1. For the following relatively prime m_1 and m_2 , find the reconstruction coefficients to reconstruct a number $x \mod m_1 m_2$ from the numbers $x_1 \mod m_1$ and $x_2 \mod m_2$ (i.e., the coefficients c_1 and c_2 so that $x \equiv c_1 x_1 + c_2 x_2 \pmod{m_1 m_2}$).

- (a) $m_1 = 8, m_2 = 21.$
- (b) $m_1 = 7, m_2 = 19.$

2. Suppose that S is a set and that \sim is an equivalence relation on S. For any a in S, define

$$S_a = \left\{ b \in S \mid b \sim a \right\}.$$

- (a) Prove that the union $\bigcup_{a \in S} S_a = S$.
- (b) Prove that for any two elements a_1 , a_2 of S, either $S_{a_1} \cap S_{a_2} = \emptyset$ or $S_{a_1} = S_{a_2}$.
- (c) Conclude that the elements of the set $P = \{S_a\}_{a \in S}$ form a partition of S.

REMINDER: In a set, duplicates don't count, e.g., $\{1, 2, 1, 3, 2\} = \{1, 2, 3\}$, and so in particular if $S_{a_1} = S_{a_2}$ then $\{S_{a_1}, S_{a_2}\} = \{S_{a_1}\}$.

3. To practice the idea that we can work with any field in the same way that we work with \mathbb{Q} , \mathbb{R} , or \mathbb{C} , let's do some linear algebra in $\mathbb{Z}/p\mathbb{Z}$ where p is a prime.

(a)	Solve the system of equations	$\begin{bmatrix} \bar{3}\\ \bar{2} \end{bmatrix}$	$ \frac{\bar{4}}{\bar{1}} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \bar{1} \\ \bar{4} \end{bmatrix} $ in $\mathbb{Z}/7\mathbb{Z}$.
(b)	Solve the system of equations	$\begin{bmatrix} \overline{11} \\ \overline{9} \end{bmatrix}$	$\frac{\bar{3}}{\bar{2}} \left[\begin{array}{c} x\\ y \end{array} \right] = \left[\begin{array}{c} \bar{5}\\ \bar{13} \end{array} \right] \text{ in } \mathbb{Z}/19\mathbb{Z}.$
(c)	Solve the system of equations	$\begin{bmatrix} \overline{87} \\ \overline{9} \end{bmatrix}$	$\frac{\overline{60}}{\overline{78}} \left[\begin{array}{c} x\\ y \end{array} \right] = \left[\begin{array}{c} \overline{43}\\ \overline{32} \end{array} \right] \text{ in } \mathbb{Z}/133\mathbb{Z}.$

HINTS: (i) 133 is not a prime. (ii) Perhaps you don't need to solve the equations in (c) from scratch.

4. The purpose of this question is to prove that if p is a prime number and $p \equiv 3 \pmod{4}$ then the only solution to $x^2 + y^2 = \overline{0}$ in $\mathbb{Z}/p\mathbb{Z}$ is $x = \overline{0}, y = \overline{0}$.

Suppose that p is a prime, $p \ge 3$, and that z is a solution to $z^2 + \overline{1} = \overline{0}$ in $\mathbb{Z}/p\mathbb{Z}$ (i.e., to $z^2 = -\overline{1}$.)

- (a) Explain why $z^k \cdot z^{4-k} = \bar{1}$ for k = 0, 1, 2, 3.
- (b) Let S be the set of nonzero elements in $\mathbb{Z}/p\mathbb{Z}$. How many elements does S have?
- (c) Show that the relation

$$a \sim b$$
 if and only if $\frac{a}{b} = z^k$ for some k.

is an equivalence relation on the set S.

- (d) Since \sim is an equivalence relation it partitions S into disjoint subsets. Show that each subset must have exactly 4 elements.
- (e) Combining (b) and (d) show that if $p \equiv 3 \pmod{4}$ then the equation $z^2 + \overline{1} = \overline{0}$ has no solution in $\mathbb{Z}/p\mathbb{Z}$.
- (f) Suppose that we have a solution to $x^2 + y^2 = \overline{0}$ in $\mathbb{Z}/p\mathbb{Z}$ and that $y \neq \overline{0}$. Explain why z = x/y would be a solution to $z^2 + \overline{1} = \overline{0}$.
- (g) Conclude that if p is a prime number and $p \equiv 3 \pmod{4}$ then only solution to $x^2 + y^2 = \overline{0}$ in $\mathbb{Z}/p\mathbb{Z}$ is $x = \overline{0}, y = \overline{0}$.