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ABSTRACT. Let X = G/B and let L1 and L2 be two line bundles on X. Consider the cup
product map

Hd1(X, L1)⊗Hd2(X, L2)
∪

−→ Hd(X, L),

where L = L1⊗L2 and d = d1 +d2. We answer two natural questions about the map above:
When is it a nonzero homomorphism of representations of G? Conversely, given generic ir-
reducible representations V1 and V2, which irreducible components of V1⊗V2 may appear
in the right hand side of the equation above? For the first question we find a combinato-
rial condition expressed in terms of inversion sets of Weyl group elements. The answer
to the second question is especially elegant - the representations V appearing in the right
hand side of the equation above are exactly the generalized PRV components of V1⊗V2 of
stable multiplicity one. Furthermore, the highest weights (λ1, λ2, λ) corresponding to the
representations (V1, V2, V) fill up the generic faces of the Littlewood-Richardson cone of G
of codimension equal to the rank of G. In particular, we conclude that the corresponding
Littlewood-Richardson coefficients equal one.
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1. INTRODUCTION

1.1. Main problems. The main object of study of this paper is the cup product map

(1.1.1) Hd1(X,L1)⊗ · · · ⊗Hdk(X,Lk)
∪
−→ Hd(X,L),

where X = G/B; G is a semisimple algebraic group over an algebraically closed field of
characteristic zero, B is a Borel subgroup of G; L1, . . . ,Lk are arbitrary line bundles on X,
L = L1 ⊗ · · · ⊗ Lk; d1, . . . , dk are non-negative integers, and d = d1 + · · ·+ dk.

We assume that both sides of (1.1.1) are nonzero for otherwise the cup product map is the
zero map. Without loss of generality we may also assume that the line bundles L1,. . . , Lk,
and L are G-equivariant; then both sides of (1.1.1) carry a natural G-module structure and
the cup product map is G-equivariant. Furthermore by the Borel-Weil-Bott theorem there
are irreducible representations Vµ1

, . . . , Vµk
, and Vµ so that Hdi(X,Li) = V∗

µi
for i = 1,. . . , k,

and Hd(X,L) = V∗
µ as representations of G. The dual of (1.1.1) is thus a G-homomorphism

(1.1.2) Vµ −→ Vµ1
⊗ · · · ⊗Vµk

.

Since Vµ1
, . . . , Vµk

, and Vµ are irreducible representations, (1.1.1) is either surjective or
zero; respectively, (1.1.2) is either injective or zero. This leads us naturally to the two
main problems of this paper.

Problem I. When is (1.1.1) a surjection of nontrivial representations?

Problem II. For which (k + 1)-tuples (Vµ1
, . . . ,Vµk

,Vµ) of irreducible representations of G
can Vµ be realized as a component of Vµ1

⊗· · ·⊗Vµk
via (1.1.2) for appropriate line bundles

L1, . . . ,Lk on X?

We call an irreducible representation Vµ which can be embedded into Vµ1
⊗ · · · ⊗ Vµk

via (1.1.2) a cohomological component of Vµ1
⊗ · · · ⊗ Vµk

. Fixing Vµ1
,. . . , Vµk

, a variation of
Problem II is to determine the cohomological components of Vµ1

⊗ · · · ⊗ Vµk
.

With the exception of some quite degenerate cases for Problem II, we provide a complete
solution to both problems.

1.2. Solution of Problem I. Fix a maximal torus T ⊆ B. The G-equivariant line bundles
on X are in one-to-one correspondence with the characters of T. For a character λ of T, we
denote by Lλ the line bundle on X corresponding to the one dimensional representation
of B on which T acts via −λ.

The affine action of the Weyl groupW of G on the lattice of T-characters Λ is defined as

w · λ = w(λ+ ρ)− ρ,

where ρ, as usual, denotes the half-sum of the roots of B. A character λ ∈ Λ is regular if
there exists a (necessarily unique) element w ∈ W such that w · λ is a dominant character.
Following Kostant, [K1, Definition 5.10], we define the inversion set Φw of w ∈ W as the set
Φw = w−1∆− ∩∆+, where ∆− = −∆+ is the set of negative roots of G.
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Let λ1, . . . , λk ∈ Λ be the (regular) characters such that Li = Lλi
for 1 6 i 6 k. Then

L = Lλ, where λ =
∑k

i=1 λi. Assume that λ is also regular and denote by w1, . . . , wk, and
w the Weyl group elements for which wi · λi for 1 6 i 6 k and w · λ are dominant. With
this notation we prove the following criterion for surjectivity of (1.1.1).

Theorem I — For any semisimple G, if Hd(X,Lλ) 6= 0, then the cup product map (1.1.1) is
surjective if and only if

(1.2.1) Φw =

k⊔

i=1

Φwi
.

Studying the structure of (k + 1)-tuples (w1, . . . , wk, w) satisfying (1.2.1) is an interesting
combinatorial problem which we do not address here. A recursive description of such
(k+1) tuples in types A, B, and C is given in [D-W]. For some open questions concerning
(1.2.1) see the expository article [DR].

1.3. Solution of Problem II. We say that a component Vµ of Vµ1
⊗ · · · ⊗ Vµk

has stable
multiplicity one if the multiplicity of Vmµ in Vmµ1 ⊗ · · · ⊗ Vmµk

is one for all m≫ 0. We say
that Vµ is a generalized PRV component of Vµ1

⊗· · ·⊗Vµk
if there exist w1,. . . , wk, and w ∈ W

such that w−1µ = w−1
1 µ1 + · · · + w−1

k µk. (See §2.3 and §6.1 for further discussion of these
conditions.)

Theorem II —

(a) Let Vµ be a cohomological component of Vµ1
⊗ · · · ⊗ Vµk

. Then Vµ is a generalized
PRV component of Vµ1

⊗ · · · ⊗ Vµk
of stable multiplicity one.

(b) Conversely, assume that Vµ is a generalized PRV component of Vµ1
⊗ · · · ⊗ Vµk

of
stable multiplicity one. If, in addition, one of the following holds:

(i) at least one of µ1,. . . , µk or µ is strictly dominant,
(ii) G is a simple classical group or a product of simple classical groups,

then Vµ is a cohomological component of Vµ1
⊗ · · · ⊗ Vµk

.

It is unfortunate that in part (b) above we require condition (i) or (ii). Indeed, we believe
that we do not need these conditions but we impose them due to our inability to overcome
a combinatorial problem.

Remark. In type A a conjecture of Fulton, proved by Knutson, Tao, and Woodward [KTW,
§6.1+§7] states that if Vµ is a component of Vµ1

⊗ · · · ⊗ Vµk
of multiplicity one, then Vmµ

has multiplicity one in Vmµ1 ⊗ · · · ⊗ Vmµk
for all m > 1. Together with Theorem II, this

means that in type A a component Vµ is a cohomological component of Vµ1
⊗ · · · ⊗ Vµk

if

and only if Vµ is a PRV component of Vµ1
⊗ · · · ⊗ Vµk

of multiplicity one.1

1.4. Representation-theoretic implications of Theorem II. The representation-theoretic
significance of Theorem II is twofold: it provides both a geometric construction of special
components of a tensor product via the Bott theorem and a new way of generalizing the
classical PRV component.

1This is not true in other types; see the component V1,0 of V1,1 ⊗V1,1 in the middle example of Figure 1.
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The Borel-Weil-Bott theorem provides a geometric realization of every irreducible repre-
sentation of G as the cohomology (in any degree) of an appropriate line bundle on X. In
particular, every irreducible representation equals the space of global sections of a unique
line bundle on X. In this sense the Borel-Weil theorem (the statement about cohomology
in degree zero) suffices since the Bott theorem (the statement about higher cohomology)
yields the same representations. However, in addition to being representations, the coho-
mology groups carry a ring structure induced from the cup product. Theorem II employs
this structure to give a geometric realization of certain components of a tensor product of
representations. As far as we know this is the first use of the Bott theorem for a geometric
construction of representations in the case when G is a semisimple algebraic group over
a field of characteristic zero.

We are borrowing the term ”generalized PRV component” from the case when k = 2. In
[PRV] Parthasarathy, Ranga Rao, and Varadarajan established that if µ is in the W-orbit
of µ1 + w0µ2 (where w0 denotes the longest element of W), then Vµ is a component of
Vµ1
⊗ Vµ2

. Moreover, they proved that Vµ has multiplicity one in, and is the smallest
component of, Vµ1

⊗ Vµ2
. It is true more generally that if µ is in the W-orbit of µ1 + vµ2

(where v is now an arbitrary element of W) then Vµ is again a component of Vµ1
⊗ Vµ2

;
this was established independently by Kumar [Ku] and Mathieu [M].

Unlike the original PRV component, a generalized PRV component Vµ may have mul-
tiplicity greater than one in Vµ1 ⊗ Vµ2 . However, by Theorem II, every cohomological
component is a generalized PRV component of stable multiplicity one. The cohomolog-
ical components also retain an aspect of the minimality of the original PRV component:
every cohomological component of Vµ1

⊗ · · · ⊗ Vµk
is extreme among all components of

Vµ1
⊗ · · · ⊗Vµk

. These properties of cohomological components suggest that they may be
viewed as the “true” analog of the original PRV component.

The following examples illustrate Theorem II when k = 2.

V3,5 ⊗ V1,2

SL3 SO5

V1,1 ⊗ V1,1

SL3

V7,2 ⊗ V1,3

– component of the tensor product

– cohomological component/generalized PRV component of stable multiplicity one

– generalized PRV component of multiplicity greater than one

– generalized PRV component of multiplicity one, but not stable multiplicity one

Figure 1
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1.5. Other results. In conclusion we mention several other results which may be of
independent interest.

The cup product and Schubert calculus. Recall that a basis for the cohomology ring
H∗(X,Z) of X = G/B is given by the classes of the Schubert cycles {[Xw]}w∈W indexed by
the elements of the Weyl group W . The dual basis {[Ωw]}w∈W , is given by Ωw := Xw0w.
With the notation of §1.2 we prove the following:

Theorem III — For any semisimple algebraic group G,

(a) if
k⋂

i=1

[Ωwi
] · [Xw] = 1 then the cup product map (1.1.1) is surjective;

(b) if
k⋂

i=1

[Ωwi
] · [Xw] = 0 then the cup product map (1.1.1) is zero.

We use Theorem III as stated above and a variation of its proof to prove Theorem I. In
general it is not known if condition (1.2.1) implies that ∩ki=1[Ωwi

] · [Xw] = 1. In [DR3] we
show that this is the case when G is a classical group or G2; We do not know if condition
(1.2.1) implies that the intersection number is one in the other exceptional cases.

Diagonal Bott-Samelson-Demazure-Hansen varieties. We construct a class of varieties
which generalize the Bott-Samelson-Demazure-Hansen varieties. One way to understand
these varieties is a resolution of singularities of the total space of intersections of translates
of Schubert varieties, see Theorem 3.7.4. Other notable results related to this construction
include Lemma 3.8.1 which controls the multiplicity of cohomological components, and
Theorem 3.9.1 which provides a new proof of the necessity of the inequalities determin-
ing the Littlewood-Richardson cone. These varieties have applications outside this pa-
per. For instance, in a future paper we use them to establish multiplicity bounds for the
Littlewood-Richardson coefficients generalizing the Klymik bound, each of which has the
same asymptotic order of growth as the multiplicity function, with each “centred” around
a particular cohomological component (in a way that the Klymik bound appears as the
version for the highest weight component). These varieties are also used in [Ro] to prove
reduction rules for Littlewood-Richardson coefficients.

1.6. Related Work. After the initial version of this paper appeared on the arXiv, other au-
thors have worked on related ideas. In [T], V. Tsanov considers the more general situation
of an embedding G1 →֒ G2 of complex semisimple Lie groups, inducing an embedding
X1 := G1/B1 →֒ X2 := G2/B2, where B1 and B2 are nested Borel subgroups. The main
result of [T] extends Theorem I to this setting, giving necessary and sufficient conditions
for the pullback map Hd(X1,L|X) ←− Hd(X2,L) to be nonzero, when L is an equivariant
bundle on X2; see [T, Theorem 2.2]. The arguments in [T] use Lie algebra cohomology,
and are quite different in character from the arguments of this paper.

In the preprint [Re2] N. Ressayre ([Re2, Theorem 1]) states that every generalized PRV
component of stable multiplicity one is a cohomological component. That is, this result
states that part (b) of Theorem II holds without requiring either of the conditions (i) or (ii)
of (b).
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Finally, the varieties X = G/B considered in this paper have the property that they are
projective varieties acted on transitively by an algebraic group. There is another natural
class of varieties also fitting this description, namely Abelian varieties. Here Mumford’s
index theorem and the theorem on irreducibility of the theta-group representation take
the place of the Borel-Weil-Bott theorem. In [G], N. Grieve proves results on the surjectiv-
ity of cup product maps between cohomology of line bundles on Abelian varieties, again
subject to certain combinatorial restrictions.

1.7. Acknowledgments. We thank P. Belkale, W. Fulton, A. Knutson, B. Kostant, S.
Kumar, O. Mathieu, K. Purbhoo, and D. Wehlau for numerous useful discussions. Ivan
Dimitrov acknowledges excellent working conditions at the Max-Planck Institute. Mike
Roth acknowledges the hospitality of the University of Roma III.

2. NOTATION AND BACKGROUND RESULTS

2.1. Notation and conventions. The ground field is algebraically closed of characteristic
zero. Throughout the paper we fix a semisimple connected algebraic group G, a Borel
subgroup B ⊂ G, and a maximal torus T ⊂ B. All parabolic subgroups we consider con-
tain T. The Lie algebras of algebraic groups are denoted by Fraktur letters, e.g. g, b, t, etc.
We use the term ”G-module” instead of ”representation of G” to avoid differentiating be-
tween representations of algebraic groups and modules over the respective Lie algebras;
likewise, since T is fixed, we use the term ”weight” both for characters of T and weights
of t; in particular we only consider integral weights of t.

The point wB/B ∈ Xw ⊆ X = G/B, where w ∈ W and Xw is the corresponding Schubert
variety, is denoted by w for short. If M = G/P for some parabolic P we similarly use w to
indicate the point wP/P ∈ M.

If Λ is the lattice of weights of T we denote the group ring of Λ by Z[Λ], i.e.

Z[Λ] =

{
k∑

i=1

cie
λi | ci ∈ Z, λi ∈ Λ

}
.

For a T–moduleM, the formal character ofM is

ChM =
∑

λ∈Λ

dimMλeλ ∈ Z[Λ],

where Mλ = {x ∈ M| t · x = λ(t)x for every t ∈ t}. All formal characters discussed in
this paper are contained in Z[∆]. For a subset Φ ⊆ ∆, the formal character of ⊕α∈Φgα is
denoted by 〈Φ〉, i.e.

〈Φ〉 =
∑

α∈Φ

eα.

If w is an element of the Weyl group W , then ℓ(w) means the length of any minimal ex-
pression givingw as a product of simple reflections. If v is a word in the simple reflections,
then ℓ(v) is the number of reflections in the word. Note that, if v is a word in simple re-
flections, and v ∈ W is the corresponding element of the Weyl group, then ℓ(v) = ℓ(v)
if and only if v is a reduced word. If v = si1 . . . sim is a non-empty word, we denote
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by vR the word si1 . . . sim−1 obtained from v by dropping the rightmost reflection in v. If

v = (v1, . . . , vk) is a sequence of words then we set ℓ(v) =
∑k

i=1 ℓ(vi).

