NAME THAT RING!

Each of the quotient rings R/I in the leftmost list is isomorphic to one of the rings S in the rightmost list. Match each ring with its isomorphic partner, and prove that they really are isomorphic by describing a surjective ring homomorphism $\phi: R \longrightarrow S$ with kernel I. (NOTE: The matching of the left list to the right list is neither injective nor surjective.)

$\underline{R/I}$	<u>S</u>
(a) $\frac{\mathbb{Z}[x]}{\langle 8, 12, x \rangle}$.	1. Z/3Z
$\mathbb{Q}[x]$	2. $\mathbb{Z}/4\mathbb{Z}$
(b) $\frac{1}{\langle x^2 - 2 \rangle}$.	3. $\mathbb{Z}/8\mathbb{Z}$
$(c) \frac{\mathbb{R}[x]}{\cdots}$	4. Z
$\langle x - \sqrt{2} \rangle$	5. Q
(d) $\frac{\mathbb{R}[x]}{\sqrt{x}}$.	6. R
$\langle x^2 + x + 2 \rangle$	7. C
$(e)\frac{\mathbb{R}[x]}{\langle x^2 \rangle}.$	8. $\left\{a+b\sqrt{2} \mid a,b \in \mathbb{Q}\right\}$
$\mathbb{R}[x,y]$	9. $\mathbb{Z}[x]$
(1) $\frac{1}{\langle y-1, x+9 \rangle}$.	10. $\mathbb{Q}[x]$
$(\mathbf{g}) = \mathbb{R}[x, y]$	11. $\mathbb{R}[x]$
$(8) \langle y - 1, x^2 + 9 \rangle$.	12. $\mathbb{C}[x]$
(h) $\frac{\mathbb{R}[x,y]}{\langle x,y \rangle}$.	13. $\mathbb{R}[t, \frac{1}{t}]$ (polynomials in t and $\frac{1}{t}$)
$\langle xy-1 \rangle$	14. $\left\{ \left(\begin{array}{cc} a & b \\ 0 & a \end{array} \right) \mid a, b \in \mathbb{R} \right\}$

In example 14 the ring operations are addition and multiplication of matrices.

Some methods you might use to try and match up R/I and S: (i) guess, (ii) think about representatives in the quotient ring, and what the multiplication rules are and try and match that up with something in the S column, (iii) try and make up a homomorphism from R to somewhere that would have elements of the ideal I in the kernel.