DUE DATE: MAR. 6, 2008

1. In order to be able to calculate mod m(x) we need to be able to find remainders. Find the remainder when dividing by $m(x) = x^3 - 6x^2 + 12x - 11$ for the following polynomials in $\mathbb{R}[x]$:

(a)
$$a(x) = x^3 - 5x^2 + 15x - 9$$

(b)
$$b(x) = 2x^4 - 13x^3 + 31x^2 - 31x + 13$$

(c)
$$c(x) = x^5 - 3x^4 - 10x^2 + 42x - 64$$

2. Use the Euclidean algorithm to find the gcd $d(x) = \gcd(a(x), b(x))$ for the following polynomials a(x) and b(x), and then use the extended Euclidean algorithm to find u(x) and v(x) so that d(x) = a(x)u(x) + b(x)v(x).

(a)
$$a(x) = 3x^2 - 13x + 14$$
, $b(x) = x^3 - 7x^2 + 14x - 8$ in the ring $\mathbb{Q}[x]$.

(b)
$$a(x) = \overline{3}x^2 - \overline{13}x + \overline{14}b(x) = x^3 - \overline{7}x^2 + \overline{14}x - \overline{8}$$
, in the ring $(\mathbb{Z}/5\mathbb{Z})[x]$.

3. The purpose of this question is to develop a divisibility test for the polynomial $x^2 + 1$, just like our divisibility for different numbers over the integers.

- (a) Show that $x^2 \equiv -1 \pmod{x^2 + 1}$ in $\mathbb{Q}[x]$.
- (b) Show that $x^3 \equiv -x \pmod{x^2 + 1}$ in $\mathbb{Q}[x]$.
- (c) Show that $c_1x+c_0 \equiv 0 \pmod{x^2+1}$ if and only if $(c_1,c_0)=(0,0)$, where $c_1,c_0 \in \mathbb{Q}$.
- (d) Show that a polynomial $a(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \cdots + a_dx^d$ in $\mathbb{Q}[x]$ is divisible by $x^2 + 1$ if and only if

$$\sum_{k>0} (-1)^k a_{2k} = a_0 - a_2 + a_4 - a_6 + \dots = 0 \quad \text{and}$$

$$\sum_{k>0} (-1)^k a_{2k+1} = a_1 - a_3 + a_5 - a_7 + \dots = 0.$$

4. Let α be the real number $\alpha=3^{\frac{1}{3}}+2$. In parts (a)–(d) calculate the given real numbers to at least six decimal places.

(a)
$$\alpha^3 - 5\alpha^2 + 15\alpha - 9$$

(b)
$$2\alpha^4 - 13\alpha^3 + 31\alpha^2 - 31\alpha + 13$$

(c)
$$\alpha^5 - 3\alpha^4 - 10\alpha^2 + 42\alpha - 64$$

(d)
$$\alpha^3 - 6\alpha^2 + 12\alpha - 11$$
.

(e) Now use your answers from question 1 and part (d) to explain what happened in parts (a)–(c).