The following notation is used consistently throughout the paper.

⊔ki=1 – disjoint union
κ(·, ·) – the Killing form of G
Λ, Λ+ – weight lattice and cone of dominant weights
Vµ – irreducible G-module of highest weight µ
mult(Vµ,V) – the multiplicity of Vµ in V
{α1, . . . , αn} – base of simple roots of B
W – Weyl group of g

w · λ – w(λ+ ρ)− ρ, the result of the affine action of w ∈ W on λ ∈ Λ
si – simple reflection along αi
Pαi

– the minimal parabolic subgroup of G associated to αi
PI – the minimal parabolic subgroup of G associated to a set I of simple roots
WP – the Weyl group of a parabolic subgroup P ⊆ G
spanZ>0

Φ – the set of non-negative integer combinations of elements of Φ ⊆ ∆

u or v – a word si1 . . . sim in the simple reflections of the Weyl group
u, v – the element ofW corresponding to u or v
vR – the word obtained by dropping the rightmost reflection of v
u or v – a sequence (u1, . . . , uk) or (v1, . . . , vk) of words
Φw – w−1∆− ∩∆+, the inversion set of w ∈ W
〈Φ〉 –

∑
α∈Φ e

α, the formal character of ⊕α∈Φgα, where Φ ⊂ ∆
ℓ(w) – the length of w ∈ W
Lλ – the line bundle on X corresponding to B-module on which T acts via −λ
N – the dimension of X
πi – the projection πi : X −→ G/Pαi

(a P1-fibration)

2.2. Inversion sets. Let ∆+ be the set of positive roots of g (with respect to B). Following
Kostant [K1, Definition 5.10], for any element w of the Weyl group W we define Φw, the
inversion set of w, to be the set of positive roots sent to negative roots by w, i.e.,

(2.2.1) Φw := w−1∆− ∩∆+.

For a subset Φ of ∆+, we set Φc := ∆+ \ Φ. We will need the following formulas, which
follow easily from the definition:

(2.2.2) Φw0w = Φc
w;

(2.2.3) w−1∆+ = Φc
w ⊔ −Φw;

(2.2.4) w−1 · 0 = w−1ρ− ρ = −
∑

α∈Φw

α.
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2.3. Generalized PRV components. For fixed dominant weights µ1, µ2, and µ it is clear
that the two conditions

(a) there exist w1, w2, and w inW such that w−1µ = w−1
1 µ1 + w−1

2 µ2,
(b) there exists v inW such that µ is in theW-orbit of µ1 + vµ2

are equivalent. If these conditions are satisfied we call Vµ a generalized PRV component of
Vµ1
⊗Vµ2

.

As is suggested by the name, but is far from obvious from the definition, every general-
ized PRV component of Vµ1

⊗Vµ2
is in fact a component of the tensor product Vµ1

⊗Vµ2
of

G-modules. This was first proved when v = w0 (i.e., when µ is in theW-orbit of µ1+w0µ2)
in [PRV]. In the literature this component is referred to simply as the PRV component. The
general case, that Vµ is a component of Vµ1

⊗ Vµ2
for an arbitrary v, became known as the

PRV conjecture, and was established independently by Kumar [Ku] and Mathieu [M].

In the present paper we extend the notion of generalized PRV component to compo-
nents of the tensor product of k irreducible G-modules for k > 2. We call Vµ a gener-
alized PRV component of Vµ1

⊗ · · · ⊗ Vµk
if there exist w1,. . . , wk, and w in W such that

w−1µ =
∑k

i=1w
−1
i µi. A straightforward induction from the case k = 2 implies that ev-

ery generalized PRV component of Vµ1
⊗ · · · ⊗ Vµk

is a component of the tensor product
Vµ1
⊗ · · · ⊗ Vµk

of G-modules. We record the special case when µ = 0 for use in the proof
of Theorem I.

Lemma (2.3.1) — For any dominant weights µ1,. . . , µk, and Weyl group elements w1,. . . ,

wk, if
∑k

i=1w
−1
i µi = 0 then (Vµ1

⊗ · · · ⊗Vµk
)G 6= 0.

2.4. Borel-Weil-Bott theorem. Suppose that λ is a regular weight, so there is a unique
w ∈ W with w ·λ ∈ Λ+. The Borel-Weil-Bott theorem identifies the cohomology of the line
bundle Lλ on X as G-modules:

Hd(X,Lλ) =

{
V∗
w·λ if d = ℓ(w)

0 otherwise.

If λ is not a regular weight then the cohomology of Lλ is zero in all degrees.

2.5. Serre Duality on X. For any weight λ set S(λ) = −λ−2ρ. Since the canonical bundle
KX of X is equal to L−2ρ we see that LS(λ) = KX ⊗ L∗

λ. In other words, S is the function
that for each weight λ returns the weight S(λ) of the line bundle Serre dual to Lλ; the map
S is clearly an involution. Let w be any element of the Weyl group and λ any weight. A
straightforward computation shows that S commutes with the affine action of the Weyl
group, i.e. that w · S(λ) = S(w · λ).

Lemma (2.5.1) — If λ is a regular weight and w the unique element of the Weyl group
with w · λ ∈ Λ+ then (w0w) · S(λ) ∈ Λ+.

Proof. If µ is a dominant weight then V∗
µ = V−w0µ. Therefore if w · λ = µ ∈ Λ+ then

(2.5.2) (w0w) · S(λ) = w0 · S(w · λ) = w0 · S(µ) = −w0µ ∈ Λ+. �
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Since ℓ(w0w) = N − ℓ(w), the calculation above fits in neatly with the Borel-Weil-Bott
theorem and Serre duality. If λ is a regular weight and w an element of the Weyl group
with w · λ = µ ∈ Λ+ then we have

Vµ
BWB (

Hℓ(w)(X,Lλ)
)∗ Serre

HN−ℓ(w)(X,KX ⊗ L∗
λ)

2.5
Hℓ(w0w)(X,LS(λ))

BWB

+ (2.5.2)
V∗

−w0µ
.

2.6. Schubert varieties. For an element w ∈ W of the Weyl group the Schubert variety Xw

is defined by

Xw := BwB/B ⊆ G/B = X.

Recall that the classes of the Schubert cycles {[Xw]}w∈W give a basis for the cohomology
ring H∗(X,Z) of X. Each [Xw] is a cycle of complex dimension ℓ(w). The dual Schubert
cycles {[Ωw]}w∈W , given by Ωw := Xw0w, also form a basis. Each [Ωw] is a cycle of com-
plex codimension ℓ(w). The work of Demazure [De1], Kempf [Ke], Ramanathan [R], and
Seshadri [S] shows that each Schubert variety Xw is normal with rational singularities.

Remark. If w1,. . . , wk, and w ∈ W are such that ℓ(w) =
∑
ℓ(wi), then the intersection

∩ki=1[Ωwi
]·[Xw] is a number. The number is the coefficient of [Ωw] when writing the product

∩ki=1[Ωwi
] in terms of the basis {[Ωv]}v∈W .

To reduce notation we use w to also refer to the point wB/B ∈ Xw ⊆ X. In particular for
the identity e ∈ W , Xe = {e}. Note that e ∈ X is also the image of 1G under the projection
from G onto X.

Bruhat order. The Bruhat order on the Weyl group W is the partial order given by the
relation v 6 w if and only if Xv ⊆ Xw. The minimum element in this order is e and
the maximum element is w0, corresponding to the subvarieties Xe = {e} and Xw0 = X
respectively.

The following result will be used several times throughout the paper.

Lemma (2.6.1) — Suppose that w1,. . . , wk are elements of the Weyl group such that ∆+ =
⊔ki=1Φwi

. Then ∩ki=1[Ωwi
] 6= 0.

Proof. Each class [Ωwi
] is represented by any translation of the cycle Ωwi

, so to understand
∩ki=1[Ωwi

] we can study the intersection of schemes

(2.6.2)
k⋂

i=1

(w0wi)
−1Ωwi

.

Each of the schemes (w0wi)
−1Ωwi

passes through e ∈ X. The tangent space to (w0w)−1Ωw

at e is

Lie
(
(w0w)−1B(w0w)

)
/Lie(B) = ⊕

α∈−Φw0w

gα
(2.2.2)
= ⊕

α∈−Φc
w

gα ⊆ b− = TeX,

where we have identified TeX with b− via the projection G −→ X. Noting that
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k⋂

i=1

Φc
w = (

k⋃

i=1

Φw)c = (∆+)c = ∅,

we conclude that the intersection of the tangent spaces of the varieties (w0wi)
−1Ωwi

at e ∈
X is 0. Hence the intersection (2.6.2) is transverse at the identity. By Kleiman’s transver-
sality theorem [Kl, Corollary 4(ii)], small translations of each of the varieties (w0wi)

−1Ωwi

will intersect properly and compute the intersection number. Small translations of vari-
eties cannot remove transverse points of intersection and thus ∩ki=1[Ωwi

] 6= 0. �

2.7. Symmetric and nonsymmetric forms. Most questions we consider, including Prob-
lem I and Problem II, can be stated in nonsymmetric and symmetric forms and it is fre-
quently convenient to switch from one to the other. We illustrate this procedure by show-
ing how to switch from the nonsymmetric to the symmetric form of Problem I.

In the nonsymmetric form we are given w1,. . . , wk, and w, such that ℓ(w) =
∑
ℓ(wi), and

λ1,. . . , λk, and λ, such that λ =
∑
λi, satisfying the additional conditions that wi · λi ∈ Λ+

for i = 1,. . . , k, and w · λ ∈ Λ+. This corresponds to the data of a cup product problem:

(2.7.1) Hℓ(w1)(X,Lλ1)⊗ · · · ⊗ Hℓ(wk)(X,Lλk
)

∪
−→ Hℓ(w)(X,Lλ).

Set µi = wi · λi for i = 1,. . . , k, and µ = w · λ to keep track of the modules which appear
as cohomology groups. By the Borel-Weil-Bott theorem the map (2.7.1) corresponds to a
G-equivariant map

V∗

µ1
⊗ V∗

µ2
⊗ · · · ⊗ V∗

µk
−→ V∗

µ.

By Serre duality HN−ℓ(w)(X,KX ⊗ L∗
λ) 6= 0 and the cup product map

Hℓ(w)(X,Lλ)⊗ HN−ℓ(w)(X,KX ⊗ L∗
λ)

∪
−→ HN(X,KX)

is a perfect pairing. Since Hℓ(w)(X,Lλ) is an irreducible G-module, the surjectivity of (2.7.1)
is equivalent to the surjectivity of the cup product map

(2.7.2) Hℓ(w1)(X,Lλ1)⊗ · · · ⊗ Hℓ(wk)(X,Lλk
)⊗HN−ℓ(w)(X,KX ⊗ L∗

λ)
∪
−→ HN(X,KX).

To get the symmetric form of this problem, we set wk+1 = w0w, λk+1 = S(λ) = −λ − 2ρ,
and µk+1 = −w0µ = wk+1 ·λk+1. Then Lλk+1

= KX⊗L∗
λ by §2.5, wk+1 ·λk+1 ∈ Λ+ by Lemma

2.5.1, and ℓ(wk+1) = N− ℓ(w), so that (2.7.2) becomes

Hℓ(w1)(X,Lλ1)⊗ · · · ⊗ Hℓ(wk)(X,Lλk
)⊗Hℓ(wk+1)(X,Lλk+1

)
∪
−→ HN(X,KX).

Since
∑k+1

i=1 λi = λ+ (−λ− 2ρ) = −2ρ and L−2ρ = KX, this is again a cup product problem
of the type we consider, but now all weights λ1, . . . , λk+1 and Weyl group elements w1,. . . ,
wk+1 play equal roles.

By (2.2.2) Φwk+1
= Φc

w and therefore the condition that Φw = ⊔ki=1Φwi
is equivalent to

the condition ∆+ = ⊔k+1
i=1 Φwi

. Since [Ωwk+1
] = [Xw0wk+1

] = [Xw], the intersection numbers

10



⋂k
i=1[Ωwi

]· [Xw] and
⋂k+1
i=1 [Ωwi

] are the same. Finally, the multiplicity of Vµ in Vµ1⊗· · ·⊗Vµk

is the same as the multiplicity of the trivial module in Vµ1 ⊗ · · · ⊗ Vµk
⊗ Vµk+1

because
Vµk+1

= V−w0µ = V∗
µ.

To go from the symmetric form to the nonsymmetric form we simply reverse the above
procedure, although of course we are free to desymmetrize with respect to any of the
indices i = 1,. . . , k + 1, and not just the last one.

For convenience we list below the symmetric and nonsymmetric forms of some formulas
and expressions we are interested in.

Nonsymmetric Symmetric

k
⊗
i=1

Hℓ(wi)(X,Lλi
) −→ Hℓ(w)(X,Lλ)

k+1
⊗
i=1

Hℓ(wi)(X,Lλi
) −→ HN(X,KX)

k∑

i=1

ℓ(wi) = ℓ(w)
k+1∑

i=1

ℓ(wi) = N

k∑

i=1

λi = λ

k+1∑

i=1

λi = −2ρ

k∑

i=1

w−1
i µi − w

−1µ

k+1∑

i=1

w−1
i µi

k∑

i=1

w−1
i · 0− w

−1 · 0
k+1∑

i=1

w−1
i · 0 + 2ρ

Φw =
k⊔

i=1

Φwi
∆+ =

k+1⊔

i=1

Φwi

k⋂

i=1

[Ωwi
] · [Xw]

k+1⋂

i=1

[Ωwi
]

Since k is an arbitrary positive integer, after switching to the symmetric form we often
use k in place of k + 1 to reduce notation.

2.8. Demazure reflections. Suppose that W and M are varieties and π : W −→ M is a
P1-fibration, i.e., a smooth morphism with fibres isomorphic to P1. Let L be a line bundle
on W and b be the degree of L on the fibres of π. Demazure [De2, Theorem 1] proves the
following isomorphism of vector bundles on M:

(2.8.1) Riπ∗L ∼= R1−iπ∗
(
L⊗ ωb+1

π

)
for i = 0, 1.

where ωπ is the relative cotangent bundle of π. The line bundle L ⊗ ωb+1
π is called the

Demazure reflection of L with respect to π.

11



Note that there is at most one value of i for which the resulting vector bundles are
nonzero: i = 0 if b > 0, i = 1 if b 6 −2, and neither if b = −1. Equation (2.8.1) and
the corresponding Leray spectral sequence give the isomorphisms

Hj(W,L) ∼=

{
Hj+1(W,L⊗ ωb+1

π ) if b > 0
Hj−1(W,L⊗ ωb+1

π ) if b 6 −2
for all j.

Link between Demazure reflections and the affine action. Let αi be any simple root, Pαi

the parabolic associated to αi, and πi : X −→ Mi := G/Pαi
the corresponding P1-fibration.

The relative cotangent bundle ωπi
of πi is the line bundle L−αi

. Given any λ ∈ Λ, the degree
of the line bundle Lλ on the fibres of πi is λ(α∨

i ) where α∨
i is the coroot corresponding to

αi. We thus obtain that the Demazure reflection of Lλ with respect to the fibration πi is the
line bundle:

Lλ ⊗ L
λ(α∨

i )+1
−αi

= Lλ−(λ(α∨

i )+1)αi
= Lsiλ−αi

= Lsi·λ

where si is the simple reflection corresponding to αi. The combinatorics of performing
Demazure reflections with respect to the various P1-fibrations of X is therefore kept track
of by the affine action of the Weyl group on Λ. In particular, if v = si1 · · · sim ∈ W and
λ ∈ Λ the result of applying the Demazure reflections with respect to the fibrations πim ,
πim−1 , . . . , πi1 in that order to Lλ is Lv·λ.

