mathbb{A}^{1} \longrightarrow \mathbb{A}^{3}$ be given by $\varphi(t)=\left(t, t^{2}, t^{3}\right)$. Show that the image of φ is contained in the variety defined by the equations $y-x^{2}=0, z-x^{3}=0$.
(b) Describe the ring homorphism from $k[x, y, z] /\left\langle y-x^{2}, z-x^{3}\right\rangle$ to $k[t]$ given by φ^{*}. (In particular, where do \bar{x}, \bar{y}, and \bar{z} get sent?) Is φ^{*} surjective? Injective?
(c) Let X be $\left\{(u, v, w) \mid u^{2}+v^{2}+w^{2}=1\right\} \subset \mathbb{A}^{3}$, and Y the affine variety $\{(x, y, z, w) \mid x y-$ $z w=0\} \subset \mathbb{A}^{4}$. Does $\varphi=(1+u, 1-u, v+i w, v-i w)$ induce a map from X to Y ? (Here i is the square root of -1 .) If so analyze φ^{*} as in part (b).

