DUE DATE: FEB. 5, 2019

- 1. In this problem we will prove that $\sqrt{\langle x^2(x+1), y \rangle} = \langle x(x+1), y \rangle$.
 - (a) Explain why we have the containment $\langle x(x+1), y \rangle \subseteq \sqrt{\langle x^2(x+1), y \rangle}$.

From part (a), in order to show equality it is enough to show the reverse containment. Let f be any element of $\sqrt{\langle x^2(x+1), y \rangle}$.

(b) Explain why we know that there is an $n \ge 1$ and polynomials $h_1, h_2 \in k[x, y]$ such that

(b1)
$$f^n = x^2(x+1)h_1 + yh_2$$

(c) Let $\psi \colon k[x, y] \longrightarrow k[x]$ be the ring homomorphism given by setting y = 0, and set $\overline{f} = \psi(f)$. Looking at the image of (b1) under ψ , and using unique factorization in the ring k[x], explain why we know that there is a polynomial $h_3 \in k[x]$ so that

$$\overline{f} = x(x+1)h_3.$$

- (d) Using part (c), explain why we know that there is a polynomial $h_4 \in k[x, y]$ so that $f x(x+1)h_4$ is in the kernel of ψ .
- (e) What is the kernel of ψ ?
- (f) Complete the problem by showing that $f \in \langle x(x+1), y \rangle$.
- 2. In this problem we will explore other questions about the radical.
 - (a) Let A be any ring, $I \subset A$ and ideal, and $f \in I$. Suppose that $f = f_1^{e_1} f_2^{e_2} \cdots f_r^{e_r}$ for some $f_1, \ldots, f_r \in A$, and some $e_1, \ldots, e_r \geq 1$. Show that $f_1 f_2 \cdots f_r \in \sqrt{I}$.
 - (b) Let $I \subset \mathbb{Z}$ be an ideal. We know that every ideal in \mathbb{Z} is generated by a single element, so $I = \langle n \rangle$ for some $n \in \mathbb{Z}$. Assume that $n \neq 0$ (i.e, $I \neq (0)$) and let $n = p_1^{e_1} \cdots p_r^{e_r}$ be the prime factorization of n. Show that $\sqrt{I} = \langle p_1 p_2 \cdots p_r \rangle$.
 - (c) Let J_1 and J_2 be ideals. Show that $J_1 \cap J_2$ is also an ideal.
 - (d) Let I_1 and I_2 be radical ideals. Show that $I_1 \cap I_2$ is also a radical ideal.
- [Math 813 only] (e) For any $f \in k[x_1, \ldots, x_n]$ let $f = f_1^{e_1} \cdots f_r^{e_r}$ be its factorization into irreducibles, and define $\operatorname{Rad}(f)$ by the formula $\operatorname{Rad}(f) = f_1 f_2 \cdots f_r$. Show that if I is a principal ideal, $I = \langle f \rangle$, then $\sqrt{I} = \langle \operatorname{Rad}(f) \rangle$.
- [Math 813 only] (f) Give an example of an ideal $I = \langle g_1, g_2 \rangle \subset k[x, y]$ such that $\sqrt{I} \neq \langle \text{Rad}(g_1), \text{Rad}(g_2) \rangle$. (ONE POSSIBILITY: An ideal with this property has already appeared in class, but you can make up your own.)

3. Let $\mathfrak{m} \subset \mathbb{C}[x, y, z]$ be the maximal ideal $\mathfrak{m} = \langle x - 3, y - 4, z - 5 \rangle$. Which of the following ideals are contained in \mathfrak{m} ? And how do you know?

- (a) $I_1 = \langle x^2 + y^2 z^2 \rangle$.
- (b) $I_2 = \langle z^2 2xy \rangle.$
- (c) $I_3 = \langle y^2 x^2 x y, xyz 3z^2 + 5x \rangle.$
- (d) $I_4 = \langle x^2 + y^2 + z^2 xy xz yz, 7yz + 4xz 8z^2 \rangle.$
- [Math 813 only] 4. In order that maximal ideals are in one-to-one correspondence with points, we needed the condition that k be algebraically closed. In this problem we will see in a simple example what happens if k is not algebraically closed: Maximal ideals are in one-to-one correspondence with $\operatorname{Gal}(\overline{k}/k)$ orbits of points.
- [Math 813 only] (a) Let $G = \text{Gal}(\mathbb{C}/\mathbb{R})$ be the Galois group of $\mathbb{C} = \overline{\mathbb{R}}$ over \mathbb{R} . Classify the orbits of G on \mathbb{C} .
- [Math 813 only] (b) Classify the maximal ideals of $\mathbb{R}[x]$.
- [Math 813 only] (c) Show that the maximal ideals of $\mathbb{R}[x]$ are in one-to-one correspondence with the orbits of $\operatorname{Gal}(\mathbb{C}/\mathbb{R})$ on \mathbb{C} .