Demazure reflections and base change. Given any morphism h : Y2 −→ M we can form
the fibre product diagram

Y1
f

//

π1

��

W

π

��
Y2

h //

✷

M

.

If π is a P1-fibration then so is π1, and ωπ1 = f ∗ωπ. Therefore, for any line bundle L on V,
we have

f ∗(L⊗ ωb+1
π ) = (f ∗L)⊗ ωb+1

π1

where b is the degree of L on the fibres of π. The degree of f ∗L on π1 is also b and therefore
the formula above shows that the pullback of the Demazure reflection of L with respect
to π is the Demazure reflection of the pullback of L with respect to π1. Furthermore, by
the theorem on cohomology and base change, the natural morphisms

Riπ1∗ (f ∗L)
∼
←− h∗

(
Riπ∗L

)
and R1−iπ1∗

(
(f ∗L)⊗ ωb+1

π1

) ∼
←− h∗

(
R1−iπ∗(L⊗ ω

b+1
π )

)

are isomorphisms for i = 0, 1.

2.9. E2-terms and computation of maps on cohomology. Suppose that we have a com-
mutative diagram of varieties

W′ �

� γ
//

π′

��

W

π
��

M′ �

�

// M

12



where the vertical maps are proper and the horizontal maps are closed immersions. Sup-
pose further that we have coherent sheaves F on W and F ′ on W′, and a map ϕ : γ∗F −→
F ′ of sheaves on W′. The map ϕ induces maps ϕd : Hd(W,F) −→ Hd(W′,F ′) on coho-
mology and maps ϕd,k : Hd−k(M,Rk

π∗F) −→ Hd−k(M′,Rk
π∗F

′) on the E2-terms of the Leray
spectral sequences for F and F ′ with respect to π and π′. Assume that both spectral se-
quences degenerate at the E2-term. In §5.4 we will need to know when we can compute
ϕd by knowing the maps ϕd,k.

By the definition of convergence of a spectral sequence there are increasing filtrations

0 = U−1 ⊆ U0 ⊆ · · · ⊆ Ud = Hd(W,F) and 0 = U′

−1 ⊆ U′

0 ⊆ · · · ⊆ U′

d = Hd(W′,F ′)

such that Uk/Uk−1 = Hd−k(M,Rk
π∗F) and U′

k/U
′
k−1 = Hd−k(M′,Rk

π∗F
′) for k = 0,. . . , d.

Since the map ϕd on the cohomology groups is compatible with the filtrations (in the
sense that ϕd(Uk) ⊆ U′

k for k = −1,. . . , d), ϕd induces maps between the associated graded
pieces of the filtrations; these maps are exactly the maps ϕd,k.

We will need to know that ϕd can be computed from the maps ϕd,k in an elementary case.
Suppose there is a unique k such that Uk/Uk−1 is nonzero (and so Uk/Uk−1 = Hd(W,F)),
and a unique k′ such that U′

k′/U
′
k′−1 is nonzero (and so U′

k′/U
′
k−1 = Hd(W′,F ′)). Then we

can compute ϕd from the maps ϕd,k if and only if k = k′; if this occurs then ϕd = ϕd,k.

In order to show that we must check the condition k = k′ above, i.e., that the map on E2-
terms does not always determine the map ϕd, we give the following example of a nonzero
map between cohomology groups of sheaves where the induced map on E2-terms is zero.
This example is also a cup product map.

Example (2.9.1) — Let W = Pm × Pm for some m > 1, F = OPm(1) ⊠OPm(−r) with
r > m + 2, and let G = O∆(1 − r) be the restriction of F to the diagonal of W. We have
Hm(W,F) = H0(Pm,OPm(1))⊗ Hm(Pm,OPm(−r)) and Hm(W,G) = Hm(Pm,OPm(1− r)).
The natural restriction map ϕ : F −→ G induces the cup product map

ϕm : H0(Pm,OPm(1))⊗ Hm(Pm,OPm(−r))
∪
−→ Hm(Pm,OPm(1− r))

which is a surjective map of nonzero groups.

If π : W −→ M = Pm is the projection onto the first factor then both of the Leray spectral
sequences degenerate at the E2 term with only one nonzero entry in each sequence. We
have Hm(W,F) = H0(M,Rm

π∗F) (i.e., k = m) and Hm(W,G) = Hm(M, π∗G) (i.e., k′ = 0).
The maps ϕm,k on the E2-terms are clearly zero, even though ϕm is nonzero.

2.10. Bott-Samelson-Demazure-Hansen Varieties. Let v = si1 · · · sim be a word, not
necessarily reduced, of simple reflections. Associated to v is a variety Zv, a left action
of B on Zv, and a B-equivariant map fv : Zv −→ X. If v is nonempty there is also a B-
equivariant map πv : Zv −→ ZvR

expressing Zv as a P1-bundle over ZvR
together with a

B-equivariant σv : ZvR
−→ Zv section such that fvR

= fv ◦ σv.
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These varieties were originally constructed by Demazure [De1] and Hansen [Ha] follow-
ing an analogous construction by Bott and Samelson [BS] in the compact case. In this
subsection we recall their construction and several related facts. We give two different
descriptions of the construction; both will be used in the constructions in section 3.

Recursive Construction. Recall that e is unique point of X fixed by B. If the word v is
empty we define Zv to be e, the map fv to be the inclusion e →֒ X, and the B-action on Zv
to be trivial.

If v = si1 · · · sim is nonempty, let u = vR = si1 · · · sim−1 be the word obtained by dropping
the rightmost reflection of v. By induction we have already constructed Zu and the map
fu : Zu −→ X. Set h = πim ◦fu, where πim is the G-equivariant projection (and P1-fibration)
X −→ Mim = G/Pαim

. We then define Zv to be the fibre product Zu ×Mim
X, and fv and πv

to be the maps from the fibre product to X and to Zu respectively. Since h = πim ◦ fu, by
the universal property of the fibre product there exists a unique map σv : Zu −→ Zv such
that fu = fv ◦σv and idZu

= πv ◦σv . These maps are summarized in the following diagram,
where the square is a fibre product:

(2.10.1)

Zv
fv

//

πv

��

X

πim

��

✷

Zu
h //

}}}}}}}}

fu

>>~~~~~~~~
σv

CC

Mim

.

Since B acts on Zu and on X, and the maps fu, πim , and h are B-equivariant, by the uni-
versal property of the fibre product, the diagram (2.10.1) induces a B-action on Zv such
that fv and σv are B-equivariant maps. Since each morphism σv is a P1-fibration it follows
immediately that each Zv is a smooth proper variety of dimension ℓ(v).

Direct Construction. For any word v set

Pv :=

{
e if v is empty

Pαi1
× · · · × Pαim

if v = si1 · · · sim is nonempty.

If v is empty we define Zv, fv, and the B-action as in the direct construction.

If v = si1 · · · sim is nonempty then Zv is the quotient of Pv by Bm, where an element
(b1, . . . , bm) of Bm acts on the right on (p1, . . . , pm) by

(p1, . . . , pm) · (b1, . . . , bm) = (p1b1, b
−1
1 p2b2, b

−1
2 p3b3, . . . , b

−1
m−1pmbm).

The left action of B on Pv given by

b · (p1, p2, · · · , pm) = (bp1, p2, · · · , pm)

commutes with the right action of Bm and therefore descends to a left action of B on Zv.
We denote the corresponding B-equivariant quotient map by ψv : Pv −→ Zv.

14



The product map Pv
φv

−→ G given by (p1, . . . , pm) 7→ p1 · · · pm is equivariant for the left
B-action described above and left multiplication of G by B. Under the homomorphism
of groups Bm −→ B given by the projection (b1, . . . , bm) 7→ bm the product map φv is also
equivariant for the right action of Bm on Pv and the right multiplication of G by B. The
product map therefore descends to a left B-equivariant morphism fv : Zv −→ X.

Let u = vR = si1 · · · sim−1 be the word obtained by dropping the rightmost reflection in
v. The projection map prv : Pv−→Pu sending (p1, . . . , pm) to (p1, . . . , pm−1) is equivariant

with respect to the projection Bm −→ Bm−1 sending (b1, . . . , bm) to (b1, . . . , bm−1). Similarly
the inclusion map jv : Pu →֒Pv sending (p1, . . . , pm−1) to (p1, . . . , pm−1, 1G) is equivariant
with respect to the inclusion Bm−1 →֒ Bm sending (b1, . . . , bm−1) to (b1, . . . , bm−1, bm−1).
The maps prv and jv respect the left B-action on Pv and Pu, and therefore descend to B-
equivariant maps πv : Zv −→ Zu and σv : Zu −→ Zv. Since prv ◦jv = idPu

and φv ◦ jv = φu,
taking quotients we obtain πv ◦ σv = idZu

and fv ◦ σv = fu. Finally, the fibres of πv are
isomorphic to Pαim

/B ∼= P1.

We record the following well-known facts about the construction above.

Proposition (2.10.2) —

(a) The varieties Zv produced by the recursive and direct constructions above are iso-
morphic over X.

(b) If v = si1 · · · sim is a reduced word with product v then the image of fv : Zv −→ X is
Xv and fv is a resolution of singularities of Xv.

Proof. Part (b) is proved in [De1] and [Ha]. To show (a) it is enough to show that the
varieties produced by the direct construction satisfy the fibre product diagram (2.10.1).
This is most easily checked after pulling back (2.10.1) via the maps G −→ X and Pu =
Pi1 × · · · × Pim−1 −→ Zu ; the details are omitted here. �

Maximum points. Let v = si1 · · · sim be a reduced word with product v. By Proposition
2.10.2(b) the image of Zv under fv is Xv and one can check that there is a unique point
pv of Zv which maps to v ∈ Xv. More specifically, from the point of view of the direct
construction the point (si1, . . . , sim) is a point of Pv and its image under the quotient map
Pv −→ Zv is pv. From the point of view of the recursive construction one starts with p∅ =
e, and recursively defines pv to be unique torus fixed point in the P1-fibre of πv : Zv −→ Zu
over pu which is not equal to σv(pu), where u = vR = si1 · · · sim−1 . Note that pv is the
unique torus fixed point of Zv whose image in Xv is the largest in the Bruhat order among
torus-fixed points of Xv. We call pv the maximum point of Zv.

Since pv is a torus fixed point, the torus acts on the tangent space Tpv
Zv and it will be

important for us to know the formal character of Tpv
Zv. It follows inductively from the

recursive construction that

(2.10.3) Ch(Tpv
Zv) = 〈Φv−1〉.

2.11. Semi-stability of torus fixed points. The following lemma is due to Kostant.
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Lemma (2.11.1) — Let W be a projective variety with a G-action and L a G-equivariant
ample line bundle on W. A torus fixed point q ∈W is semi-stable with respect to L if and
only if the weight of Lq is zero. In this case the orbit of q is closed in the semi-stable locus.

Proof. If the action of the torus on the fibre Lq is non-trivial then it is easy to see (for
instance using the Hilbert-Mumford criterion for semi-stability, [MFK, Theorem 2.1, p.
49]) that q is not a stable point.

Conversely, suppose that the weight of Lq is zero. Replacing L by a multiple we may
assume that L is very ample and gives an embedding W →֒ Pr for some r. Let Ar+1 be
the affine space corresponding to Pr and Ar+1 \ {0} −→ Pr be the quotient map. Then G
acts linearly on Ar+1 inducing an action on Pr compatible with the action on W. Let q̃ be
any lift to Ar+1 of the image of q in Pr. The condition that the torus act trivially on Lq is
equivalent to the condition that q̃ be fixed by T under the G-action on Ar+1. Kostant ([K2,
p. 354, Remark 11]) proves that for any finite dimensional module of a reductive group G
and any point q̃ fixed by T, the G-orbit of q̃ is closed; this result was also later generalized
by Luna [Lu2, Theorem (**)]. Since G is reductive and the orbit of q̃ does not meet zero,
there is a G-invariant homogeneous form of some degree m which is nonzero on q̃. This
corresponds to a G-invariant section s ∈ H0(W,Lm)G such that s(q) 6= 0. We thus see that
if the weight of Lq is zero then q is a semi-stable point, and the orbit of q is closed in the
semi-stable locus. �

3. DIAGONAL BOTT-SAMELSON-DEMAZURE-HANSEN-KUMAR VARIETIES

In this section we give a generalization of the varieties from §2.10. The construction is a
variation of a construction of Kumar in [Ku]; see §3.10 for a comparison. These varieties
are obtained by applying the idea of the Bott-Samelson resolution to the diagonal inclu-
sion X →֒ Xk. They can also be thought of as a desingularization of the total space of
the variety of intersections of translates of Schubert cycles. This alternate description is
established in Theorem 3.7.4.

More specifically, for each sequence v = (v1, . . . , vk) of words we construct a smooth
variety Yv of dimension N + ℓ(v) with a G-action together with a proper map fv : Yv −→
Xk which is G-equivariant for the diagonal action of G on Xk. If u is the sequence obtained
by dropping a single simple reflection from the right of one of the vj’s then Yv is a P1-
fibration over Yu, and there is a section Yu →֒ Yv compatible with the maps fv and fu to
Xk. The fibration and section maps are G-equivariant; moreover they are compatible with
the P1-fibrations on factors of Xk. These relationships are summarized in diagram (3.1.2).

3.1. Recursive Construction. Let v = (v1, . . . , vk) be a sequence of words. If all vj
are empty, i.e., if v = (∅, . . . ,∅), we set Yv = X and let fv : Yv −→ Xk be the diagonal
embedding.

Otherwise suppose that vj is nonempty. Let

(3.1.1) ul :=

{
vl if l 6= j

(vj)R if l = j
, l = 1, . . . , k
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and set u = (u1, . . . , uk). By induction on ℓ(v) we may assume that Yu and the map
fu : Yu −→ Xk have been constructed. If vj = si1 · · · sim , so that uj = si1 · · · sim−1 then
we define Yv, the map fv, the projection πv,u, and the section σv,u by the following fibre
product square:

(3.1.2)

Yv

fv
//

πv,u

��

Xk

(idX)j−1×πim×(idX)k−j

��

Yu
//

✷
wwwwwwwww

fu

;;wwwwwwwwww
σv,u

CC

Xj−1 ×Mim ×Xk−j

.

Here πim : X −→ Mim := G/Pαim
is the natural projection, and Xk −→ Xj−1 ×Mim × Xk−j

is the projection πim on the j-th factor and the identity on all others. The bottom map
Yu −→ Xj−1×Mim×Xk−j is the map fu to Xk followed by the map Xk −→ Xj−1×Mim×Xk−j

above.

Since Xk −→ Xj−1 × πim × Xk−j is a P1-fibration the same is true of πv,u. We conclude by
induction that the variety Yv is smooth, proper, and irreducible of dimension N + ℓ(v).
The maps fu and idYu

from Yu to Xk and Yu respectively give rise to the section σv,u. By
construction we have fu = fv ◦ σv,u and idYu

= πv,u ◦ σv,u.

