These questions will use the "Riemann-Hurwitz" formula, which will be proved in class on Thursday, March 28th. As well, in question 3 you will complete the proof of the 'global' picture of a map between Riemann surfaces, the statement of which which will also appear in Thursday's class.

1. Here is an extremely simple example of a map between Riemann surfaces (aka "algebraic curves"). Fix an integer $n \geqslant 1$ and define a $\operatorname{map} \varphi: \mathbb{P}^{1} \longrightarrow \mathbb{P}^{1}$ by the formula $[X: Y] \longrightarrow\left[X^{n}: Y^{n}\right]$.
(a) Check that φ is well-defined, that is (1) φ doesn't depend on the choice of representative we use for $[X: Y]$, and (2) no point of \mathbb{P}^{1} is sent to $[0: 0]$ by these instructions.

In order to see that this is a map of Riemann surfaces, let us look in coordinate charts.
(b) Check that $\varphi^{-1}\left(U_{0}\right)=U_{0}$ and that $\varphi^{-1}\left(U_{1}\right)=U_{1}$, i.e, that φ maps the standard coordinate charts to the standard coordinate charts.
(c) In each of U_{0} and U_{1} write out (in the coordinates of each chart) what φ is doing. Is φ an algebraic map?
(d) Find all the ramification points of φ and their ramification degrees.
2. Use the Riemann-Hurwitz formula to find the genus of X, the genus of Y, or the number of ramification points, as required.
(a) $\pi: X \longrightarrow \mathbb{P}^{1}$ is a degree 3 cover, with two ramification points, both with ramification index $k_{p}=3$. Find the genus of X.
(b) $\pi: X \longrightarrow \mathbb{P}^{1}$ is a degree 3 cover, with three ramification points, all with ramification index $k_{p}=3$. Find the genus of X.
(c) $\pi: X \longrightarrow Y$ is a map of degree d, X has genus 1 , and there are no ramification points. Find the genus of Y.
(d) X is of genus g, Y is of genus 1 , the map $\pi: X \longrightarrow Y$ is of degree d, and all ramification points p in X are of index 2. Find the number of ramification points (the answer turns out, in this case, not to depend on the degree d).

Can you think of a map $X \longrightarrow \mathbb{P}^{1}$ satisfying the description in part (a)?
3. In this question we will complete the proof of the theorem describing the "global" picture of a non-constant map $\varphi: X \longrightarrow Y$ between Riemann surfaces. The key missing step of the theorem was this: to show that there exists a positive integer d, such that for any $q \in Y, \sum_{p \in \varphi^{-1}(q)} k_{p}=d$. Here the sum is over all p such that $\varphi(p)=q$, and k_{p} denotes the ramification index of φ at p.
To reduce notation somewhat, let us define the function $D: Y \longrightarrow \mathbb{N}$ by $D(q)=$ $\sum_{p \in \varphi^{-1}(q)} k_{p}$. The goal of this problem is then to show that D is a constant function.
Lemma : For each $q \in Y$ there is a small neighbourhood ($=$ open set around) V of q such that D is constant on V.
First let us see how to prove the result using the lemma.
(a) Use the lemma to show that for each $d \in \mathbb{N}$ the set

$$
D^{-1}(d)=\{q \in Y \mid D(q)=d\}
$$

is open.
(b) Use (a) to show that for each $d \in \mathbb{N}$ the set $D^{-1}(d)$ is closed. (Suggestion: this is the same as showing that the complement is open.)
(c) Use (a) $+(\mathrm{b})$ to show that for each $d \in \mathbb{N}, D^{-1}(d)$ is either Y or the empty set.
(d) Conclude that there is a unique $d \in \mathbb{N}$ such that $D^{-1}(d)=Y$, i.e., conclude that D is constant on Y.

We now work on proving the lemma.
Fix $q \in Y$, and suppose that $\varphi^{-1}(q)=\left\{p_{1}, p_{2}, \ldots, p_{r}\right\}$. From our local picture we know that there is an open set V around q, and open sets U_{1}, \ldots, U_{r} around p_{1}, \ldots, p_{r} such that $\varphi\left(U_{i}\right) \subset V$ for each $i=1, \ldots, r$, and that on each U_{i} the map φ looks like $z_{i} \mapsto z_{i}^{k_{p_{i}}}$, where z_{i} is a local coordinate on U_{i}, and $k_{p_{i}}$ the ramification index at p_{i}.
Given these U_{i} and V, for $q \in V$ let us split our function D into the sum of two functions. For $q^{\prime} \in V$, by definition $D\left(q^{\prime}\right)$ is the sum over $p^{\prime} \in \varphi^{-1}\left(q^{\prime}\right)$ of the ramification indices $k_{p^{\prime}}$. We will split the sum into pieces according to whether p^{\prime} is in $U_{1} \cup U_{2} \cup \cdots \cup U_{r}$ or outside it. Set $U=U_{1} \cup U_{2} \cup \cdots \cup U_{r}$ and define :

$$
D_{U}\left(q^{\prime}\right)=\sum_{p^{\prime} \in \varphi^{-1}\left(q^{\prime}\right) \cap U} k_{p^{\prime}} \text { and } D_{U}^{c} \sum_{p^{\prime} \in \varphi^{-1}\left(q^{\prime}\right), p \notin U} k_{p^{\prime}}
$$

so that $D\left(q^{\prime}\right)=D_{U}\left(q^{\prime}\right)+D_{U}^{c}\left(q^{\prime}\right)$. (The " c " is for "complement.)
Set $d=D(q)=k_{p_{1}}+k_{p_{2}}+\cdots+k_{p_{r}}$.
(e) Show that for q^{\prime} sufficiently close to $q, D_{U}\left(q^{\prime}\right)=d$.

Claim: For q^{\prime} sufficiently close to q, all points of $\varphi^{-1}\left(q^{\prime}\right)$ are in U. (This then shows that for those points $D_{U}^{c}\left(q^{\prime}\right)=0$, and hence using $D=D_{U}+D_{U}^{c}$ and (e) that $D\left(q^{\prime}\right)=d$ for all points q^{\prime} sufficiently close to q, thus proving the lemma.)
The negation of this claim is that there is a sequence of points $q_{1}^{\prime}, q_{2}^{\prime}, \ldots$, converging to q, and for each q_{i}^{\prime} a point $p_{i}^{\prime} \in \varphi^{-1}\left(q_{i}^{\prime}\right)$ which is outside of U. Since X is compact, such a sequence would have a limit point $\bar{p} \in X$.
(f) Explain why we would have $\varphi(\bar{p})=q$.
(g) Explain why this means that $\bar{p} \in\left\{p_{1}, p_{2}, \ldots, p_{r}\right\}$.
(h) Explain why this means that some p_{i}^{\prime} (in fact, infinitely many p_{i}^{\prime}) would have to be in U.
(i) Explain why this is a contradiction, thus establishing the claim, the lemma, and finally the theorem from class.

