- 1. Draw sketches of the following varieties in \mathbb{A}^3 (with coordinates x, y, and z).
 - (a) $z^2 x^2 y^2 = 0$
 - (b) $y x^2 = 0$.
 - (c) $(y x^2)(z 1) = 0$
 - (d) $x^2 + y^2 1 = 0$.
 - (e) $x^2 + y^2 1 = 0, z^2 1 = 0.$
 - (f) $x^2 + y^2 1 = 0, z^2 x^2 y^2 = 0.$

(Of course, you only have to draw the real points, i.e., solutions in \mathbb{R}^3 .)

- 2. (Computing in quotient rings)
 - (a) Show that $\frac{k[x,y,z]}{\langle x^2 y, x^3 z \rangle} \cong k[x].$

Recall that a ring A is called a *domain* if whenever $a_1, a_2 \in A$ are not zero, then $a_1 \cdot a_2 \neq 0$.

- (b) Show that $A = \frac{k[x,y,z]}{\langle (y-x^2)(z-1) \rangle}$ is not a domain.
- (c) Is $B = \frac{k[x,y,z]}{\langle x^2+y^2-1,z^2-x^2-y^2 \rangle \rangle}$ a domain?

NOTES: (1) To show that a ring is *not* a domain, you need to find two elements f_1 and f_2 of A such that $f_1 \neq 0$, $f_2 \neq 0$, but $f_1f_2 = 0$. Since our rings are rings of functions on algebraic varieties, one way to show that a function is not zero is to evaluate it at a point of the corresponding variety. (2) You have already drawn pictures of the geometric shapes corresponding to the rings in 2(b,c).

- 3. (Morphisms)
 - (a) Let $\varphi: \mathbb{A}^1 \longrightarrow \mathbb{A}^3$ be given by $\varphi(t) = (t, t^2, t^3)$. Show that the image of φ is contained in the variety defined by the equations $y x^2 = 0$, $z x^3 = 0$.
 - (b) Describe the ring homorphism from $k[x, y, z]/\langle y x^2, z x^3 \rangle$ to k[t] given by φ^* . (In particular, where do $\overline{x}, \overline{y}$, and \overline{z} get sent?) Is φ^* surjective? Injective?
 - (c) Let X be $\{(u, v, w) \mid u^2 + v^2 + w^2 = 1\} \subset \mathbb{A}^3$, and Y the affine variety $\{(x, y, z, w) \mid xy zw = 0\} \subset \mathbb{A}^4$. Does $\varphi = (1 + u, 1 u, v + iw, v iw)$ induce a map from X to Y? (Here *i* is the square root of -1.) If so analyze φ^* as in part (*b*).