This construction is well-defined. Indeed, assume that we had dropped a simple reflec-
tion from the right of vj′ , j

′ 6= j to obtain a sequence of words u′ and used Yu′ instead of
Yu to construct Yv. We claim that the resulting variety Yv is the same. This follows easily
by induction on ℓ(v) and the fact that the diagram expressing the commutativity of the
projections on the different factors is a fibre square:

Xk
(idX)j′−1×πim×(idX)k−j′

//

(idX)j−1×πim×(idX)k−j

��

Xj′−1 ×Mi′m ×Xk−j′

��

Xj−1 ×Mim ×Xk−j //

✷

Xj′−1 ×Mim′
× Xj−j′−1 ×Mim ×Xk−j

.

Here, by symmetry, we have assumed that j′ < j.

3.2. Direct Construction. Let v = (v1, . . . , vk) be a sequence of words. The group B acts
diagonally on Zv1×· · ·×Zvk

on the left. We define Yv to be the quotient of G× (Zv1×· · ·×
Zvk

) by the left B-action

(3.2.1) b · (g, z1, . . . , zk) = (gb−1, b · z1, . . . , b · zk).

Since G × (Zv1 × · · · × Zvk
) is smooth and B acts without fixed points, the quotient Yv is

smooth.
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The group G acts on G × (Zv1 × · · · × Zvk
) by left multiplication on the first factor. Since

this action commutes with the action of B, it descends to an action of G on Yv. The map
from G× (Zv1 × · · · × Zvk

) to Xk given by

(3.2.2) (g, z1, . . . , zk) 7→
(
g · fv1(z1), g · fv2(z2) . . . , g · fvk

(zk)
)

is invariant under the B-action. If we let G act on Xk diagonally then (3.2.2) is also G-
equivariant and hence descends to a G-equivariant morphism fv : Yv −→ Xk.

As in the direct construction, we suppose that vj is nonempty, define ul by (3.1.1) and
set u = (u1, . . . , uk). The B-equivariant morphisms πv : Zvj

−→ Zuj
and σvj

: Zuj
−→

Zvj
from §2.10 give rise to B-equivariant morphisms between G × (Zv1 × · · · × Zvk

) and

G × (Zu1
× · · · × Zuk

) and hence to a G-equivariant P1-fibration πv,u : Yv −→ Yu and a
G-equivariant section σv,u : Yu −→ Yv. These maps fit together to give diagram (3.1.2).

3.3. Expanded Version of the Direct Construction. Combining the formulas for Pv from
§2.10 with the direct construction above we obtain a more explicit expression for Yv. If
v = (v1, . . . , vk) with vj = si1,j

· · · simj,j
for j = 1, . . . , k then we define Yv to be the quotient

of

G× Pv1
× · · · × Pvk

= G× (Pi1,1 × · · · × Pim1,1)× · · · × (Pi1,k × · · · × Pimk,k
)

by the right action of B× Bm1 × · · · × Bmk , where an element

(b0 | b1,1, . . . , bm1,1 | b1,2, . . . , bm2,2 | · · · | b1,k, . . . , bmk ,k)

acts from the right on

(g | pi1,1 , pi2,1 , . . . , pim1,1 | pi1,2 , pi2,2 , . . . , pim2,2 | · · · | pi1,k
, . . . , pimk,k

)

to give

(gb0 | b
−1
0 pi1,1b1,1, b

−1
1,1pi2,1b2,1, . . . , b

−1
m1−1,1pim1,1bm1,1 | · · · | b

−1
0 pi1,k

b1,k, . . . , b
−1
mk−1,kpimk,k

bmk ,k).

(In the expressions above the vertical lines “|” are used to indicate logical groupings,
but otherwise have no significance.) The group G acts on G × Pv1

× · · · × Pvk
by left

multiplication on the G factor, this action descends to a left action on Yv.

The map fv is induced by the map sending an element

(g | pi1,1 , pi2,1 , . . . , pim1,1 | pi1,2 , pi2,2 , . . . , pim2,2 | · · · | pi1,k
, . . . , pimk,k

)

of G× Pv1
× · · · × Pvk

to

(3.3.1) (gpi1,1pi2,1 · · · pim1,1 | gpi1,2pi2,2 · · ·pim2,2 | · · · | gpi1,k
· · · pimk,k

)

in Xk. From the explicit formulas this is clearly a G-equivariant map.

18



Finally, if v is a sequence of words, and u is a sequence obtained by dropping the right-
most reflection of a single word in v (as in §3.2) then the G-equivariant P1-fibration
πv,u : Yv −→ Yu and the G-equivariant section σv,u : Yu −→ Yv are constructed using the
obvious formulas analogous to those in §2.10. It again follows easily from these formulas
that fu = fv ◦ σv,u.

Remark. Note that the variety Yv depends on the sequence of words v = (v1, . . . , vk) and
not just on the corresponding sequence (v1, . . . , vk) of Weyl group elements. If we choose
a different reduced factorization of each vi the resulting variety is birational to Yv over
Xk. The proof is omitted because we do not need this fact.

3.4. The map f◦. As before, let v = (v1, . . . , vk) be a sequence of words. Besides the map
fv to Xk, each Yv comes with a G-equivariant map f◦ to X expressing Yv as a Zv1×· · ·×Zvk

-
bundle over X.

From the point of view of the construction in §3.1 f◦ is the composite map

Yv

πv,u

−→ Yu −→ · · · −→ Y∅ = X

obtained by dropping the elements in the entries of v one at a time. The fibre over e in
X is then the result of applying the recursive construction in §2.10 separately for each vi,
i = 1,. . . , k, and so the fibre is Zv1 × · · · × Zvk

.

From the point of view of the construction in §3.2 one starts with the projection G× (Zv1×
· · · × Zvk

) −→ G onto the first factor. This is B-equivariant for the right action of B on G
and hence descends to a morphism f◦ : Yv −→ X expressing Yv as a Zv1×· · ·×Zvk

-bundle
over X.

Let u = (∅, v1, . . . , vk). Since the action of B on the point Z∅ = e is trivial, we have an
isomorphism

G× Zv1 × · · · × Zvk
≃ G× Z∅ × Zv1 × · · · × Zvk

of B-varieties and hence a G-isomorphism φ : Yv −→ Yu. From the explicit description in
(3.2.2) we see that the composite map fu ◦φ : Yv −→ Xk+1 followed by projection onto the
first factor is f◦, and that fu ◦ φ followed by projection onto the last k factors is fv.

Thus the map f◦ × fv : Yv −→ X× Xk is equal to the map f(∅,v1,...,vk) : Y(∅,v1,...,vk) −→ Xk+1

under the isomorphism φ. This will be used in the proof of Theorem 3.7.4.

3.5. Maximum point. Let v = (v1, . . . , vk) be a sequence of words. We define the maximum
point pv of Yv to be the product maximum point (§2.10) pv1 × · · · × pvk

in the fibre Zv1 ×
· · ·×Zvk

of f◦ over e in X. Alternatively, if vj = (si1,j
, . . . , simj,j

) for j = 1,. . . , k then (in the

notation of §3.3) the point

(e | si1,1 , si2,1 , . . . , sim1,1 | · · · | si1,k
, . . . , simk,k

)

is a point of
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G× (Pi1,1 × · · · × Pim1,1)× · · · × (Pi1,k × · · · × Pimk,k
)

and its image in Yv under the quotient map by B×Bm1 ×· · ·×Bmk is the maximum point
pv. If each vj is a factorization of some vj ∈ W , then the image fv(pv) of the maximum

point in Xk is the point qv := (v1, . . . , vk).

3.6. Tangent space formulas. We will need to know the formal character (see §2.1) of the
tangent space of Yv at the maximum point pv. If each vj is a reduced word with product
vj , then the formal character of the tangent space to Zvj

at pvj
is 〈Φv−1

j
〉 and the formal

character of the tangent space of X at e is 〈∆−〉.

Since the fibration f◦ is smooth, the formal character of TpvYv is the sum of these formal
characters, i.e.,

Ch(TpvYv) = 〈∆−〉+
k∑

i=1

〈Φv−1
i
〉.

If vj = w−1
j w0 for j = 1,. . . , k, then by (2.2.2) this is the same as

(3.6.1) Ch(TpvYv) = ∆− +

k∑

i=1

〈Φc
wi
〉.

3.7. Fibres and images of fv.

Lemma (3.7.1) — Let v = (∅, v2, . . . , vk) be a sequence of words, with each vi a reduced
factorization of vi, and let Xv be the (reduced) image of fv in Xk. Then:

(a) Projection onto the first factor of Xk endows Xv with the structure of a fibre bundle
over X with fibre isomorphic to Xv2 × · · · × Xvk

.
(b) The variety Xv is normal with rational singularities of dimension N + ℓ(v), and the

induced map Yv −→ Xv is birational with connected fibres.

Proof. Projection on the first factor of Xk gives a G-equivariant morphism Xv

η
−→ X. Since

G acts transitively on X this morphism is surjective and all fibres are isomorphic, i.e., this
expresses Xv as a fibre bundle over X. To study the fibres we look at the fibre η−1(e) over
the B-fixed point e of X.

Consider the diagram
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(3.7.2)

G× e× Zv2 × · · · × Zvk

ψv

//

idG × idxo ×fv1
×···×fvk

��

Yv

fv

��

G× e×Xv2 × · · · ×Xvk

φ
// Xk

where φ is given by φ(g, e, x2, . . . , xk) = (g · e, g · x2, . . . , g · xk) ∈ Xk. Since ψv and the
leftmost vertical map are surjective, the image of fv is the same as the image of φ. Since B
is the stabilizer of e, the fibre η−1(e) is the image of B × e × Xv2 × · · · × Xvk

under φ. But
each Schubert variety Xw is stable under the action of B and therefore the image above is
just e× Xv2 × · · · × Xvk

, proving (a).

From the fibration η it is clear that

dim(Xv) = dim(X) +
k∑

i=2

dim(Xvi
) = N +

k∑

i=2

ℓ(vi) = N + ℓ(v)

because each vi is reduced and hence ℓ(vi) = ℓ(vi) for i > 2.

The product of normal varieties is again normal, and the product of varieties with ra-
tional singularities also has rational singularities. Since each Xw is normal with rational
singularities (§2.6), the fibres also have this property, and therefore so does Xv (since the
properties of being normal or having rational singularities are local, and Xv is locally the
product of the fibre and a smooth variety).

Since each map fvi
: Zvi

−→ Xvi
is a resolution of singularities of a normal variety, each

fvi
is birational with connected fibres. It follows that the map Yv −→ Xv, which is the

quotient of the leftmost vertical map in (3.7.2) by the action of B is also birational with
connected fibres. This proves (b). �

Definition (3.7.3) — If Xw is any Schubert subvariety of X and q is any point of X, we
define the subvariety qXw of X to be the result of translating Xw by any element in the
B-coset corresponding to q. Since Xw is B-stable the result is independent of the choice of
representative for q.

The following theorem gives more precise information about the image and fibres of fv.

Theorem (3.7.4) — Let v = (v1, . . . , vk) be a sequence of reduced words with correspond-

ing Weyl group elements (v1, . . . , vk). Then there exists a factorization fv : Yv

τ
−→ Qv

h
−→

Xk such that

(a) Qv is normal with rational singularities;
(b) the map τ : Yv −→ Qv is proper and birational with connected fibres;
(c) for each point (q1, . . . , qk) of Xk there is a natural inclusion of the scheme-theoretic

fibre h−1(q1, . . . , qk) into the scheme-theoretic intersection
⋂k
i=1 qiXv−1

i
;
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(d) the inclusion of schemes in (c) induces an isomorphism at the level of reduced
schemes, or in other words, the set theoretic fibre h−1(q1, . . . , qk) is equal to the set

theoretic intersection
⋂k
i=1 qiXv−1

i
.

Proof. Let f◦× fv : Yv −→ X×Xk be the product of fv and the map f◦ : Yv −→ X from §3.4
expressing Yv as a Zv1

× · · · × Zvk
-bundle over X. We define Qv to be the image of f◦ × fv

with the reduced scheme structure, τ to be the map from Yv onto Qv, and h to be the map
from Qv to Xk induced by the projection X×Xk −→ Xk. By construction fv = h ◦ τ .

Letting ψv be the map (from §3.2) defining Yv as a quotient of B × Zv1 × · · · × Zvk
and

φ : G × Xv1 × · · · × Xvk
−→ Qv ⊆ X × Xk as the map sending (g, x1, . . . , xk) to (gB/B, g ·

x1, . . . , g · xk) in X×Xk, we obtain a refinement of diagram (3.7.2):

G× Zv1 × · · · × Zvk

ψv

//

��

✷

Yv

τ

��

f◦×fv

��7
7

7
7

7
7

7
7

7
7

7
7

7
7

G× Xv1 × · · · × Xvk

φ
// Qv

�

�

//

h
��

X×Xk

��

Xk Xk

Since Yv ≃ Y(∅,v1,...,vk) (see §3.4) and under this isomorphism the map f◦ × fv is the map
f(∅,v1,...,vk), it follows from Lemma 3.7.1(b) that Qv is normal with rational singularities
and that τ : Yv −→ Qv is birational with connected fibres, proving (a) and (b).

The composite map

G× Pv1
× · · · × Pvk

−→ G× Zv1 × · · · × Zvk

ψv

−→ Yv

τ
−→ Qv

is given (in the notation of §3.3) by sending

(g | pi1,1 , pi2,1 , . . . , pim1,1 | pi1,2 , pi2,2 , . . . , pim2,2 | · · · | pi1,k
, . . . , pimk,k

)

to

(g | gpi1,1pi2,1 · · · pim1,1 | gpi1,2pi2,2 · · · pim2,2 | · · · | gpi1,k
· · · pimk,k

)

in X×Xk. A point q of X is therefore in the fibre h−1(q1, . . . , qk) ⊆ X× q1 × · · · × qk = X if
for any B-coset representatives g, g1, . . . , gk of q, q1,. . . , qk, there exist elements {pi,j} in the
respective parabolic subgroups such that we can solve the equations
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gpi1,1pi2,1 · · · pim1,1 = g1

...
...

...

gpi1,k
pi2,k
· · · pimk,k

= gk.

Moving the pi,j’s to the right hand side, the system above becomes

g = g1p
−1
im1,1
· · · p−1

i2,1
p−1
i1,1

...
...

...

g = gkp
−1
imk,k
· · · p−1

i2,k
p−1
i1,k

which is equivalent to q belonging in the intersection
k⋂

i=1

qiXv−1
i
, proving (d).

Let v be a reduced word with product v. By part (d) the set

Q′

v :=
{

(q, p) ∈ X× X | p ∈ qXv

}

is the image of f(∅,v) : Y(∅,v) −→ X × X and is therefore a closed subvariety of X × X.
Alternatively Q′

v is the Zariski closure of the set {(g, g · v) | g ∈ G} ⊆ X× X.

For i = 1, . . . , k, let pi : X × Xk −→ X × X be the map which is the product of idX with
projection Xk −→ X onto the i-th factor. The intersection

Q′

v
:=

k⋂

i=1

p−1
i (Q′

vi
)

is a closed subscheme of X× Xk which, by (d), agrees set theoretically with Qv. Since Qv

is reduced, we have the inclusion of schemes Qv ⊆ Q′
v
. If h′ is the map h′ : Q′

v
−→ Xk

induced by projection, then the scheme-theoretic fibres of h are naturally a subscheme of
the scheme-theoretic fibres of h′ (and both are naturally subschemes of X). The scheme-

theoretic fibre of h′ is the scheme-theoretic intersection
⋂k
i=1 qiXv−1

i
, proving (c). �

The image Xv is therefore the set of translations (q1, . . . , qk) in Xk for which the intersec-

tion
⋂k
i=1 qiXv−1

i
of translated Schubert varieties is non-empty, and the set-theoretic fibres

of h are the intersections themselves. Moreover, Qv is the incidence correspondence of
intersections of translates of Schubert varieties (the first coordinate in X×Xk is the inter-
section, the remaining k coordinates are the parameters (q1, . . . , qk) controlling the trans-
lates). Theorem 3.7.4 shows that Yv is a resolution of singularities of Qv.
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Corollary (3.7.5) — Let v = (v1, . . . , vk) be a sequence of reduced words with correspond-

ing Weyl group elements (v1, . . . , vk) such that
∑k

i=1 ℓ(vi) = (k − 1)N. Then the degree of

the map fv : Yv −→ Xk is given by the intersection number
⋂k
i=1[Ωw0v

−1
i

] =
⋂k
i=1[Xv−1

i
].

