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Abstract. Let X = G/B and let L1 and L2 be two line bundles on X.
Consider the cup product map

Hq1 (X,L1) ⊗ Hq2 (X,L2) → Hq(X,L),

where L = L1⊗L2 and q = q1+q2. We find necessary and sufficient conditions
for this map to be a nonzero map of G–modules. We also discuss the converse
question, i.e. given irreducible G–modules U and V , which irreducible compo-
nents W of U⊗V may appear in the right hand side of the equation above. The
answer is surprisingly elegant — all such W are generalized PRV components
of multiplicity one. Along the way we encounter numerous connections of our
problem with problems coming from Representation Theory, Combinatorics,
and Geometry. Perhaps the most intriguing relations are with questions about
the Littlewood–Richardson cone.

This article is expository in nature. We announce results, comment on
connections between different fields of Mathematics, and state a number of
open questions. The proofs will appear in a forthcoming paper.

Introduction

In 1966 Parthasarathy, Ranga-Rao, and Varadarajan, [PRV], proved that the
tensor product of two irreducible modules U and V of a semisimple algebraic group
G contains a “smallest” component W (later named the “PRV component”) whose
multiplicity in the tensor product is one. The highest weight of W is the dominant
weight in the Weyl group orbit of the sum of the highest weight of U and the lowest
weight of V . This remarkable discovery was the first instance of a minimal-type
representation which later proved to be central in the theory of Harish–Chandra
modules. For details on the history of the PRV component see the excellent article
[Va]. In 1988 Kumar, [Ku1], generalized the PRV theorem by proving that any
irreducible module G-module whose highest weight is a sum of two extreme weights
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of U and V is still a component of U ⊗V . Such components are called “generalized
PRV components”. While generalized PRV components retain some of the proper-
ties of the PRV component, they lack a very important one — their multiplicities
may be greater than one, cf. [Ku2]. This seemed to be the end of the story —
a beautiful discovery with deep applications to Representation Theory, a natural
and elegant generalization which however lost some features of the original, and
it did not seem that there was more to be said. It turns out, however, that there
is another, less obvious generalization of the PRV component. The construction
comes from the cup product on the complete flag variety and yields generalized
PRV components of multiplicity one. Moreover, we conjecture that it gives all
generalized PRV components of stable multiplicity one. This construction gives a
different natural generalization of the PRV component — instead of the “smallest”
component of the tensor product we obtain “extreme” components, though not
all of them. This last observation leads to natural connections with combinatorial
problems about the Littlewood–Richardson cone.

This work arose from the clash between the naively pessimistic intuition de-
rived from Representation Theory of the first named author and the optimistic
intuition derived from Geometry of the second named author. The truth turned
out to be just a bit off of the latter. The starting point is the Borel–Weil–Bott
theorem, [Bo], which computes the cohomology of line bundles on complete homo-
geneous G–varieties. Every line bundle has a nonzero cohomology in at most one
degree, every such cohomology is an irreducible G–module, and every irreducible
G–module appears in every degree (not necessarily uniquely) as such a cohomology
group. The main application to Representation Theory is exactly in constructing
all irreducible G–modules. In this sense the Borel–Weil theorem, i.e. the state-
ment about cohomology in degree zero, suffices. As far as we know, Bott’s theorem
—the statement about higher cohomology — has not been used for constructing
representations of reductive algebraic groups in characteristic zero. In this paper
we apply Bott’s theorem to construct irreducible components of the tensor product
of two irreducible representations. Namely, we consider the diagonal embedding
of the homogeneous variety X = G/B , where B is a Borel subgroup of G into
X ×X . It gives rise to a map π from the cohomology of line bundles on X × X to
the cohomology of the restrictions of these line bundles on X . Since the diagonal
embedding of X into X × X is G–invariant, the map π is a G–module map from
the tensor product U∗ ⊗ V ∗ of two irreducible G–modules U∗ and V ∗ to another
irreducible G–module W ∗. If the map is nonzero then by dualizing we obtain a
geometric construction of the simple component W of U ⊗ V . Two natural prob-
lems arise from this situation — find necessary and sufficient conditions for π to be
a nonzero map between G–modules and describe all components of U ⊗ V which
can be constructed in this way.

