
Math 210 Homework Assignment 12
due date: Apr. 15, 2008

1. By associating each pair (a, b) ∈ Z
2 with the Gaussian integer α = a + bi ∈ Z[i] we

see that the number of ways that we can write an integer n as a sum n = a2 + b2 of two
squares is the same as the number of Gaussian integers of norm exactly n, i.e., that

#
{

(a, b) ∈ Z
2 | a2 + b2 = n

}

= #
{

α ∈ Z[i] | N(α) = n
}

.

The purpose of this question is to use unique factorization in the Gaussian integers to
count the number of such α.

Recall that by unique factorization any Gaussian integer α can be written as

α = uπs1

1 · · ·πsm

m

where u is a unit and π1, . . . , πℓ are primes in Z[i].

(a) Suppose that p is a prime in Z, p ≡ 1 (mod 4) and that π1 and π2 are two distinct
primes in Z[i] with N(π1) = N(π2) = p.

Let e be a nonnegative integer. Find a formula in terms of e for the number of pairs
(s1, s2) with s1, s2 ≥ 0 such that N(πs1

1 πs2

2 ) = pe. (The answer isn’t complicated –
the hard part is understanding the question).

(b) If q is a prime in Z, q ≡ 3 (mod 4) then q is still prime in Z[i]. Given f ≥ 0 how
many possibilities are there for integers t ≥ 0 such that N(qt) = q2f? (This is
even easier).

(c) If p = 2, and given any f ≥ 0, how many possibilities are there for t ≥ 0 such that
N((1 + i)t) = 2f?

(d) Given a positive integer n let’s factor it as

n = pe1

1 pe2

2 · · · pek

k qf0

0 q2f1

1 q2f2

2 · · · q2fℓ

ℓ

where pi ≡ 1 (mod 4) for all i, q0 = 2 and qi ≡ 3 (mod 4) for i ≥ 1.

Putting parts (a), (b), and (c) together, how many possible expressions are there
of the form

α = uπ
s1,1

1,1 π
s1,2

1,2 π
s2,1

2,1 π
s2,2

2,2 · · ·π
sk,1

k,1 π
sk,2

k,2 (1 + i)t0qt1
1 qt2

2 · · · qtℓ
ℓ

with N(α) = n? (In the notation above, u is a unit and for each i the elements
πi,1 and πi,2 are two distinct primes such that N(πi,1) = N(πi,2) = pi.)
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2. Suppose that I = 〈a, b〉 and J = 〈c, d〉 are two ideals in a ring R.

(a) Show that I ⊆ J if and only if a, b ∈ J .

(b) Show that I = J if and only if a, b ∈ J and c, d ∈ I.

3. The prime p = 13 factors as 13 = (2+3i)(2−3i) in Z[i]. Let I1 = 〈2+3i〉, I2 = 〈2−3i〉
in Z[i]. Let’s use the homomorphism theorems and the Chinese remainder theorem to
try and understand the ring Z[i]/〈13〉.

(a) Show that I1 ∩ I2 = 〈13〉 in Z[i] (This should be a straightforward argument using
unique factorization and the fact that Z[i] is a P.I.D.).

(b) By part (a) and the Chinese remainder theorem,

Z[i]

〈13〉
=

Z[i]

〈2 + 3i〉
⊕

Z[i]

〈2 − 3i〉
,

and it would be nice to know what the quotients Z[i]
〈2+3i〉

and Z[i]
〈2−3i〉

are.

Let φ : Z[x] −→ Z[i] be the homomorphism given by φ(f(x)) = f(i). The kernel
of φ is the ideal ker φ = 〈x2 + 1〉.

Find the ideal J1 = φ−1(I1) of Z[x].

(c) Show that the ideals J1 and 〈13, x − 8〉 are the same ideal in Z[x].

(d) By the third homomorphism theorem, Z[x]/J1 is isomorphic to Z[i]/〈2+3i〉. Using
part (c) show that Z[x]/J1 ≃ Z/13Z.

(e) Similarly, let J2 = φ−1(I2). Show that J2 = 〈13, x − 5〉, and again conclude that
Z[i]/〈2 − 3i〉 ≃ Z/13Z.

(f) Conclude that
Z[i]

〈13〉
=

Z

13Z
⊕

Z

13Z
.

Bonus mini-question: Explain why Z[i]/〈13〉 is the same ring as Z[x]/〈13, x2 + 1〉
which is the same ring as F [x]/〈x2+1̄〉, where F = Z/13Z. Since (x− 5̄)·(x− 8̄) = x2+1̄
in F [x], use the Chinese remainder theorem to see that

Z[i]

〈13〉
≃ F ⊕ F.
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