Remark. The dimension of Yv in this case is N+
∑
ℓ(vi) = kN = dim(Xk) so it is reasonable

to ask for the degree of the map.

Proof. Since we are working in characteristic zero, the degree of fv is given by the num-
ber of points in a generic fibre. By Theorem 3.7.4 the map p : Yv −→ Qv is birational,
and so the generic fibre of fv is the same as the generic fibre of h : Qv −→ Xk. By
the Kleiman transversality theorem, if q1,. . . , qk are generic, the scheme-theoretic inter-
section ∩ki=1qiXv−1

i
is reduced and finite, and the number of points is equal to the in-

tersection number ∩ki=1[Xv−1
i

] = ∩ki=1[Ωw0v
−1
i

] in H∗(X,Z). By Theorem 3.7.4(c–d) if the

scheme-theoretic intersection ∩ki=1qiXv−1
i

is reduced it is equal to the scheme-theoretic fi-

bre h−1(q1, . . . , qk), proving the corollary. �

3.8. Key Lemma. We now prove an important lemma which will allow us to derive
several results necessary for the proofs of Theorems I and II. The lemma itself will also be
used in the proof of Theorem I.

Lemma (3.8.1) — Let v be a sequence of reduced words, L be a G-equivariant line bundle
on Yv and s ∈ H0(Yv,L)G be a nonzero G-invariant section. Then

(a) the weight of L at the T-fixed maximum point (§3.5) p = pv ∈ Yv belongs to
span

Z>0
∆+;

(b) the weight of L at p is zero if and only if s does not vanish at p;
(c) without supposing that L has a G-invariant section, if L is an equivariant bundle

on Yv and the weight of L at p is zero, then dim H0(Yv,L)G 6 1.

Remark. Part (c) will be used repeatedly to control the size of the G-invariant sections.

Proof. Let f◦ : Yv −→ X be the map from §3.4 expressing Yv as a Zv1×· · ·×Zvk
-bundle over

X. The section s cannot vanish on any fibre of f◦ since (by G-invariance and transitivity of
G-action on X) s would vanish on all of Yv. We can thus restrict s to get a nonzero section
on the fibre Zv1 × · · · × Zvk

of f◦ over e ∈ X; this fibre contains the maximum point p.

The formal character of the tangent space at the maximum point pi of Zvi
is 〈Φv−1

i
〉; i.e., all

the weights of this space are positive roots. Since the maximum point p = p1 × · · · × pk ∈
Z := Zv1 × · · · × Zvk

is the product of the maximum points of the factors, each of the
weights on the tangent space of p in Z is also a positive root.

Let mp be the maximal ideal of p inOZ,p. For every r > 0 we get a T-equivariant restriction
map

H0(Z,L|Z) −→ L⊗OZ

(
OZ,p/m

r+1
p

)
= L⊗

(
OZ/mp ⊕mp/m

2
p ⊕ · · · ⊕mr

p/m
r+1
p

)

which is an injection for r sufficiently large. In particular, for sufficiently large r, the
section s restricts to a nonzero element of L⊗OZ

OZ,p/m
r+1
p . Since s is an invariant section,
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this means that the zero weight is a weight of L ⊗OZ
(OZ,p/m

r+1
p ), and so must appear in

one of the factors L⊗OZ
(mi

p/m
i+1
p ) = L⊗OZ

Symi(mp/m
2
p) for i = 0, . . . , r.

Since mp/m
2
p is dual to the tangent space at p, all weights of mp/m

2
p are negative roots, and

therefore the weights of Symi(mp/m
2
p) belong to spanZ60 ∆+. Tensoring with L multiplies

the formal character of Symi(mp/m
2
p) by the weight of L at p. Thus the zero weight is a

weight of L ⊗OZ
Symi(mp/m

2
p) only if the weight of L at p belongs to span

Z>0
∆+. This

proves (a).

The value of s at p is the restriction of s to the factor L ⊗OZ
(OZ,p/mp) = Lp. If s does not

vanish at p the weight of Lp is therefore zero. Conversely, if the weight of Lp is zero then
the weights of L ⊗OZ

Symi(mp/m
2
p) are non-zero for i > 1. Hence the only possibility for

the invariant section s under the restriction map is to have nonzero restriction to L ⊗OZ

(OZ,p/mp) = Lp, proving (b).

Suppose that the weight of L at p is zero. If there were two linearly independent sections
s1, s2 ∈ H0(Yv,L)G then some nonzero linear combination would vanish at p contradicting
(b). Hence if the weight is zero we must have dim H0(Yv,L) 6 1, giving (c). �

3.9. Applications of Lemma 3.8.1.

Theorem (3.9.1) — Suppose that w1, . . . , wk, and w are elements of the Weyl group such

that ℓ(w) =
∑k

i=1 ℓ(wi) and
k⋂

i=1

[Ωwi
] · [Xw] 6= 0 in H∗(X,Z). Then:

(a) For any dominant weights µ1, . . . , µk, and µ such that the irreducible module Vµ is a

component of Vµ1⊗· · ·⊗Vµk
, the weight

∑k
i=1w

−1
i µi−w

−1µ belongs to spanZ>0
∆+.

(b) If
∑k

i=1w
−1
i µi − w−1µ = 0 then mult(Vµ,Vµ1

⊗ · · · ⊗Vµk
) = 1.

(c)
∑k

i=1w
−1
i · 0− w

−1 · 0 =
∑k

i=1(w
−1
k ρ− ρ)− (w−1ρ− ρ) belongs to span

Z>0
∆+.

(d) If
∑k

i=1w
−1
i · 0 = w−1 · 0 then Φw =

⊔k
i=1 Φwi

.

Note that the action of the Weyl group in parts (a) and (b) is the homogeneous action,
while the action in parts (c) and (d) is the affine action.

Proof. Let vi = w−1
i w0 for i = 1, . . . , k, vk+1 = w−1, let vi be a reduced word with product

vi, for i = 1,. . . , k + 1, and set v = (v1, . . . , vk+1). Then
∑
ℓ(vi) = (k + 1 − 1)N and so, by

Corollary 3.7.5, the degree of fv : Yv −→ Xk+1 is given by the intersection number

k+1⋂

i=1

[Ωw0v
−1
i

] =

k⋂

i=1

[Ωwi
] · [Xw].

By hypothesis this intersection number is nonzero and therefore fv is surjective.
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Given dominant weights µ1, . . . , µk, and µ let λi = −w0µi for i = 1 . . . , k and λk+1 = µ. Set
L to be the line bundle Lλ1 ⊠ · · · ⊠ Lλk+1

on Xk+1, so that H0(Xk+1,L) = Vµ1⊗· · ·⊗Vµk
⊗V∗

µ

and dim H0(Xk+1,L)G is the multiplicity of Vµ in the tensor product. Vµ1 ⊗ · · · ⊗Vµk
.

Since fv is surjective, pullback induces an inclusion

H0(Yv, f
∗
v
L)

f∗
v

←− H0(Xk+1,L)

and, in particular, dim H0(Yv, f
∗
v
L)G > dim H0(Xk+1,L)G. Applying Lemma 3.8.1(a), we

know that if f ∗
v
L has a nonzero G-invariant section then the weight of f ∗

v
L at the maximum

point pv belongs to spanZ>0
∆+. This weight is

(3.9.2)
k+1∑

i=1

vi(−λi) =

k∑

i=1

(w−1
i w0)(w0µi) + w−1(−µ) =

k∑

i=1

w−1
i µi − w

−1µ,

proving (a).

If the weight in (3.9.2) is zero then dim H0(Xk+1,L)G 6 dim H0(Yv, f
∗
v
L)G 6 1 by Lemma

3.8.1(c), and so if Vµ is a component of Vµ1 ⊗ · · · ⊗ Vµk
then it is of multiplicity at most

one. The fact that Vµ actually is a component of the tensor product is a consequence of
the solution of the PRV conjecture – see §2.3 for a discussion. This proves (b).

The map fv : Yv −→ Xk+1 induces a natural map f ∗
v
KXk+1 −→ KYv

which is given by a

global section s of H0(Yv, (f
∗
v
KXk+1)∗ ⊗ KYv

). Since Yv and Xk+1 have the same dimen-
sion and since fv is surjective this section is nonzero. Because the pullback morphism
is natural, the section s is G-invariant. By Lemma 3.8.1(a) the weight of the line bundle
KYv/Xk+1 := (f ∗

v
KXk+1)∗ ⊗KYv

at the maximum point pv belongs to span
Z>0 ∆+.

By (3.6.1), (2.2.2), and (2.2.3) the formal characters of the tangent spaces at pv in Yv and
qv := fv(pv) in Xk+1 are, respectively:

(3.9.3) Ch(TpvYv) = 〈Φw〉+ 〈∆
−〉+

k∑

i=1

〈Φc
wi
〉

and

(3.9.4) Ch(TqvX
k+1) = (〈Φw〉+ 〈−Φc

w〉) +

k∑

i=1

(
〈Φc

wi
〉+ 〈−Φwi

〉
)
.

A short calculation using formula (2.2.4) shows that the weight of KYv/Xk+1 at pv is
∑k

i=1(w
−1
k ρ−

ρ)− (w−1ρ− ρ), proving (c).

If the weight
∑k

i=1(w
−1
k ρ − ρ) − (w−1ρ − ρ) is zero then, by Lemma 3.8.1(b), the section s

is nonzero at pv. This means that fv is unramified at pv and therefore the tangent space

map TYv,p
dfv
−→ TXk+1,q is an isomorphism. Hence both spaces must have the same formal
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characters. Comparing the negative roots and their multiplicities in (3.9.3) and (3.9.4)

gives ∆− = (⊔ki=1 − Φwi
)
⊔
−Φc

w which is equivalent to Φw =
⊔k
i=1 Φwi

, proving (d). �

3.10. Relation with existing results. Part (a) of Theorem (3.9.1) is due to Berenstein
and Sjamaar. A theorem of this type was first proved by Klyachko [Kly] for GLn. This
was later extended to all semisimple groups by Berenstein and Sjamaar in [BeSj] and by
Kapovich, Leeb, and Millson in [KLM]. Parts (c) and (d) are due to Belkale and Kumar:
part (c) is [BK, Theorem 29] and (d) is [BK, Theorem 15], both in the case when the para-
bolic group P is the Borel group B.

Part (b) is new and crucial for controlling the multiplicities of cohomological components.
The remaining statements have been included because Lemma 3.8.1 allows us to give a
new, short, and unified proof of these results. In particular, we obtain a new proof of the
necessity of the inequalities determining the Littlewood-Richardson cone. Namely, these
inequalities are obtained by requiring that the weights in Theorem 3.9.1(a) (for all w1,. . . ,
wk, w satisfying the conditions of the theorem) belong to span

Z>0 ∆+. (The proof that these
inequalities are sufficient requires a separate GIT argument.)

Relation with a construction of Kumar. Given a sequence u of simple reflections, Kumar

[Ku, §1.1] defined a variety Z̃u along with a map θu from Z̃u to X2. For any pair of words
v = (v1, v2) let u = v−1

1 v2 be the word obtained by reversing v1 and concatenating it onto

the left of v2. By comparing the construction of Yv and Z̃u it is not hard to find an isomor-

phism Z̃u = Yv over X2 (i.e., such that θu = fv under the isomorphism). Therefore when
k = 2 the varieties produced by our construction are the same as the ones constructed in
[Ku, §1.1].

4. PROOF OF THEOREM III

4.1. We will prove Theorem III in its symmetric form. After applying the symmetrization
procedure from §2.7 (and replacing k + 1 by k) we obtain:

Theorem (4.1.1) — (Symmetric form of Theorem III) Let w1, . . . , wk be elements ofW group
such that

∑
i ℓ(wi) = N; λ1, . . . , λk be weights such that wi · λi are dominant weights for

i = 1, . . . , k; and
∑k

i=1 λi = −2ρ.

(a) If
k⋂

i=1

[Ωwi
] = 1 then the cup product map

(4.1.2) Hℓ(w1)(X,Lλ1)⊗ · · · ⊗Hℓ(wk)(X,Lλk
)

∪
−→ HN(X,KX)

is surjective.

(b) If
k⋂

i=1

[Ωwi
] = 0 then (4.1.2) is zero.
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The proof of Theorem 4.1.1 is given in §4.3. We will use the following common notation.
For any sequence λ = (λ1, . . . , λk) of weights let Lλ be the line bundle

Lλ := Lλ1 ⊠ · · · ⊠ Lλk
= pr∗1Lλ1 ⊗ · · · ⊗ pr

∗

kLλk

on Xk, where pri : Xk −→ X denotes projection onto the i-th factor.

4.2. Inductive Lemma. Let λ = (λ1, . . . , λk) be a sequence of weights and v = (v1, . . . , vk)
a sequence of words. Let u be a sequence of words as in (3.1.1), i.e., u is a sequence of
words obtained by dropping a simple reflection from the right of a single member of v.
The following lemma lets us propagate information about the pullback map

(4.2.1) HN+ℓ(v)(Yv, f
∗

v
Lλ)

f∗
v

←− HN+ℓ(v)(Xk,Lλ)

on the top degree cohomology of Yv to information about an analogous pullback map to
the top degree cohomology of Yu. If vj = si1 · · · sim , so that we are dropping sim from vj
to get uj, we denote by µ the sequence µ := (λ1, . . . , λj−1, sim · λj , λj+1, . . . , λk). Finally, we

assume that the degree of Lλ is negative on the fibres of the P1-fibration πv,u : Yv −→ Yu.

Lemma (4.2.2) — Under the conditions above, the pullback map

HN+ℓ(u)(Yu, f
∗

u
Lµ)

f∗
u

←− HN+ℓ(u)(Xk,Lµ)

is (a) surjective, (b) zero, or (c) surjective on the space of G-invariants if the pullback map
(4.2.1) has the corresponding property (a), (b), or (c).

Here surjective on the space of G-invariants means (in the case of Yv) that

HN+ℓ(v)(Yv, f
∗

v
Lλ)

G
f∗
v

←− HN+ℓ(v)(Xk,Lλ)
G

is surjective.

Proof. To reduce notation set Mu = Xj−1 ×Mim × Xk−j and let π : Xk −→ Mu be the map
π = (idX)j−1 × πim × (idX)k−j. The fibre product diagram (3.1.2) relating Yv, Yu, Xk, and
Mu is

(4.2.3)

Yv

fv
//

πv

��
✷

Xk

π

��
Yu

h //

σv

GG

Mu

where h = π ◦ fu and where we use πv and σv in place of πv,u and σv,u to reduce notation.

