1. For the following relatively prime m_{1} and m_{2}, find the reconstruction coefficients to reconstruct a number $x \bmod m_{1} m_{2}$ from the numbers $x_{1} \bmod m_{1}$ and $x_{2} \bmod m_{2}$ (i.e., the coefficients c_{1} and c_{2} so that $\left.x \equiv c_{1} x_{1}+c_{2} x_{2}\left(\bmod m_{1} m_{2}\right)\right)$.
(a) $m_{1}=8, m_{2}=21$.
(b) $m_{1}=7, m_{2}=19$.
2. Suppose that S is a set and that \sim is an equivalence relation on S. For any a in S, define

$$
S_{a}=\{b \in S \mid b \sim a\}
$$

(a) Prove that the union $\bigcup_{a \in S} S_{a}=S$.
(b) Prove that for any two elements a_{1}, a_{2} of S, either $S_{a_{1}} \cap S_{a_{2}}=\emptyset$ or $S_{a_{1}}=S_{a_{2}}$.
(c) Conclude that the elements of the set $P=\left\{S_{a}\right\}_{a \in S}$ form a partition of S.

Reminder: In a set, duplicates don't count, e.g., $\{1,2,1,3,2\}=\{1,2,3\}$, and so in particular if $S_{a_{1}}=S_{a_{2}}$ then $\left\{S_{a_{1}}, S_{a_{2}}\right\}=\left\{S_{a_{1}}\right\}$.
3. To practice the idea that we can work with any field in the same way that we work with \mathbb{Q}, \mathbb{R}, or \mathbb{C}, let's do some linear algebra in $\mathbb{Z} / p \mathbb{Z}$ where p is a prime.
(a) Solve the system of equations $\left[\begin{array}{ll}\overline{3} & \overline{4} \\ \overline{2} & \overline{1}\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}\overline{1} \\ \overline{4}\end{array}\right]$ in $\mathbb{Z} / 7 \mathbb{Z}$.
(b) Solve the system of equations $\left[\begin{array}{rr}\overline{11} & \overline{3} \\ \overline{9} & \overline{2}\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}\overline{5} \\ \overline{13}\end{array}\right]$ in $\mathbb{Z} / 19 \mathbb{Z}$.
(c) Solve the system of equations $\left[\begin{array}{cc}\overline{87} & \overline{60} \\ \overline{9} & \overline{78}\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}\overline{43} \\ \overline{32}\end{array}\right]$ in $\mathbb{Z} / 133 \mathbb{Z}$.

Hints: (i) 133 is not a prime. (ii) Perhaps you don't need to solve the equations in (c) from scratch.
4. The purpose of this question is to prove that if p is a prime number and $p \equiv 3(\bmod 4)$ then then the only solution to $x^{2}+y^{2}=\overline{0}$ in $\mathbb{Z} / p \mathbb{Z}$ is $x=\overline{0}, y=\overline{0}$.
Suppose that p is a prime, $p \geq 3$, and that z is a solution to $z^{2}+\overline{1}=\overline{0}$ in $\mathbb{Z} / p \mathbb{Z}$ (i.e., to $z^{2}=-\overline{1}$.)
(a) Explain why $z^{k} \cdot z^{4-k}=\overline{1}$ for $k=0,1,2,3$.
(b) Let S be the set of nonzero elements in $\mathbb{Z} / p \mathbb{Z}$. How many elements does S have?
(c) Show that the relation

$$
a \sim b \text { if and only if } \frac{a}{b}=z^{k} \text { for some } k .
$$

is an equivalence relation on the set S.
(d) Since \sim is an equivalence relation it partitions S into disjoint subsets. Show that each subset must have exactly 4 elements.
(e) Combining (b) and (d) show that if $p \equiv 3(\bmod 4)$ then the equation $z^{2}+\overline{1}=\overline{0}$ has no solution in $\mathbb{Z} / p \mathbb{Z}$.
(f) Suppose that we have a solution to $x^{2}+y^{2}=\overline{0}$ in $\mathbb{Z} / p \mathbb{Z}$ and that $y \neq \overline{0}$. Explain why $z=x / y$ would be a solution to $z^{2}+\overline{1}=\overline{0}$.
(g) Conclude that if p is a prime number and $p \equiv 3(\bmod 4)$ then only solution to $x^{2}+y^{2}=\overline{0}$ in $\mathbb{Z} / p \mathbb{Z}$ is $x=\overline{0}, y=\overline{0}$.

