DUE DATE: FEB. 12, 2019

1. In this problem we will use parts of the algebra-geometry correspondence that we have built up to prove the following result in commutative algebra:

Let $I \subseteq k[x_1, \ldots, x_n]$ be an ideal, and \overline{I} the intersection of all the maximal ideals of $k[x_1, \ldots, x_n]$ containing I. Then $\overline{I} = \sqrt{I}$.

- (a) Show that a maximal ideal is a radical ideal. (SUGGESTION: It may help to rewrite the condition that $I \subset A$ is a radical ideal in terms of the quotient ring A/I.)
- (b) Show that an arbitrary intersection of maximal ideals is a radical ideal. (You can use results from the previous homework.)

Now assume that $J \subseteq k[x_1, \ldots, x_n]$ is a radical ideal, and let \overline{I} be the intersection of all maximal ideals containing J. I.e., $\overline{I} = \bigcap_{I \subseteq \mathfrak{m}} \mathfrak{m}$, where each \mathfrak{m} is a maximal ideal.

- (c) Show that every maximal ideal containing J also contains \overline{I} .
- (d) Show that $J \subseteq \overline{I}$.
- (e) Show that every maximal ideal containing \overline{I} also contains J.

Next, using parts of the algebra-geometry dictionary we have seen in class:

- (f) Explain why $V(J) = V(\overline{I})$. (SUGGESTION: what do (c) and (e) say about the points of V(J) and $V(\overline{I})$?)
- (g) Explain why we then know that $J = \overline{I}$.

Finally, let $I \subset k[x_1, \ldots, x_n]$ be any ideal, and set $J = \sqrt{I}$.

- (h) Show that any maximal ideal containing I also contains J.
- (i) Show that any maximal ideal containing J also contains I.
- (j) Prove the commutative algebra statement above.

2. In this question we will explore the construction of sum of ideals. Given a ring A, and a (possibly infinite) collection of ideals $I_{\alpha} \subset A$, $\alpha \in S$ recall that we have defined $\sum_{\alpha \in S} I_{\alpha}$ as all possible finite sums of elements in the I_{α} , i.e.,

$$\sum_{\alpha \in S} I_{\alpha} = \left\{ f_{\alpha_1} + f_{\alpha_2} + \dots + f_{\alpha_k} \mid f_{\alpha_j} \in I_{\alpha_j} \right\}.$$

- (a) Show that $\sum_{\alpha \in S} I_{\alpha}$ is an ideal.
- (b) Suppose that A is a Noetherian ring. Show that there is a finite subset $S' \subseteq S$ such that $\sum_{\alpha \in S'} I_{\alpha} = \sum_{\alpha \in S} I_{\alpha}$.
- (c) Suppose that X is an affine variety with ring of functions R[X]. Let Z_{α} , $\alpha \in S$ be a collection of closed subsets of X corresponding to ideals J_{α} , $\alpha \in S$. Show that

$$V(\sum_{\alpha \in S} J_{\alpha}) = \bigcap_{\alpha \in S} Z_{\alpha}$$

as claimed in class.

3. The elementary symmetric polynomials in x_1 , x_2 , and x_3 are the polynomials $e_1 = x_1 + x_2 + x_3$, $e_2 = x_1x_2 + x_2x_3 + x_1x_3$, and $e_3 = x_1x_2x_3$. It is a useful result in algebra that these polynomials are algebraically independent over any field. This means that for any polynomial $f(y_1, y_2, y_3) \in k[y_1, y_2, y_3]$ the polynomial $f(e_1, e_2, e_3) \in k[x_1, x_2, x_3]$ is zero only if f was zero to start with.

In contrast, the functions $g_1 = x_1^2$, $g_2 = x_1x_2$, and $g_3 = x_2^2$ are not algebraically independent. Letting $f(y_1, y_2, y_3) = y_1y_3 - y_2^2$, we have $f \neq 0$ but $f(g_1, g_2, g_3) = 0$.

In this problem we will use combination of geometric and algebraic arguments (and thus the algebra \leftrightarrow geometry dictionary) to show that e_1 , e_2 , and e_3 are algebraically independent.

- (a) Suppose that $\varphi \colon X \longrightarrow Y$ is a morphism of affine varieties, and that φ is surjective. Show that the homomorphism $\varphi^* \colon R[Y] \longrightarrow R[X]$ is injective.
- (b) Let $X = \mathbb{A}^3$ with ring of functions $k[x_1, x_2, x_3]$, and let Y also be \mathbb{A}^3 with ring of functions $k[y_1, y_2, y_3]$. Let $\varphi \colon X \longrightarrow Y$ be the map

$$\varphi(x_1, x_2, x_3) = \left(x_1 + x_2 + x_3, \, x_1 x_2 + x_2 x_3 + x_1 x_3, \, x_1 x_2 x_3\right).$$

So, for instance, $\varphi(3, 1, 5) = (3 + 1 + 5, 3 \cdot 1 + 1 \cdot 5 + 3 \cdot 5, 3 \cdot 1 \cdot 5) = (9, 23, 15).$

Describe the pullback map φ^* . In particular, what are $\varphi^*(y_1)$, $\varphi^*(y_2)$, and $\varphi^*(y_3)$?

- (c) Expand the product $(t \alpha)(t \beta)(t \gamma)$.
- (d) For any $(a, b, c) \in Y$, consider the polynomial $t^3 at^2 + bt c$ and let α , β , and γ be the roots. Show that $\varphi(\alpha, \beta, \gamma) = (a, b, c)$.
- (e) Prove that e_1 , e_2 , and e_3 are algebraically independent.