Note that Lµ is the Demazure reflection of Lλ with respect to π. By §2.8 this means that
we have natural isomorphisms

(4.2.4) πv∗(f
∗

v
Lµ) ∼= R1πv∗(f

∗

v
Lλ) and π∗Lµ ∼= R1π∗Lλ
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valid on Yu and Mu respectively. Diagram (4.2.3), the Leray spectral sequences for Lλ and
Lµ relative to π and πv, and the isomorphisms (4.2.4) then give the commutative diagram
of cohomology groups:

(4.2.5)

HN+ℓ(v)(Yv, f
∗
v
Lλ) HN+ℓ(v)(Xk,Lλ)

f∗
v

(4.2.1)
oo

HN+ℓ(v)−1(Yu,R
1πv∗f

∗
v
Lλ)

≀ Leray

HN+ℓ(v)−1(Mu,R
1π∗Lλ)

h∗oo

≀ Leray

HN+ℓ(v)−1(Yu, πv∗f
∗
v
Lµ)

≀ (4.2.4)

HN+ℓ(v)−1(Mu, π∗Lµ)
h∗oo

≀ (4.2.4)

HN+ℓ(v)−1(Yv, f
∗
v
Lµ)

≀ Leray

HN+ℓ(v)−1(Xk,Lµ)
f∗
v

oo

≀ Leray

We conclude that the bottom pullback map HN+ℓ(v)−1(Yv, f
∗
v
Lµ)

f∗
v

←− HN+ℓ(v)−1(Xk, f ∗
v
Lµ) is

surjective, zero, or surjective on the space of G-invariants if (4.2.1) is.

On Yv we have the exact sequence of bundles:

(4.2.6) 0 −→ f ∗

v
Lµ(−Yu) −→ f ∗

v
Lµ −→ f ∗

v
Lµ|Yu

−→ 0,

where we consider Yu to be a divisor in Yv via the section σv. The degree of f ∗
v
Lµ(−Yu) is

at least −1 on the fibres of πv so the corresponding Leray spectral sequence gives

HN+ℓ(v)(Yv, f
∗

v
Lµ(−Yu)) = HN+ℓ(v)

(
Yu, πv∗(f

∗

v
Lµ(−Yu))

)
= 0

where the second cohomology group above equals zero by reason of dimension:

N + ℓ(v) = N + ℓ(u) + 1 = dim(Yu) + 1.

The end of the long exact cohomology sequence associated to (4.2.6) is therefore

(4.2.7) HN+ℓ(v)−1(Yv, f
∗

v
Lµ)

σ∗
v

−→ HN+ℓ(v)−1(Yu, f
∗

v
Lµ|Yu

) −→ 0.

Since ℓ(u) = ℓ(v)− 1, fu = fv ◦ σv, and all maps are G-equivariant, we conclude that the
pullback map f ∗

u
, being the composite map

HN+ℓ(u)(Xk,Lµ)
f∗
v

−→ HN+ℓ(u)(Yv, f
∗

v
Lµ)

σ∗
v

−→ HN+ℓ(u)(Yu, f
∗

v
Lµ|Yu

) = HN+ℓ(u)(Yu, f
∗

u
Lµ),

is (a) surjective, (b) zero, or (c) surjective on the space of G-invariants, if the pullback map
f ∗
v

in (4.2.1) has the corresponding property (a), (b), or (c). �

Remark. In part (c) of Lemma 4.2.2 we can replace the statement about G-invariants with
a statement about any isotypic component; the proof above goes through without change.
We will only need the case of G-invariants as part of the proof of Theorem I in §5 below.
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4.3. Proof of Theorem 4.1.1 and variation. For the rest of this section, we fix the following
notation. Let w1,. . . , wk and λ1,. . . , λk be as in Theorem 4.1.1. For each i = 1,. . . , k set
vi := w−1

i w0 and λ′i := v−1
i ·λi. Let vi be a reduced factorization of vi and let v = (v1, . . . , vk).

Finally, set λ = (λ1, . . . , λk) and λ′ = (λ′1, . . . , λ
′
k).

Proof of Theorem 4.1.1. Since

dim(Yv) = N +
k∑

i=1

ℓ(vi) = N +
k∑

i=1

(N− ℓ(wi)) = kN = dim(Xk),

Corollary 3.7.5 implies that the degree of fv : Yv −→ Xk is given by the intersection num-

ber
⋂k
i=1[Ωwi

]. Therefore the pullback map HkN(Yv, f
∗
v
Lλ′)

f∗
v

←− HkN(Xk,Lλ′) is a surjection

if
⋂k
i=1[Ωwi

] = 1 and is zero if
⋂k
i=1[Ωwi

] = 0. Indeed, if
⋂k
i=1[Ωwi

] = 1 then fv is a birational
map between the smooth varieties Yv and Xk in characteristic zero, and so the pullback

map Hj(Yv, f
∗
v
Lλ′)

f∗
v

←− Hj(Xk,Lλ′) is an isomorphism in all degrees, and in particular is a

surjection in degree j = kN. On the other hand, if
⋂k
i=1[Ωwi

] = 0 then the image Xv of fv
is subvariety of Xk of dimension strictly less than kN and therefore the pullback map f ∗

v

in top cohomology, which factors through HkN(Xv,Lλ|Xv
) = 0, is the zero map.

Consider a sequence

v =: v0,v1, . . . ,v(k−1)N := ∅ = (∅, . . . ,∅)

of sequences of words which reduces v to the empty sequence, and where at each step
vj+1 is obtained by dropping a simple reflection from the right of a single member of vj .
Set λj = (vj)−1 · λ where (by slight abuse of notation) vj is considered as an element of

Wk and the action is componentwise. Note that λ0 = λ′ and λ(k−1)N = λ. The construction
of vj and λj implies that the degree of Lλj is negative on the fibres of the P1-fibration
πvj ,vj+1 : Yvj −→ Yvj+1 .

Applying Lemma 4.2.2 to the pairs (vj ,vj+1) for j = 0,. . . , (k − 1)N− 1 we conclude that

(4.3.1) HN(Y∅, f
∗

∅
Lλ)

f∗
∅

←− HN(Xk,Lλ)

is surjective if
⋂k
i=1[Ωwi

] = 1 and zero if
⋂k
i=1[Ωwi

] = 0. By construction f∅ : Y∅ = X −→ Xk

is the diagonal embedding of X into Xk and the pullback map (4.3.1) is the cup product
map. This proves Theorem 4.1.1 and completes the proof of Theorem III. �

We record a statement that will be used in the proof of Theorem I below.

Proposition (4.3.2) — If the pullback map

HkN(Yv, f
∗

v
Lλ′)

f∗
v

←− HkN(Xk,Lλ′)

is surjective on the space of G-invariants then the cup product map (4.1.2) is surjective.

Proof. We repeat the inductive reduction in the proof of Theorem 4.1.1 above with part (c)
of Lemma 4.2.2 in place of parts (a) and (b). As a result we conclude that the cup product
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map (4.1.2) is surjective on the space of G-invariants. Since HN(X,KX) is the trivial G-
module we conclude that (4.1.2) is surjective. �

5. PROOF OF THEOREM I AND COROLLARIES

In this section we use Theorem III and Proposition 4.3.2 to prove Theorem I. The proof
that (1.2.1) is necessary for the surjectivity of the cup product map appears in §5.1 and the
proof that (1.2.1) is sufficient appears in §5.3.

5.1. Proof that Φw = ⊔ki=1Φwi
is a necessary condition for surjectivity. We assume the

notation of §1.2, and set µi = wi ·λi for i = 1 . . . k, and µ = w ·λ. By assumption the weights
µ1,. . . , µk, and µ are dominant. By the Borel-Weil-Bott theorem each Hℓ(wi)(X,Lλi

) = V∗
µi

and Hd(X,Lλ) = V∗
µ .

Since w−1
i µi = w−1

i · µi − w
−1
i · 0 and w−1µi = w−1 · µi − w−1 · 0, we have

k∑

i=1

w−1
i µi − w

−1µ =

(
k∑

i=1

w−1
i · µi − w

−1 · µ

)
−

(
k∑

i=1

w−1
i · 0− w

−1 · 0

)
.

Furthermore
∑k

i=1w
−1
i · µi − w

−1 · µ =
∑
λi − λ = 0 and so the equation above becomes

(5.1.1)
k∑

i=1

w−1
i µi − w

−1µ = −

(
k∑

i=1

w−1
i · 0− w

−1 · 0

)
.

If the cup product map Hℓ(w1)(X,Lλ1) ⊗ · · · ⊗ Hℓ(wk)(X,Lλk
)

∪
−→ Hd(X,Lλ) is surjective,

then (after dualizing) Vµ must be a component of the tensor product Vµ1
⊗ · · · ⊗ Vµk

and
by Theorem III(b), the intersection ∩ki=1[Ωwi

] · [Xw] 6= 0 in H∗(X,Z); we may therefore apply
Theorem 3.9.1.

By Theorem 3.9.1(a) the left hand side of (5.1.1) belongs to span
Z>0 ∆+ and by part (c) of

the same theorem the right hand side belongs to span
Z60 ∆+. We conclude that both sides

are zero and so by Theorem 3.9.1(d) that Φw = ⊔ki=1Φwi
. �

Remark. In the first half of the argument above the hypothesis that the cup product map
is surjective was used, along with Theorem III, to conclude that Vµ is a component of
Vµ1
⊗ · · · ⊗ Vµk

and ∩ki=1[Ωwi
] · [Xw] 6= 0. If, on the other hand, we assume the latter two

conditions then the second half of the argument still applies to give Φw = ⊔ki=1Φwi
. We

will use this observation in Corollary 5.4.7 below.

5.2. Setup for the proof of sufficiency. For convenience, we collect some of the con-
sequences of condition (1.2.1) in its symmetric form which have effectively appeared in
previous arguments, and which we will use in the proof of sufficiency.

Proposition (5.2.1) — Suppose that w1, . . . , wk are elements of the Weyl group such that

∆+ =
⊔k
i=1 Φwi

.
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Combinatorial Consequences:

(a)
∑k

i=1w
−1
i · 0 = −2ρ.

(b) Suppose that λ1,. . . , λk are weights such that
∑
λi = −2ρ, and set µi = wi · λi for

i = 1,. . . , k. Then
∑k

i=1w
−1
i µi = 0.

Geometric Consequences: For each i = 1,. . . , k, let vi = w−1
i w0 and let vi be a word which is

a reduced factorization of vi. We set v = (v1, . . . , vk) and construct as usual the variety Yv

and the map fv : Yv −→ Xk.

Then

(c) deg(fv) 6= 0.
(d) The weight of the relative canonical bundle KYv/KXk

at pv is zero.

Proof. Part (a) is immediate from the condition ∆+ = ⊔ki=1Φwi
and formula (2.2.4). Part (b)

reverses the argument used to arrive at (5.1.1) in §5.1:

k∑

i=1

µ−1µi =

(
k∑

i=1

w−1
i · µi

)
−

(
k∑

i=1

w−1
i · 0

)
=

k∑

i=1

λi − (−2ρ) = 0.

Part (c) is Corollary 3.7.5 combined with Lemma 2.6.1. Part (d) is the symmetric version
of the computation in the proof of Theorem 3.9.1(d): the weight of the relative canonical

bundle KYv/Xk at pv is
∑k

i=1w
−1
i · 0 + 2ρ which is zero by part (a). �

5.3. Proof that Φw = ⊔ki=1Φwi
is a sufficient condition for surjectivity. Consider the

symmetric version of the problem as in §2.7. It suffices to show the surjectivity of a cup
product map

(5.3.1) Hℓ(w1)(X,Lλ1)⊗ · · · ⊗Hℓ(wk)(X,Lλk
)

∪
−→ HN(X,KX)

where w1, . . . , wk are elements of the Weyl group such that
∑
ℓ(wi) = N; λ1, . . . , λk are

weights such that wi · λi ∈ Λ+ for i = 1,. . . ,k and
∑
λi = −2ρ. After this reduction

condition (1.2.1) becomes ∆+ = ⊔ki=1Φwi
. We recall the notation from §4.3: vi := w−1

i w0,
λ′i := v−1

i · λi, vi is a reduced factorization of vi, v = (v1, . . . , vk), and λ′ = (λ′1, . . . , λ
′
k).

By Proposition 4.3.2 to show the surjectivity of (5.3.1) it is enough to show that the pull-
back map

(5.3.2) HkN(Yv, f
∗

v
Lλ′)

G
f∗
v

←− HkN(Xk,Lλ′)
G

on the space of G-invariants is surjective. We will show that both spaces of G-invariants
are one-dimensional, and that the induced map is an isomorphism. Note that by Propo-
sition 5.2.1(c) deg(fv) 6= 0 and so fv is surjective.

The pullback map on top cohomology is Serre dual to the trace map:
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H0(Yv, (f
∗

v
Lλ′)

∗ ⊗KYv
) = H0

(
Yv, f

∗

v
(L∗

λ′ ⊗KXk)⊗KYv/Xk

) Trfv

−→ H0(Xk,L∗

λ′ ⊗KXk).

Let s ∈ H0(Yv,KYv/Xk)G be the nonzero G-invariant section giving the map f ∗
v
KXk −→ KYv

induced by fv. The composition

H0(Xk,L∗

λ′ ⊗KXk)
f∗
v

−→ H0
(
Yv, f

∗

v
(L∗

λ′ ⊗KXk)
)

·s
−→ H0

(
Yv, f

∗

v
(L∗

λ′ ⊗KXk)⊗KYv/Xk

) Trfv

−→ H0(Xk,L∗

λ′ ⊗KXk)

of pullback, multiplication by s, and the trace map is multiplication by deg(fv), which is
nonzero. This gives us the inequality

(5.3.3) dim H0(Xk,L∗

λ′ ⊗KXk)G 6 dim H0
(
Yv, f

∗
v
(L∗

λ′ ⊗KXk)⊗KYv/Xk

)G

and shows that in order to prove that the trace map induces an isomorphism on G-
invariants it is sufficient to prove that we have equality of dimensions in (5.3.3).

Set µi = wi · λi = w0 · λ′i for i = 1,. . . , k. By the Borel-Weil-Bott Theorem we have
HkN(Xk,Lλ′) = V∗

µ1
⊗· · ·⊗V∗

µk
and so (by Serre duality) H0(Xk,L∗

λ′⊗KXk) = Vµ1
⊗· · ·⊗Vµk

.

Now set νi = −w0µi for i = 1,. . . , k so that Vνi
= V∗

µi
and let ν = (ν1, . . . , νk). By the

calculation

S(λ′i) = −λ′i − 2ρ = −w0 · µi − 2ρ = −(w0µi − 2ρ)− 2ρ = −w0µi

in each coordinate factor (as in §2.5) we conclude that L∗

λ′ ⊗KXk = Lν .

The weight of Lν at q := fv(pv) = (v1, . . . , vk) is

−
k∑

i=1

viνi =
k∑

i=1

(w−1
i w0)(w0µi) =

k∑

i=1

w−1
i µi

5.2.1(b)
= 0.

Since by Proposition 5.2.1(d) the weight of KYv/Xk at pv is zero, the weight of f ∗
v
Lν⊗KYv/Xk

at pv in Yv is also zero and hence dim H0(Yv, f
∗
v
Lν ⊗ KYv/Xk)G 6 1 by Lemma 3.8.1(c). On

the other hand, Lemma 2.3.1 implies that (Vµ1
⊗ · · · ⊗ Vµk

)G 6= 0 so we conclude that
dim H0(Xk,Lν)

G > 1. This gives us

1 6 dim H0(Xk,Lν)
G 6 dim H0(Yv, f

∗

v
Lν ⊗KYv/Xk)G 6 1.

