NAME THAT RING!
Each of the quotient rings R / I in the leftmost list is isomorphic to one of the rings S in the rightmost list. Match each ring with its isomorphic partner, and prove that they really are isomorphic by describing a surjective ring homomorphism $\phi: R \longrightarrow S$ with kernel I. (Note: The matching of the left list to the right list is neither injective nor surjective.)

\[

\]

In example 14 the ring operations are addition and multiplication of matrices.
Some methods you might use to try and match up R / I and $S:(i)$ guess, (ii) think about representatives in the quotient ring, and what the multiplication rules are and try and match that up with something in the S column, (iii) try and make up a homomorphism from R to somewhere that would have elements of the ideal I in the kernel.