We solve the first problem by finding an explicit (though somewhat mysterious)
necessary and sufficient combinatorial condition on the line bundles under consid-
eration. The condition, equation (6), is expressed in terms of a triple of Weyl group
elements naturally associated to the line bundle on X × X . The second question
seems to be more difficult and we only have a partial solution and a conjecture about
the full answer. We prove that the geometric construction yields only generalized
PRV components of multiplicity one and we conjecture that every generalized PRV
component of stable multiplicity one can be obtained in this way. Furthermore,
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we show that the components that result from the geometric construction are al-
ways extreme in the Littlewood–Richardson cone. This relates our results to the
recent renewed interest in the structure of the Littlewood–Richardson cone which
began with the proof of Horn’s conjecture in the work of A. Klyachko, [Kl], and A.
Knutson and T. Tao, [KT].

The present paper is expository in nature. We state the two problems discussed
above and the main theorems that relate to them as well several other statements
of interest. We also pose a number of open questions. The proofs will be published
elsewhere. Here is briefly the content of each of the five sections.

1. Statement of the two main problems.
2. Solution of the first problem.
3. Discussion of the second problem.
4. Relation of the second problem for GLn+1 to Schubert calculus.
5. Relation of our results to the structure of the Littlewood–Richardson cone

and to other “cone” problems.

Acknowledgments. We thank P. Belkale, W. Fulton, B. Kostant, S. Kumar, K.
Purbhoo, and N. Reading for many fruitful discussions. I. D. acknowledges the
support and excellent working conditions at the Max Planck Institute, Bonn. M.
R. acknowledges the hospitality of the University of Roma III.

Notation. The ground field is C. Let G be a connected reductive algebraic group,
let T ⊂ B ⊂ G be a maximal torus and a Borel subgroup of G, and let X = G/B.
We have the following standard objects related to the triple T ⊂ B ⊂ G.

• P — the characters of T and P+ — the dominant characters of T ;
• V (λ′) — the irreducible G–module with B–highest weight λ′ ∈ P+;
• ∆ — the roots of G, ∆+ — the roots of B, and ∆− := −∆+;
• W — the Weyl group of G. For w ∈ W we denote the length of w by

l(w);
• w0 ∈ W — the longest element of W ;
• ρ := 1/2

∑

α∈∆+ α;
• (−,−) : t

∗× t
∗ → C — a non–degenerate W–invariant symmetric bilinear

form on t
∗, where t := Lie T ;

• cν′

λ′,µ′ — the multiplicity [V (λ′) ⊗ V (µ′) : V (ν′)].

We consider two actions of W on P — the usual action which we call homogeneous
and denote by wλ or w(λ), and the affine action given by w · λ := w(λ + ρ)− ρ. A
character λ ∈ P is regular if there is a dominant character in the affine orbit of λ,
or equivalently if (λ + ρ, α) 6= 0 for every α ∈ ∆. If λ is regular, then there exists
a unique element wλ ∈ W for which wλ · λ is dominant. We define the length of
λ, l(λ), to be the length of wλ. If λ is not regular, we call it singular. The length
of a singular element is not defined. Whenever we use the notation l(λ) we assume
implicitly that λ is regular.

1. The Borel–Weil–Bott theorem and diagonal embeddings.

For λ ∈ P , let Lλ be the line bundle on X corresponding to the B–module
C−λ on which T acts via the character (−λ) and the unipotent radical of B acts
trivially. The Borel–Weil–Bott theorem, see [Bo], states that

Hq(X,Lλ) =

{

V (wλ · λ)∗ if l(λ) = q
0 otherwise.
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Consider the diagonal embedding X →֒ X × X . If λ, µ ∈ P , the line bundle
Lλ ⊠ Lµ on X × X restricts to the line bundle Lλ+µ on X and this restriction
induces a natural map

(1) π : Hq(X × X,Lλ ⊠ Lµ) → Hq(X,Lλ+µ).

Both sides of (1) are G–modules and the map π is a G–module homomorphism. If
one or both of these modules are zero, then π is trivial. Assume both sides of (1)
are nontrivial G modules, i.e. assume that

(2) l(λ + µ) = l(λ) + l(µ),

and that q is the common value. The Borel–Weil–Bott theorem allows us to compute
explicitly the G–modules in (1). By Kunneth’s theorem we have

Hq(X × X,Lλ ⊠ Lµ) = ⊕
i+j=q

Hi(X,Lλ) ⊗ Hj(X,Lµ)

=H l(λ)(X,Lλ) ⊗ H l(µ)(X,Lµ) = V (wλ · λ)∗ ⊗ V (wµ · µ)∗.