Therefore the inequality in (5.3.3) is an equality, and the cup product map in (5.3.1) is
surjective. �

5.4. Corollaries of Theorem I and its proof.

Corollary (5.4.1) — The cup product map H0(X,Lλ1) ⊗ Hd(X,Lλ2) −→ Hd(X,Lλ1 ⊗ Lλ2) is
surjective whenever both sides are nonzero.
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Proof. If w2 is the element of the Weyl group so that w2 · λ2 > 0 then the conditions that
λ1 is dominant and that Lλ1+λ2 has cohomology in the same degree d as Lλ2 imply that
w2 · (λ1 + λ2) > 0, and so the corollary follows from Theorem I and the obvious statement
that Φw2 = Φw2 ⊔ Φe. �

Corollary (5.4.2) — (Compatibility with Leray Spectral Sequence). Suppose that λ1, λ2, and
λ = λ1 + λ2 are regular weights and that the cup product map

Hd1(X,Lλ1)⊗Hd2(X,Lλ2)
∪
−→ Hd(X,Lλ)

is nonzero. Let P be any parabolic subgroup of G containing B, and π : X −→ M := G/P
be the corresponding projection. Then the cup product map on X factors as a composition

Hd1(X,Lλ1)⊗Hd2(X,Lλ2)

S

X // Hd(X,Lλ)

Hd1−i(M,Ri
π∗Lλ1)⊗Hd2−j(M,Rj

π∗Lλ2)
S

M // Hd−i−j(M,Ri
π∗Lλ1 ⊗ Rj

π∗Lλ2)
S

π // Hd−i−j(M,Ri+j
π∗ Lλ)

of the cup product on M followed by the map induced on cohomology by the relative cup
product map Ri

π∗Lλ1 ⊗Rj
π∗Lλ2 −→ Ri+j

π∗ Lλ on the fibres of π. A similar statement holds for
the cup product of an arbitrary number of factors.

Proof. The factorization statement amounts to a numerical condition on the cohomology
degrees of the line bundles on the fibres of π ensuring that the cup product map is com-
puted by the map on E2-terms of the Leray spectral sequence. This numerical condition
is immediately implied by (1.2.1). We explain this in more detail below.

Set L = Lλ1 ⊠ Lλ2 on X × X and consider the following factorization of the diagonal map
δX : X →֒ X× X:

(5.4.3)

X

π
��

�

� s // X×M X �

� t //

ψ
��

✷

X× X

π×π
��

M M �

� δM // M×M

.

The cup product map then factors as

(5.4.4) Hd(X,Lλ)
s∗
←− Hd(X×M X, t∗L)

t∗
←− Hd1(X,Lλ1)⊗Hd2(X,Lλ2) = Hd(X× X,L)

and we claim that (5.4.4) induces the factorization claimed above.

By the Borel-Weil-Bott theorem applied to the fibres of π, for each of the line bundles
Lλ1 , Lλ2 , and Lλ there is precisely one degree for which the higher direct image sheaf
is nonzero. Suppose i is the degree such that Ri

π∗Lλ1 6= 0, j is the degree such that
Rj
π∗Lλ2 6= 0, and k is the degree such that Rk

π∗Lλ 6= 0. The Leray spectral sequence for
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the cohomology of these bundles degenerates at the E2 term and we have the isomor-
phisms Hd1(X,Lλ1) = Hd1−i(M,Ri

π∗Lλ1), Hd2(X,Lλ2) = Hd2−j(M,Rj
π∗Lλ2), and Hd(X,Lλ1) =

Hd−k(M,Rk
π∗Lλ).

Since Ri+j
π×π∗L = Ri

π∗Lλ1 ⊠ Rj
π∗Lλ2 is a vector bundle on M×M, the theorem on cohomology

and base change gives us Ri+j
ψ∗ t

∗L = δ∗M(Ri
π∗Lλ1 ⊠ Rj

π∗Lλ2) = Ri
π∗Lλ1 ⊗ Rj

π∗Lλ2 on M and

therefore we have Hd(X ×M X, t∗L) = Hd−i−j(M,Ri
π∗Lλ1 ⊗ Rj

π∗Lλ2). The Leray spectral
sequences for L and t∗L with respect to ψ and π × π also degenerate at the E2-terms and
have nonzero terms in the same degree. The discussion in §2.9 implies that the map on
E2-terms computes the pullback map t∗. Therefore t∗ in (5.4.4) is equal to the map

Hd−i−j(M,Ri
π∗Lλ1 ⊗ Rj

π∗Lλ2)
δ∗M←− Hd1−i(M,Ri

π∗Lλ1)⊗ Hd2−j(M,Rj
π∗Lλ2)

which shows that t∗ is the first part of the factorization claimed.

We now study s∗. The map s includes X as the relative diagonal of X ×M X over M. It
follows that s∗ induces the relative cup product map on the higher direct image sheaves
of t∗L and Lλ. Therefore the map associated to s∗ on the E2-terms of the Leray spectral
sequences for t∗L and Lλ is given by the relative cup product map

Hd−i−j(M,Ri+jLλ) = Hd−i−j(M,Ri+j(Lλ1 ⊗ Lλ2))
S

π←− Hd−i−j(M,Ri
π∗Lλ1 ⊗ Rj

π∗Lλ2).

All that is needed to demonstrate the factorization claimed is to demonstrate the condi-
tion k = i + j which ensures the map on the associated graded pieces in the E2-terms
agrees with the global map on the cohomology groups (c.f. §2.9).

Suppose that w1, w2, and w are the elements of the Weyl group such that w1 · λ1, w2 · λ2,
and w ·λ are dominant. Then k = #(Φw∩−∆P), i = #(Φw1∩−∆P), and j = #(Φw2∩−∆P)
where the symbol # indicates the cardinality of a set. The condition k = i+j guaranteeing
the factorization thus amounts to the condition

(5.4.5) #(Φw ∩ −∆P) = #(Φw1 ∩ −∆P) + #(Φw2 ∩ −∆P).

Since the original cup product map was assumed surjective we must have Φw = Φw1⊔Φw2

by Theorem I; this immediately implies that (5.4.5) holds. �

Corollary (5.4.6) — Suppose that w1,. . . , wk are elements of the Weyl group such that ∆+ =

⊔ki=1Φwi
, and that µ1,. . . , µk are dominant weights satisfying the condition

∑k
i=1w

−1
i µi = 0.

Then dim(Vµ1
⊗ · · · ⊗ Vµk

)G = 1.

Proof. Set λi = w−1
i · µi for i = 1,. . . , k. Then

∑
λi = −2ρ and we have a cup product

problem as in (5.3.1). As part of the proof of Theorem I in §5.3 it was established that
dim(Vµ1

⊗ · · · ⊗Vµk
)G = 1. Alternatively, the corollary is simply Theorem 3.9.1(b) applied

in symmetric form, with Lemma 2.6.1 used to ensure that the hypotheses of the theorem
are satisfied. �

35



Corollary (5.4.7) — Suppose that we have a cup product map

Hℓ(w1)(X,Lλ1)⊗ · · · ⊗ Hℓ(wk)(X,Lλk
)

∪
−→ Hd(X,Lλ)

and, as above, Weyl group elements w1,. . . , wk, and w such that µi := wi · λi, i = 1,. . . , k,
and µ := w · µ are dominant weights. Then if ∩ki=1[Ωwi

] · [Xw] 6= 0 the cup product map is
surjective if and only if Vµ is a component of Vµ1 ⊗ · · · ⊗ Vµk

.

Proof. If Vµ is not a component of the tensor product the map is clearly not surjective.
Conversely, if Vµ is a component, the assumption on the intersection number and the ar-
gument in §5.1 for the necessity of condition (1.2.1) show that Φw = ⊔ki=1Φwi

, and therefore
we conclude that the map is surjective by the sufficiency of condition (1.2.1). �

The following example illustrates Corollary 5.4.7 and provides an example which shows
that condition (1.2.1) is not necessary in order to have a cup product problem for which
both sides are nonzero.

Example (5.4.8) — Let G = SL6 and w1 = w2 = s2s4s3. For any integers ai, bi > 0 (i = 1, 2)
set µi = (0, ai, 0, bi, 0) and λi = w−1

i ·µi = (ai+1, bi+1,−4−ai−bi, ai+1, bi+1). (The weights
are written in terms of the fundamental weights of SL6.) Finally, let w = s1s3s5s2s4s3 and
set µ = w · (λ1 +λ2) = (0, a1 + a2 +1, 0, b1 + b2 +1, 0) ∈ Λ+. We therefore get a cup product
problem:

H3(X,Lλ1)⊗ H3(X,Lλ2)
S

−→ H6(X,Lλ1+λ2).

This cup product cannot be surjective by Theorem I since Φw1 = Φw2 ; alternatively the
map cannot be surjective since Vµ is clearly not a component of Vµ1⊗Vµ2 . The intersection
number ([Ωw1 ] ∩ [Ωw2 ]) · Xw is two.

Corollary (5.4.9) — If ∆+ = ⊔ki=1Φwi
then for any subset I ⊆ {1 . . . , k} there is an element

w of the Weyl group such that Φw = ⊔i∈IΦwi
.

Proof. Let λi = w−1
i · 0 so that we get a cup product problem as in (5.3.1). (Here each

Hℓ(wi)(X,Lλi
) is the trivial G-module). By Theorem I and the assumption on w1,. . . , wk this

cup product is surjective. It can be factored by first taking the cup product of any subset
I ⊆ {1, . . . , k} of the factors and the resulting cup product problem must also be nonzero
since the larger problem is. Hence by Theorem I there is a w ∈ W with w · (

∑
i∈I λi) ∈ Λ+

and such that Φw = ⊔i∈IΦwi
. �

5.5. Comments.

1. Corollary 5.4.9 can also be proved independently of any of the constructions in this
paper by using a similar argument in nilpotent cohomology. We are grateful to Olivier
Mathieu for pointing this out to us.

2. Using the result of Corollary 5.4.9 and induction, to prove Theorem I it is sufficient to
prove it in the case k = 2 of the cup product of two cohomology groups into a third. We
have chosen to develop the description of the varieties Yv for arbitrary k partly since this
is the natural generality of the construction, partly because it makes no difference in our
proofs, but also because some of the applications (e.g., the multiplicity bounds) do not

36



follow by induction. Note that by the methods of this paper, even to prove the case k = 2
of the cup product it would be necessary to consider the case of the cup product of three
factors into HN(X,KX), and hence we would need the construction of Yv for three factors.

3. As Example 5.4.8 shows, the natural numerical condition ℓ(w1)+ ℓ(w2) = ℓ(w) does not
imply condition (1.2.1) even if there is a nontrivial cup product problem corresponding to
w1, w2, and w. On the other hand, Condition (5.4.5) imposes further necessary numerical
conditions for (1.2.1). Namely,

(5.5.1) ℓ(wP
1 ) + ℓ(wP

2 ) = ℓ(wP) for every parabolic subgroup P ⊇ B of G,

where wP
1 , wP

2 , wP denote the minimal length representatives in w1WP, w2WP, wWP. In
the case when G = SLn+1 one can show that condition (5.5.1) is sufficient for (1.2.1). The
simple inductive argument relies on the fact that if G = SLn+1 it is possible to assign a
parabolic Pα ⊃ B to every root α ∈ ∆+ in such a way that −α is a root of Pα but not a
root of any proper parabolic subgroup of Pα containing B. We do not know if (5.5.1) is
sufficient to imply (1.2.1) for general G.

4. Corollary 5.4.2 establishes the following Factorization Property: any nonzero cup prod-
uct map on X factors as a cup product on G/P and fibres of π : X −→ G/P for all P ⊃ B.
We know of no a priori reason why this should hold. The Factorization Property is equiv-
alent to (5.4.5) holding for all P ⊃ B which is equivalent to (5.5.1). Hence, in the case
G = SLn+1 the Factorization Property is equivalent to (1.2.1).

6. COHOMOLOGICAL COMPONENTS AND PROOF OF THEOREM II

6.1. Conditions on components of tensor products.

We begin by introducing two relevant conditions. We also recall the notion of generalized
PRV component from §2.3 for convenience.

Definitions (6.1.1) — Suppose that µ1,. . . , µk, and µ are dominant weights.

(a) We say that Vµ is a generalized PRV component of Vµ1
⊗ · · · ⊗Vµk

if there exist w1,. . . ,

wk, and w inW such that w−1µ =
∑k

i=1w
−1
i µi.

(b) We say that Vµ is a component of stable multiplicity one of Vµ1
⊗ · · · ⊗Vµk

if we have
dim(Vmµ1 ⊗ · · · ⊗Vmµk

⊗ V∗
mµ)

G = 1 for all m≫ 0.

(c) We say that Vµ is a cohomological component of Vµ1
⊗· · ·⊗Vµk

if there exist w1,. . . , wk,

and w inW such that w−1µ =
∑k

i=1w
−1
i µi and such that Φw = ⊔ki=1Φwi

.

Under the hypothesis that Φw = ⊔ki=1Φwi
the condition w−1µ =

∑k
i=1w

−1
i µi is equivalent

to the condition w−1 ·µ =
∑k

i=1w
−1
i ·µi. Therefore by Theorem I condition (c) is equivalent

to having a surjective cup product map

Hℓ(w1)(X,Lw−1
1 ·µ1

)⊗ · · · ⊗ Hℓ(wk)(X,Lw−1
k

·µk
)

∪
−→ Hℓ(w)(X,Lw−1·µ)

which, after dualizing, gives an injective map
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Vµ −→ Vµ1
⊗ · · · ⊗Vµk

.

In other words, we obtain a construction of Vµ as a component of Vµ1
⊗ · · · ⊗Vµk

realized
through the cohomology of X.

Note that the conditions in (6.1.1) are homogeneous: If Vµ is a generalized PRV component,
component of stable multiplicity one, or cohomological component of Vµ1

⊗· · ·⊗Vµk
then

the same is true of Vmµ as a component of Vmµ1 ⊗ · · · ⊗ Vmµk
for all m > 1. This follows

immediately from the definitions.

6.2. Proof of Theorem II(a) and restatement of Theorem II(b).

Proof of Theorem II(a). Every cohomological component has multiplicity one by Theo-
rem 3.9.1(b) (the condition on nonzero intersection holds by the nonsymmetric version of
Lemma 2.6.1). By homogeneity we conclude that homological components are of stable
multiplicity one. From Definition 6.1.1(a,c) it is clear that every cohomological component
is a generalized PRV component. Thus every cohomological component is a generalized
PRV component of stable multiplicity one. �

For the proof of part (b) it will be more convenient to work with the symmetric form of
the problem. Applying the symmetrization procedure from §2.7 (and replacing k + 1 by
k) we obtain the following reformulation of Theorem II(b).

Proposition (6.2.1) — Let µ1,. . . , µk be dominant weights such that dim(Vmµ1 ⊗ · · · ⊗
Vmµk

)G = 1 for m≫ 0 and suppose that we have elements w1,. . . , wk such that
∑
w−1
i µi =

0. Then in either of the following two cases:

(i) at least one of µ1,. . . , µk is strictly dominant,
(ii) G is a classical simple group or product of classical simple groups,

there exist w1, . . . , wk ∈ W such that

(6.2.2)
k∑

i=1

w−1
i µi = 0 and ∆+ =

k⊔

i=1

Φwi
.

The proof of Proposition 6.2.1 will be given in §6.8 after some preliminary reduction steps.

