1. In order to be able to calculate $\bmod m(x)$ we need to be able to find remainders. Find the remainder when dividing by $m(x)=x^{3}-6 x^{2}+12 x-11$ for the following polynomials in $\mathbb{R}[x]$:
(a) $a(x)=x^{3}-5 x^{2}+15 x-9$
(b) $b(x)=2 x^{4}-13 x^{3}+31 x^{2}-31 x+13$
(c) $c(x)=x^{5}-3 x^{4}-10 x^{2}+42 x-64$
2. Use the Euclidean algorithm to find the $\operatorname{gcd} d(x)=\operatorname{gcd}(a(x), b(x))$ for the following polynomials $a(x)$ and $b(x)$, and then use the extended Euclidean algorithm to find $u(x)$ and $v(x)$ so that $d(x)=a(x) u(x)+b(x) v(x)$.
(a) $a(x)=3 x^{2}-13 x+14, b(x)=x^{3}-7 x^{2}+14 x-8$ in the ring $\mathbb{Q}[x]$.
(b) $a(x)=\overline{3} x^{2}-\overline{13} x+\overline{14} b(x)=x^{3}-\overline{7} x^{2}+\overline{14} x-\overline{8}$, in the ring $(\mathbb{Z} / 5 \mathbb{Z})[x]$.
3. The purpose of this question is to develop a divisibility test for the polynomial $x^{2}+1$, just like our divisibility for different numbers over the integers.
(a) Show that $x^{2} \equiv-1\left(\bmod x^{2}+1\right)$ in $\mathbb{Q}[x]$.
(b) Show that $x^{3} \equiv-x\left(\bmod x^{2}+1\right)$ in $\mathbb{Q}[x]$.
(c) Show that $c_{1} x+c_{0} \equiv 0\left(\bmod x^{2}+1\right)$ if and only if $\left(c_{1}, c_{0}\right)=(0,0)$, where $c_{1}, c_{0} \in \mathbb{Q}$.
(d) Show that a polynomial $a(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{d} x^{d}$ in $\mathbb{Q}[x]$ is divisible by $x^{2}+1$ if and only if

$$
\begin{gathered}
\sum_{k \geq 0}(-1)^{k} a_{2 k}=a_{0}-a_{2}+a_{4}-a_{6}+\cdots=0 \quad \text { and } \\
\sum_{k \geq 0}(-1)^{k} a_{2 k+1}=a_{1}-a_{3}+a_{5}-a_{7}+\cdots=0 .
\end{gathered}
$$

4. Let α be the real number $\alpha=3^{\frac{1}{3}}+2$. In parts (a)-(d) calculate the given real numbers to at least six decimal places.
(a) $\alpha^{3}-5 \alpha^{2}+15 \alpha-9$
(b) $2 \alpha^{4}-13 \alpha^{3}+31 \alpha^{2}-31 \alpha+13$
(c) $\alpha^{5}-3 \alpha^{4}-10 \alpha^{2}+42 \alpha-64$
(d) $\alpha^{3}-6 \alpha^{2}+12 \alpha-11$.
(e) Now use your answers from question 1 and part (d) to explain what happened in parts (a)-(c).
