1. Suppose that F is a homogeneous polynomial of degree d in X, Y, and Z. If we make the substitution $Z=t X$, we get a polynomial

$$
F_{t}=\sum_{j=0}^{d} a_{j}(t) X^{j} Y^{d-j}
$$

whose coefficients $a_{j}(t)$ are polynomials in t. Explain why $\operatorname{deg}\left(a_{j}\right) \leq j$, and also explain which terms of F contribute to the top coefficient of t in $a_{j}(t)$.
2. Suppose that we fix a value t_{0} of t. Explain how a solution (in X and Y) to the equation $F_{t_{0}}=0$ gives you a point on $F=0$ in \mathbb{P}^{2}. How to you find the Z coordinate of this point?
3. Suppose that G is a homogeneous polynomial of degree e in X, Y, Z, and

$$
G_{t}=\sum_{j=0}^{e} b_{j}(t) X^{j} Y^{e-j}
$$

the polynomial resulting from the substitution $Z=t X$. For a fixed value t_{0} of t, explain why finding a point p in the intersection $\{F=0\} \cap\{G=0\}$ in \mathbb{P}^{2} such that p is also on the line $Z=t_{0} X$ is the same as finding a common solution (in X and Y) to the equations $F_{t_{0}}=0$ and $G_{t_{0}}=0$.
4. Suppose that no point of $\{F=0\} \cap\{G=0\}$ lies on the line $X=0$. Explain why all points of the intersection have to lie on some line of the form $Z=t_{0} X$, for some t_{0}. Suppose further that no two points of the intersection $\{F=0\} \cap\{G=0\}$ lie on the same line of this form. Explain why points of the intersection are in one to one correspondence with the values of t such that the determinant

$$
R(t):=\left|\begin{array}{ccccccccccc}
a_{d}(t) & a_{d-1}(t) & a_{d-2}(t) & \cdots & a_{1}(t) & a_{0}(t) & 0 & 0 & \cdots & 0 & 0 \\
0 & a_{d}(t) & a_{d-1}(t) & \cdots & a_{2}(t) & a_{1}(t) & a_{0}(t) & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & a_{1}(t) & a_{0}(t) \\
b_{e}(t) & b_{e-1}(t) & b_{e-2}(t) & \cdots & b_{0}(t) & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & b_{e}(t) & b_{e-1}(t) & \cdots & b_{1}(t) & b_{0}(t) & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & b_{1}(t) & b_{0}(t)
\end{array}\right|
$$

of the $(d+e) \times(d+e)$ matrix above is zero.
5. Using the bounds on $\operatorname{deg}\left(a_{j}\right)$ (and of course $\left.\operatorname{deg}\left(b_{j}\right)\right)$ from question 1 , show that $\operatorname{deg}(R(t)) \leq d \cdot e$. The formula

$$
\operatorname{det}(M)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) M_{1 \sigma(1)} M_{2 \sigma(2)} M_{3 \sigma(3)} \cdots M_{n-1 \sigma(n-1)} M_{n \sigma(n)}
$$

for the determinant of an $n \times n$ matrix M might be useful. Here S_{n} is the permutation group on n symbols, and $\operatorname{sgn}(\sigma)$ of a permutation σ is ± 1 depending on whether σ is an even or odd permutation. (Hint: Extend the bound on degree to the zero entries of the matrix in question 4 so as to give you a pattern which is easy to analyze. Since the entries are zero, any value of the "degree" is permitted for these entries, even negative ones - any piece of the formula involving these entries will be zero anyway. Use the pattern to compute the degree in t of any monomial in the sum above.)
6. We now want to show (under our assumptions about F and G) that $R(t)$ must be of degree precisely $d \cdot e$. This won't be true for arbitrary F and G. For instance, for $F=X^{2}+2 Y^{2}+18 Z^{2}+12 Y Z$ and $G=X^{3}+Y^{3}+27 Z^{3}$, we get the matrix

$$
\left[\begin{array}{ccccc}
\left(18 t^{2}+1\right) & 12 t & 2 & 0 & 0 \\
0 & \left(18 t^{2}+1\right) & 12 t & 2 & 0 \\
0 & 0 & \left(18 t^{2}+1\right) & 12 t & 2 \\
\left(27 t^{3}+1\right) & 0 & 0 & 1 & 0 \\
0 & \left(27 t^{3}+1\right) & 0 & 0 & 1
\end{array}\right]
$$

with determinant $2196 t^{4}+54 t^{2}+72 t+9$, of degree strictly smaller than 6 .
Consider the matrix made up by replacing each entry in the resultant matrix (of the form $a_{j}(t)$ or $\left.b_{j}(t)\right)$ by the coefficient of the top possible power of t in that spot (i.e., the coefficient of t^{j} in each case). In the example above, this would be the matrix

$$
\left[\begin{array}{ccccc}
18 & 12 & 2 & 0 & 0 \\
0 & 18 & 12 & 2 & 0 \\
0 & 0 & 18 & 12 & 2 \\
27 & 0 & 0 & 1 & 0 \\
0 & 27 & 0 & 0 & 1
\end{array}\right] .
$$

Explain why (no matter what F and G are) that the coefficient of the $d \cdot e$-th power of t in $R(t)$ is the determinant of this matrix, so that $\operatorname{deg}(R(t))=d \cdot e$ if and only if this determinant is not zero.
7. Considering where the coefficient of t^{j} in $a_{j}(t)$ comes from (problem 1) explain why the vanishing of this determinant is the same as saying that the polynomials F^{\prime} and G^{\prime} in Y and Z obtained from F and G by setting $X=0$ have a common root.
8. Explain why this is equivalent to $\{F=0\} \cap\{G=0\}$ having a point of intersection on the line $X=0$. Thus, under the assumptions of question 4 , degree $R(t)=d \cdot e$.