For the rest of this section we assume that we have fixed dominant weights µ1,. . . , µk and
Weyl group elements w1,. . . , wk satisfying the conditions of Proposition 6.2.1.

6.3. Outline of the proof of Proposition 6.2.1.

For i = 1,. . . , k let Pi be the parabolic subgroup of G such that Lµi
is the pullback to X of

an ample line bundle Lµ̃i
on G/Pi. Set M = G/P1×· · ·×G/Pk and L = Lµ̃1 ⊠ · · · ⊠ Lµ̃k

. The
condition that dim(Vmµ1 ⊗ · · · ⊗ Vmµk

)G = 1 for all m ≫ 1 implies that the GIT quotient
M//G with respect to L is a point.

38



If w1,. . . , wk are elements such that
∑k

i=1w
−1
i µi = 0 then by Lemma 2.11.1, the point

q = (w−1
1 , . . . , w−1

k ) is a semi-stable point of M with a closed orbit. Let H ⊆ G be the
stabilizer subgroup of q, and Nq be the normal space to the orbit at q. By the Luna slice
theorem and the fact that the GIT quotient M//G is a point we conclude that Sym·(Nq)

H is
one-dimensional.

The explicit combinatorial formula for the weights appearing in Nq shows that a neces-
sary condition for a solution of (6.2.2) to exist is that there is v ∈ W such that the weights
of vNq are contained in ∆−. In Proposition 6.6.1 below we formulate a condition which to-
gether with the necessary condition above guarantees the existence of a solution of (6.2.2).
Together these two conditions are equivalent to the existence of a parabolic subalgebra p

with reductive part Lie(H) such that the weights of Nq are contained in p.

Finally, we use the restriction that Sym·(Nq)H is one-dimensional to show the existence of
such a parabolic subalgebra when G is a classical group, or for any semisimple group G
under a genericity condition.

6.4. Stabilizer subgroup of a semi-stable T-fixed point.

Let Pi be the parabolic with roots ∆Pi
=
{
α ∈ ∆ | κ(α, µi) > 0

}
, and let Mi = G/Pi. The

stabilizer subgroup of the point w−1
i in Mi is w−1

i Piwi, whose roots are

(6.4.1) ∆w−1
i Piwi

=
{
α ∈ ∆ | κ(wiα, µi) > 0

}
=
{
α ∈ ∆ | κ(α,w−1

i µi) > 0
}
.

Let M = M1 × · · · × Mk and let q be the point q = (w−1
1 , . . . , w−1

k ) of M. We set H =⋂k
i=1w

−1
i Pwi to be the stabilizer subgroup of q. The condition

∑k
i=1w

−1
i µi = 0 in combi-

nation with (6.4.1) shows that the roots of H are given by

(6.4.2) ∆H =
{
α ∈ ∆ | κ(α,w−1

i µi) = 0 for i = 1,. . . , k
}
.

We conclude from (6.4.2) that H is a reductive subgroup of G. Noting that T ⊆ H, the
following lemma is another immediate consequence of (6.4.2).

Lemma (6.4.3) — We have H = T if and only if the span of {w−1
i µi}ki=1 intersects the

interior of some Weyl chamber. This happens, for instance, if any one of the weights µi is
strictly dominant.

6.5. Torus action at fixed points of M and combinatorial deductions.

LetWi = {w ∈ W | wµi = µi} ⊆ W be the stabilizer subgroup of µi; this is the Weyl group
of Pi. We will need the formula for the formal character of the tangent space of Mi at a
torus fixed point. Because of the way that the inverses of group elements enter into our
formulas we make the following convention: For any element w of W and any i we let
ws(i) and wl(i) be respectively the shortest and longest elements in the coset Wiw. Recall
also that for Φ ⊆ ∆, 〈Φ〉 denotes the formal character

∑
α∈Φ e

α.
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With this convention, if wi is any element ofW , the formal character of the tangent space
of Mi at the torus fixed point corresponding to the coset w−1

i Wi is

Ch(Tw−1
i

Mi) = 〈Φwi,s(i)
〉+ 〈−Φc

wi,l(i)
〉 =

〈
{α ∈ ∆ | κ(α,w−1

i µi) < 0}
〉
.

The formal character of the tangent space of M at q is therefore

(6.5.1) Ch(TqM) =

k∑

i=1

(
〈Φwi,s(i)

〉+ 〈−Φc
wi,l(i)
〉
)

=

k∑

i=1

〈
{α ∈ ∆ | κ(α,w−1

i µi) < 0}
〉
.

Note that the multiplicity of each root α in the equations above is the number of i for
which κ(α,w−1

i µi) < 0.

If α 6∈ ∆H then there is some i for which κ(α,w−1
i µi) 6= 0 and hence, by the condition∑k

i=1w
−1
i µi = 0, there is some i for which κ(α,w−1

i µi) < 0, i.e., α must appear as a weight
in TqM. By looking at the positive roots of TqM we therefore conclude that

(6.5.2) (∆+ \∆+
H) =

⋃
Φwi,s(i)

.

Let Oq be the G-orbit of q in M. Since H is the stabilizer of q, the formal character of the
tangent space TqOq is

(6.5.3) Ch(TqOq) = 〈∆+ \∆+
H〉+ 〈∆

− \∆−

H〉.

IfNq = TqM/TqOq is the normal space to the orbit at q, then the union in (6.5.2) is disjoint
if and only if the formal character of Nq contains no positive root.

LetM be the subspace of g spanned by the root spaces corresponding to the roots appear-
ing inNq. Comparing the multiplicities in (6.5.1) and (6.5.3) we conclude that the roots of
M are

(6.5.4) ∆M =
{
α ∈ ∆ | κ(α,w−1

i µi) < 0 for at least two i ∈ {1, . . . , k}
}
.

Let s = Lie(H); equations (6.5.4) and (6.4.2) show thatM is an s-submodule of g.

The point q is not the only torus fixed point in its orbit; for any v ∈ W we can act on the
left to get the torus fixed point vq = (vw−1

1 , . . . , vw−1
k ). The weights of the normal space

Nvq to the G-orbit at vq are the result of acting on the weights of Nq by v and are hence
the roots appearing in Ch(vM).

Repeating the previous arguments with the new point vq and the new stabilizer group
vHv−1 = Stab(vq), gives the following result.

Lemma (6.5.5) — For any v ∈ W we have

(∆+ \∆+
vHv−1) =

k⊔

i=1

Φ(wiv−1)s(i)

if and only if vM⊆ b−.
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6.6. Reduction to the existence of pM.

Proposition (6.6.1) — Suppose that there exists v ∈ W satisfying the conditions

(i) vM⊆ b−,

(ii) there is an element w ∈ W such that Φw = ∆+
vHv−1 .

Then there exist w1,. . . , wk ∈ W such that
∑k

i=1w
−1
i µi = 0 and ∆+ =

⊔k
i=1 Φwi

.

Proof. By condition (i) and Lemma 6.5.5 we have (∆+ \ ∆+
vHv−1) = ⊔ki=1Φ(wiv−1)s(i)

. Set

w̃k+1 = w, µk+1 = 0, and w̃i = (wiv
−1)s(i) for i = 1,. . . , k. Conditions (i) and (ii) above and

the original assumption about w1,. . . , wk imply

(6.6.2)
k+1∑

i=1

w̃−1
i µi = 0 and ∆+ =

k+1⊔

i=1

Φ
ewi
.

Equation (6.6.2) and Theorem I show that there is a surjective cup product map

Hℓ(w̃1)(X,Lw̃−1
1 ·µ1

)⊗ · · · ⊗Hℓ(w̃k+1)(X,Lw̃−1
k+1·µk+1

)
∪
−→ HN(X,KX).

Since Hℓ(w̃k+1)(X,Lw̃−1
k+1·µk+1

) is the trivial module, if we factor the map above by cupping

the k-th and (k + 1)-st factors together first, we obtain a surjective cup product map onto
HN(X,KX) only involving the modules V∗

µ1
,. . . , V∗

µk
. By invoking Theorem I again we

conclude that there are w1,. . . , wk such that

(6.6.3)
k∑

i=1

w−1
i µi = 0 and ∆+ =

k⊔

i=1

Φwi
,

proving Proposition 6.6.1. �

Remark. If there do exist w1,. . . , wk satisfying the conclusion of Proposition 6.2.1 it is not
hard to show that there must exist v ∈ W so that (i) of 6.6.1 holds. As a consequence of
our method of proof we see a posteriori that there must be a v so that both (i) and (ii) hold
when G is a classical group or under a genericity condition. We do not know if condition
(ii) is necessary in general.

It is useful to rephrase the conditions of Proposition 6.6.1 in terms of the existence of a
particular parabolic subalgebra pM.

Lemma (6.6.4) — Let s = Lie(H). Suppose that there exists a parabolic subalgebra pM with
reductive part s such thatM⊆ pM. Then conditions (i) and (ii) of Proposition 6.6.1 hold.

Proof. Let pM be such a parabolic subalgebra. Acting by an element v ∈ W we can
conjugate pM so that b− ⊆ vpM. This implies that vM ⊆ b−. Since vs is the radical of
a parabolic subalgebra containing b−, if w is the longest element of the Weyl group of vs
then Φw = ∆+

vs = ∆+
vHv−1 . �
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Remark. If there exists v ∈ W such that condition (ii) of Proposition 6.6.1 holds then one
can show that p := b− + vs is a parabolic subalgebra of g. If condition (i) also holds for
this v then pM := v−1p is a parabolic subalgebra satisfying the conditions of Lemma 6.6.4.
Therefore the existence of the parabolic pM is equivalent to the conditions in Proposition
6.6.1. Since we will not need this direction of the equivalence we omit the justification of
the first assertion.

6.7. GIT consequences of the stable multiplicity one condition.

Let L be the line bundle on M whose pullback to Xk is Lµ1 ⊠ · · · ⊠ Lµk
. Then L is a G-

equivariant ample line bundle on M. By the stable multiplicity one condition we have
dim(M,Lm)G = 1 for all m≫ 1, and so the GIT quotient M//G is a point.

The weight of L at q is
∑k

i=1w
−1
i µi = 0. By Lemma 2.11.1 this means that q is a semi-stable

point with a closed orbit. By the Luna slice theorem, [Lu1, Théorèm du Slice Étale,pg.
97], Spec(Sym(N ∗

q )H) and the image of q in the GIT quotient M//G have a common étale

neighbourhood. Hence dim(Nq/H) = dim(M//G) = 0, i.e., dim Sym·(N ∗
q )H = 1. Passing to

the level of Lie algebras and dualizing we obtain dim Sym·(Nq)s = 1.

SinceM is isomorphic to an s-submodule of Nq we arrive at the following consequence
of the stable multiplicity one condition:

Lemma (6.7.1) — Under the hypotheses of Proposition 6.2.1 and with the notation of §6.5,
we have dim Sym·(M)s = 1, i.e., Sym·(M)s consists of just the constants.

6.8. Proof of Proposition 6.2.1.

By Proposition 6.6.1 and Lemma 6.6.4, to prove Proposition 6.2.1 it is enough to show
the existence of the parabolic subalgebra pM. By Lemma 6.7.1 we may assume that
dim Sym·(M)s = 1.

Proof of 6.2.1(i)— If any one of the weights µ1,. . . , µk is strictly dominant, or more generally,
if the span of {w−1

i µi}ki=1 intersects the interior of some Weyl chamber, then by Lemma
6.4.3 H = T and so s = Lie(T) = t and ∆+

t = ∅. The condition that dim(Sym·(M)t) = 1 is
then equivalent to the condition that no non-trivial non-negative combination of weights
of M is zero. Hence by Farkas’s lemma the weights of M all lie strictly on one side
of a hyperplane and the cone dual to the cone they span is open. We may therefore
pick a weight in the interior of the dual cone which is not on any hyperplane of the
Weyl chambers. The roots lying on the positive side of this hyperplane give the parabolic
subalgebra pM. �

Proof of 6.2.1(ii)— Equation (6.4.2) shows that the roots of s are given by the vanishing
of linear forms and hence s is the reductive part of a parabolic subalgebra. Let a be the
center of s. For any ν ∈ a∗ \ {0} set

gν =
{
x ∈ g | [t, x] = ν(t)x for all t ∈ a

}
.
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Following Kostant, [K3] we call ν ∈ a∗\{0} an a–root if gν 6= 0. LetR be the set of a–roots
of g and S the subset of those a–roots appearing inM, so thatM = ⊕ν∈S gν .

A subset R′ of R is called saturated if whenever ν ∈ R′ and rν ∈ R for some r ∈ Q+ then
rν ∈ R′ as well. It follows from (6.5.4) that S is a saturated subset of R.

As part of the main theorem of [DR2] we establish the following result.2

Theorem — Let g be a classical Lie algebra, s be a subalgebra which is the reductive part of
a parabolic subalgebra of g, S be a saturated subset of the a–rootsR, andM = ⊕ν∈S gν . If
dim(Sym·(M))s = 1, then there exists a parabolic subalgebra pM ⊆ g with reductive part
s such thatM⊆ pM.

Thus when G is a simple classical group or a product of simple classical groups, the
above theorem along with the previous reductions establish Proposition 6.2.1 and finish
the proof of Theorem II. �
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(1974), 53–88.

[De2] M. Demazure, A very simple proof of Bott’s theorem, Invent. Math. 33 (1976), 271–272.
[DR] I. Dimitrov and M. Roth, Geometric realization of PRV components and the Littlewood-Richardson cone,

Contemp. Math. 490, Amer. Math. Soc. Providence, RI 2009, 83–95.
[DR2] I. Dimitrov and M. Roth, Positive systems of Kostant roots, Algebr. Represent. Theory,

DOI: 10.1007/s10468-017-9691-2
[DR3] I. Dimitrov and M. Roth, “Regular faces of the Littlewood-Richardson cone and intersection multiplicity

one for classical groups”, in preparation.
[G] N. Grieve, Index conditions and cup-product maps on Abelian varieties, Internat. J. Math. 25 (2014), no.

4, 1450036, 31 pages.
[Ha] H. C. Hansen, On cycles in flag manifolds, Math. Scand. 33 (1973), 269–274.
[KLM] M. Kapovich, B. Leeb, and R. Milson, Convex functions on symmetric spaces, side lengths of polygons and

the stability inequalities for weighted configurations at infinity, J. Differential Geom. 81 (2009), 297–354.
[Ke] G. Kempf, Vanishing theorems for flag manifolds, Amer. J. Math. 98 (1976), 325–331.
[Kl] S. Kleiman, The transversality of a general translate, Compositio Math. 28 (1974), 287–297.
[Kly] A. Klyachko, Stable bundles, representation theory and Hermitian operators, Selecta Math. (N.S.) 4

(1998), 419–445.
[K1] B. Kostant, Lie algebra cohomology and the generalized Borel–Weil theorem, Ann. of Math. (2) 74 (1961),

329–387.
[K2] B. Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327–404.

2The proof is rather technical, and involves a case-by-case analysis of the different types, a characteriza-
tion of the desired parabolics in terms of certain linearly ordered data, and an argument that the hypothesis
dim(Sym·(M))s = 1 allows one to take a partial order constructed from S and extend it to a linear one.

43

http://link.springer.com/article/10.1007%2Fs10468-017-9691-2


[K3] B. Kostant, Root systems for Levi factors and Borel–de Siebenthal theory, in Symmetry and Spaces, edited
by H. E. A. Campbell et al. Progr. Math. 278 Birkhäuser, Boston, 2010, 129–152.
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