1. In this problem we will use parts of the algebra-geometry correspondence that we have built up to prove the following result in commutative algebra:

Let $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal, and \bar{I} the intersection of all the maximal ideals of $k\left[x_{1}, \ldots, x_{n}\right]$ containing I. Then $\bar{I}=\sqrt{I}$.
(a) Show that a maximal ideal is a radical ideal. (Suggestion: It may help to rewrite the condition that $I \subset A$ is a radical ideal in terms of the quotient ring A / I.)
(b) Show that an arbitrary intersection of maximal ideals is a radical ideal. (You can use results from the previous homework.)
Now assume that $J \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ is a radical ideal, and let \bar{I} be the intersection of all maximal ideals containing J. I.e., $\bar{I}=\bigcap_{J \subseteq \mathfrak{m}} \mathfrak{m}$, where each \mathfrak{m} is a maximal ideal.
(c) Show that every maximal ideal containing J also contains \bar{I}.
(d) Show that $J \subseteq \bar{I}$.
(e) Show that every maximal ideal containing \bar{I} also contains J.

Next, using parts of the algebra-geometry dictionary we have seen in class:
(f) Explain why $V(J)=V(\bar{I})$. (Suggestion: what do (c) and (e) say about the points of $V(J)$ and $V(\bar{I})$?)
(g) Explain why we then know that $J=\bar{I}$.

Finally, let $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ be any ideal, and set $J=\sqrt{I}$.
(h) Show that any maximal ideal containing I also contains J.
(i) Show that any maximal ideal containing J also contains I.
(j) Prove the commutative algebra statement above.
2. In this question we will explore the construction of sum of ideals. Given a ring A, and a (possibly infinite) collection of ideals $I_{\alpha} \subset A, \alpha \in S$ recall that we have defined $\sum_{\alpha \in S} I_{\alpha}$ as all possible finite sums of elements in the I_{α}, i.e.,

$$
\sum_{\alpha \in S} I_{\alpha}=\left\{f_{\alpha_{1}}+f_{\alpha_{2}}+\cdots+f_{\alpha_{k}} \mid f_{\alpha_{j}} \in I_{\alpha_{j}}\right\}
$$

(a) Show that $\sum_{\alpha \in S} I_{\alpha}$ is an ideal.
(b) Suppose that A is a Noetherian ring. Show that there is a finite subset $S^{\prime} \subseteq S$ such that $\sum_{\alpha \in S^{\prime}} I_{\alpha}=\sum_{\alpha \in S} I_{\alpha}$.
(c) Suppose that X is an affine variety with ring of functions $R[X]$. Let $Z_{\alpha}, \alpha \in S$ be a collection of closed subsets of X corresponding to ideals $J_{\alpha}, \alpha \in S$. Show that

$$
V\left(\sum_{\alpha \in S} J_{\alpha}\right)=\bigcap_{\alpha \in S} Z_{\alpha}
$$

as claimed in class.
3. The elementary symmetric polynomials in x_{1}, x_{2}, and x_{3} are the polynomials $e_{1}=$ $x_{1}+x_{2}+x_{3}, e_{2}=x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}$, and $e_{3}=x_{1} x_{2} x_{3}$. It is a useful result in algebra that these polynomials are algebraically independent over any field. This means that for any polynomial $f\left(y_{1}, y_{2}, y_{3}\right) \in k\left[y_{1}, y_{2}, y_{3}\right]$ the polynomial $f\left(e_{1}, e_{2}, e_{3}\right) \in k\left[x_{1}, x_{2}, x_{3}\right]$ is zero only if f was zero to start with.
In contrast, the functions $g_{1}=x_{1}^{2}, g_{2}=x_{1} x_{2}$, and $g_{3}=x_{2}^{2}$ are not algebraically independent. Letting $f\left(y_{1}, y_{2}, y_{3}\right)=y_{1} y_{3}-y_{2}^{2}$, we have $f \neq 0$ but $f\left(g_{1}, g_{2}, g_{3}\right)=0$.
In this problem we will use combination of geometric and algebraic arguments (and thus the algebra \leftrightarrow geometry dictionary) to show that e_{1}, e_{2}, and e_{3} are algebraically independent.
(a) Suppose that $\varphi: X \longrightarrow Y$ is a morphism of affine varieties, and that φ is surjective. Show that the homomorphism $\varphi^{*}: R[Y] \longrightarrow R[X]$ is injective.
(b) Let $X=\mathbb{A}^{3}$ with ring of functions $k\left[x_{1}, x_{2}, x_{3}\right]$, and let Y also be \mathbb{A}^{3} with ring of functions $k\left[y_{1}, y_{2}, y_{3}\right]$. Let $\varphi: X \longrightarrow Y$ be the map

$$
\varphi\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}+x_{3}, x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}, x_{1} x_{2} x_{3}\right)
$$

So, for instance, $\varphi(3,1,5)=(3+1+5,3 \cdot 1+1 \cdot 5+3 \cdot 5,3 \cdot 1 \cdot 5)=(9,23,15)$.
Describe the pullback map φ^{*}. In particular, what are $\varphi^{*}\left(y_{1}\right), \varphi^{*}\left(y_{2}\right)$, and $\varphi^{*}\left(y_{3}\right)$?
(c) Expand the product $(t-\alpha)(t-\beta)(t-\gamma)$.
(d) For any $(a, b, c) \in Y$, consider the polynomial $t^{3}-a t^{2}+b t-c$ and let α, β, and γ be the roots. Show that $\varphi(\alpha, \beta, \gamma)=(a, b, c)$.
(e) Prove that e_{1}, e_{2}, and e_{3} are algebraically independent.

