1. In each of the following examples decide if the set with the given operations is a ring. If the example is not a ring explain what fails. If the example is a ring it is enough to just say so - you don't have to demonstrate that the example satisfies all the axioms.
(a) R is $\mathbb{Z} / 2 \mathbb{Z}$ except with the operations of addition and multiplication switched. (The new addition is the old multiplication and the new multiplication is the old addition)
(b) R is \mathbb{R}^{2} with addition $\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}\right)$ and multiplication $\left(x_{1}, y_{1}\right) \cdot\left(x_{2}, y_{2}\right)=\left(x_{1} x_{2}, x_{1} y_{2}+x_{2} y_{1}+3 y_{1} y_{2}\right)$.
(c) R is the set of infinite sequences $\left\{\left(a_{0}, a_{1}, a_{2}, \ldots,\right)\left|a_{i} \in \mathbb{R}, \sum_{n=0}^{\infty}\right| a_{n} \mid\right.$ converges $\}$, where addition is defined as

$$
\left(a_{0}, a_{1}, a_{2}, \ldots,\right)+\left(b_{0}, b_{1}, b_{2}, \ldots,\right)=\left(a_{0}+b_{0}, a_{1}+b_{1}, a_{2}+b_{2}, \ldots,\right)
$$

and multiplication is defined as

$$
\left(a_{0}, a_{1}, a_{2}, \ldots,\right) \cdot\left(b_{0}, b_{1}, b_{2}, \ldots,\right)=\left(a_{0} b_{0}, a_{1} b_{1}, a_{2} b_{2}, \ldots,\right)
$$

(d) $R=\{0,1\}$ with operations

$$
x+y=\left\{\begin{array}{ll}
1 & \text { if } x=y \\
0 & \text { if } x \neq y
\end{array} \quad \text { and } \quad x \cdot y=\left\{\begin{array}{ll}
0 & \text { if } x=y \\
1 & \text { if } x \neq y
\end{array} .\right.\right.
$$

(e) R is \mathbb{R}^{2} with addition $\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}\right)$ and multiplication $\left(x_{1}, y_{1}\right) \cdot\left(x_{2}, y_{2}\right)=\left(x_{1} x_{2}-y_{1} y_{2}, x_{1} y_{2}+x_{2} y_{1}\right)$.
2. In class it was claimed that the map $\phi: \mathbb{Z} / m \mathbb{Z} \longrightarrow \mathbb{Z} / m_{1} \mathbb{Z}$ given by $a(\bmod m) \mapsto$ $a\left(\bmod m_{1}\right)$ is a ring homomorphism if $m_{1} \mid m$. Let's try and figure out what this map is, and see if the condition that $m_{1} \mid m$ is necessary.
(a) If $m_{1}=3$ and $m=5$ give an example of two numbers a and b so that $a \equiv$ $b(\bmod m)$ but $a \not \equiv b\left(\bmod m_{1}\right)$. (Note: this is the case $m_{1} \nmid m$.)
(b) When we give the instructions " $a \bmod m \mapsto a \bmod m_{1}$ " to describe a map $\mathbb{Z} / m \mathbb{Z} \longrightarrow$ $\mathbb{Z} / m_{1} \mathbb{Z}$ this means that, for any $\bar{a} \in \mathbb{Z} / m \mathbb{Z}$, pick a representative in the class \bar{a} $\bmod m$ and look at the class containing this representative $\bmod m_{1}$.

To say that a map is well defined means that the result of these instructions does not depend on which representative we pick in the class \bar{a}.

When $m_{1}=3$ and $m=5$, give an example to show that the map above is not well defined.
(c) If $m_{1} \mid m$ explain why $a \equiv b(\bmod m)$ implies that $a \equiv b\left(\bmod m_{1}\right)$.
(d) Explain why this means that the map $\phi: \mathbb{Z} / m \mathbb{Z} \longrightarrow \mathbb{Z} / m_{1} \mathbb{Z}$ above is well defined.
3. Suppose that $\phi: R \longrightarrow S$ and $\psi: S \longrightarrow T$ are ring homomorphisms (where R, S, and T are rings). Show that the composite map $\psi \circ \phi: R \longrightarrow T$ is also a ring homomorphism.
4. Describe the kernels of the following ring homomorphisms
(a) $\phi: \mathbb{R}[x] \longrightarrow \mathbb{R}$ given by $f(x) \mapsto f(0)$.
(b) $\phi: \mathbb{R}[x] \longrightarrow \mathbb{R}$ given by $f(x) \mapsto f(3)$.
(c) $\phi: \mathbb{Z}[x] \longrightarrow \mathbb{Z} / 5 \mathbb{Z}$ given by $f(x) \mapsto f(0)(\bmod 5)$.
(d) $\phi: \mathbb{Z}[x] \longrightarrow \mathbb{Z} / 5 \mathbb{Z}$ given by $f(x) \mapsto f(3)(\bmod 5)$.

Here "describe" means give a criterion in terms of the coefficients of $f(x)=a_{0}+a_{1} x+$ $a_{2} x^{2}+\cdots+a_{d} x^{d}$ to decide if f is in the kernel of ϕ or not.
5. In class we learned that we can also describe ideals by generators (e.g. $I=\langle 3, x\rangle \subseteq$ $\mathbb{Z}[x]$). Describe the following ideals by generators (i.e., given an ideal I below, find a_{1}, \ldots, a_{k} in the ring R so that $\left.I=\left\langle a_{1}, \ldots, a_{k}\right\rangle\right)$.
(a) The ideal from 4(a) above.
(b) The ideal from 4(b) above.
(c) The ideal from 4(c) above.
(d) The ideal from 4(d) above.

You should also give a short argument explaining why the elements you claim generate the ideal really generate the ideal. (Hopefully your criteria from question 4 will help...).

