1. By associating each pair $(a, b) \in \mathbb{Z}^{2}$ with the Gaussian integer $\alpha=a+b i \in \mathbb{Z}[i]$ we see that the number of ways that we can write an integer n as a sum $n=a^{2}+b^{2}$ of two squares is the same as the number of Gaussian integers of norm exactly n, i.e., that

$$
\#\left\{(a, b) \in \mathbb{Z}^{2} \mid a^{2}+b^{2}=n\right\}=\#\{\alpha \in \mathbb{Z}[i] \mid N(\alpha)=n\}
$$

The purpose of this question is to use unique factorization in the Gaussian integers to count the number of such α.
Recall that by unique factorization any Gaussian integer α can be written as

$$
\alpha=u \pi_{1}^{s_{1}} \cdots \pi_{m}^{s_{m}}
$$

where u is a unit and $\pi_{1}, \ldots, \pi_{\ell}$ are primes in $\mathbb{Z}[i]$.
(a) Suppose that p is a prime in $\mathbb{Z}, p \equiv 1(\bmod 4)$ and that π_{1} and π_{2} are two distinct primes in $\mathbb{Z}[i]$ with $N\left(\pi_{1}\right)=N\left(\pi_{2}\right)=p$.

Let e be a nonnegative integer. Find a formula in terms of e for the number of pairs $\left(s_{1}, s_{2}\right)$ with $s_{1}, s_{2} \geq 0$ such that $N\left(\pi_{1}^{s_{1}} \pi_{2}^{s_{2}}\right)=p^{e}$. (The answer isn't complicated the hard part is understanding the question).
(b) If q is a prime in $\mathbb{Z}, q \equiv 3(\bmod 4)$ then q is still prime in $\mathbb{Z}[i]$. Given $f \geq 0$ how many possibilities are there for integers $t \geq 0$ such that $N\left(q^{t}\right)=q^{2 f}$? (This is even easier).
(c) If $p=2$, and given any $f \geq 0$, how many possibilities are there for $t \geq 0$ such that $N\left((1+i)^{t}\right)=2^{f} ?$
(d) Given a positive integer n let's factor it as

$$
n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}} q_{0}^{f_{0}} q_{1}^{2 f_{1}} q_{2}^{2 f_{2}} \cdots q_{\ell}^{2 f_{\ell}}
$$

where $p_{i} \equiv 1(\bmod 4)$ for all $i, q_{0}=2$ and $q_{i} \equiv 3(\bmod 4)$ for $i \geq 1$.
Putting parts (a), (b), and (c) together, how many possible expressions are there of the form

$$
\alpha=u \pi_{1,1}^{s_{1,1}} \pi_{1,2}^{s_{1,2}} \pi_{2,1}^{s_{2,1}} \pi_{2,2}^{s_{2,2}} \cdots \pi_{k, 1}^{s_{k, 1}} \pi_{k, 2}^{s_{k, 2}}(1+i)^{t_{0}} q_{1}^{t_{1}} q_{2}^{t_{2}} \cdots q_{\ell}^{t_{\ell}}
$$

with $N(\alpha)=n$? (In the notation above, u is a unit and for each i the elements $\pi_{i, 1}$ and $\pi_{i, 2}$ are two distinct primes such that $\left.N\left(\pi_{i, 1}\right)=N\left(\pi_{i, 2}\right)=p_{i}.\right)$
2. Suppose that $I=\langle a, b\rangle$ and $J=\langle c, d\rangle$ are two ideals in a ring R.
(a) Show that $I \subseteq J$ if and only if $a, b \in J$.
(b) Show that $I=J$ if and only if $a, b \in J$ and $c, d \in I$.
3. The prime $p=13$ factors as $13=(2+3 i)(2-3 i)$ in $\mathbb{Z}[i]$. Let $I_{1}=\langle 2+3 i\rangle, I_{2}=\langle 2-3 i\rangle$ in $\mathbb{Z}[i]$. Let's use the homomorphism theorems and the Chinese remainder theorem to try and understand the ring $\mathbb{Z}[i] /\langle 13\rangle$.
(a) Show that $I_{1} \cap I_{2}=\langle 13\rangle$ in $\mathbb{Z}[i]$ (This should be a straightforward argument using unique factorization and the fact that $\mathbb{Z}[i]$ is a P.I.D.).
(b) By part (a) and the Chinese remainder theorem,

$$
\frac{\mathbb{Z}[i]}{\langle 13\rangle}=\frac{\mathbb{Z}[i]}{\langle 2+3 i\rangle} \oplus \frac{\mathbb{Z}[i]}{\langle 2-3 i\rangle},
$$

and it would be nice to know what the quotients $\frac{\mathbb{Z}[i]}{\langle 2+3 i\rangle}$ and $\frac{\mathbb{Z}[i]}{\langle 2-3 i\rangle}$ are.
Let $\phi: \mathbb{Z}[x] \longrightarrow \mathbb{Z}[i]$ be the homomorphism given by $\phi(f(x))=f(i)$. The kernel of ϕ is the ideal $\operatorname{ker} \phi=\left\langle x^{2}+1\right\rangle$.

Find the ideal $J_{1}=\phi^{-1}\left(I_{1}\right)$ of $\mathbb{Z}[x]$.
(c) Show that the ideals J_{1} and $\langle 13, x-8\rangle$ are the same ideal in $\mathbb{Z}[x]$.
(d) By the third homomorphism theorem, $\mathbb{Z}[x] / J_{1}$ is isomorphic to $\mathbb{Z}[i] /\langle 2+3 i\rangle$. Using part (c) show that $\mathbb{Z}[x] / J_{1} \simeq \mathbb{Z} / 13 \mathbb{Z}$.
(e) Similarly, let $J_{2}=\phi^{-1}\left(I_{2}\right)$. Show that $J_{2}=\langle 13, x-5\rangle$, and again conclude that $\mathbb{Z}[i] /\langle 2-3 i\rangle \simeq \mathbb{Z} / 13 \mathbb{Z}$.
(f) Conclude that $\frac{\mathbb{Z}[i]}{\langle 13\rangle}=\frac{\mathbb{Z}}{13 \mathbb{Z}} \oplus \frac{\mathbb{Z}}{13 \mathbb{Z}}$.

Bonus mini-question: Explain why $\mathbb{Z}[i] /\langle 13\rangle$ is the same ring as $\mathbb{Z}[x] /\left\langle 13, x^{2}+1\right\rangle$ which is the same ring as $F[x] /\left\langle x^{2}+\overline{1}\right\rangle$, where $F=\mathbb{Z} / 13 \mathbb{Z}$. Since $(x-\overline{5}) \cdot(x-\overline{8})=x^{2}+\overline{1}$ in $F[x]$, use the Chinese remainder theorem to see that

$$
\frac{\mathbb{Z}[i]}{\langle 13\rangle} \simeq F \oplus F
$$