Hence, assuming (2), the dual of π is a G–module homomorphism

(3) π∗ : V (ν′) → V (λ′) ⊗ V (µ′),

where λ′ := wλ ·λ, µ′ := wµ ·µ, and ν′ := wλ+µ ·(λ+µ). Since V (ν′) is an irreducible
G–module, π∗ is zero or injective and, respectively, π is zero or surjective. Thus we
have arrived at the two main problems of the present paper.

Problem 1. When is π a surjective map between nontrivial G–modules?

Problem 2. Given λ′, µ′ ∈ P+, find all simple components V (ν′) of V (λ′) ⊗
V (µ′) which arise from (3). More precisely, find all ν′ ∈ P+ for which there exist
w1, w2, w3 ∈ W with the property that

(4) w−1
3 · ν′ = w−1

1 · λ′ + w−1
2 · µ′

and such that the map π∗ corresponding to λ = w−1
1 · λ′ and µ = w−1

2 · µ′ is an
injective map between nontrivial G–modules.1

We call such components V (ν′) of V (λ′) ⊗ V (µ′) cohomological.

2. Inversion sets and the answer to Problem 1.

We start our discussion with the first problem. Clearly, (2) is a necessary
condition. Unfortunately, it is not sufficient as the following example shows.

Example 1. Let G = GL6 and let λ = µ = (a, b, 0, a + 2, b + 2, 2) for some
integers a > b > 0. One checks immediately that l(λ) = 3, while l(2λ) = 6.
Furthermore, λ′ = µ′ = (a, a, b + 1, b + 1, 2, 2) and ν′ = (2a + 1, 2a + 1, 2b + 2, 2b +
2, 3, 3), which shows that V (ν′) is not a component of V (λ′) ⊗ V (µ′), and hence π
and π∗ are trivial.

To state the answer to Problem 1 we need to introduce some more notation.
The inversion set Φw of an element w ∈ W is defined as the set of positive roots
which w sends to negative roots, i.e. Φw := ∆+ ∩ w−1∆−. Set Φc

w := ∆+\Φw.

1 Strictly speaking, we need to do more if the multiplicity of V (ν′) in V (λ′)⊗V (µ′) is greater
than one. Since this never happens, describing all characters ν′ suffices.
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Inversion sets were introduced by Kostant in [Ko]. Assume now that for λ, µ ∈ P
condition (2) holds. Note first that

l(λ) = #{α ∈ ∆+ | (λ + ρ, α) < 0} = #{α ∈ ∆+ | (w1(λ + ρ), w1α) < 0}

= #{α ∈ ∆+ | (λ′ + ρ, w1α) < 0} = #Φwλ
,

where #S stands for the cardinality of a set S. Similarly, l(µ) = #Φwµ
and

l(λ + µ) = #Φwλ+µ
. Condition (2) is therefore equivalent to

(5) #Φwλ+µ
= #Φwλ

+ #Φwµ
.

Assume additionally that λ + ρ and µ + ρ are sufficiently far from the walls of
the Weyl chambers. (Explicitly, it is enough to assume that for every α ∈ ∆,
|(λ + ρ, α)| and |(µ + ρ, α)| are greater than 1/2 the maximal height of a root of
G.) Then Φwλ+µ

⊂ Φwλ
∪ Φwµ

. Indeed, if α ∈ Φc
wλ

∩ Φc
wµ

, then

(λ + µ + ρ, α) = (λ + µ + 2ρ, α) − (ρ, α) = (λ + ρ, α) + (µ + ρ, α) − (ρ, α) > 0,

i.e. α ∈ Φc
wλ+µ

. Now Φwλ+µ
⊂ Φwλ

∪ Φwµ
together with (5) implies

(6) Φwλ+µ
= Φwλ

⊔ Φwµ
.

To summarize the discussion above, we have shown that for λ + ρ and µ + ρ far
enough from the walls of the Weyl chambers, conditions (2) and (6) are equivalent.
Example 1, where Φwλ

= Φwµ
, shows that (2) does not imply (6) in general. Con-

dition (6) above is somewhat mysterious, however it does appear in other instances.
Combinatorially it can be expressed in terms of the weak Bruhat order on W —
it means that the greatest lower bound of wλ and wµ is the identity and the least
upper bound of the two is wλ+µ.2 Another interesting fact is that (6) is equivalent
to the property that s(Φwλ

), s(Φwµ
), and s(Φc

wλ+µ
) are mutually orthogonal, where

s(Φ) =
∑

α∈Φ α for any subset Φ ⊂ ∆+.3 The appearance of (6) most relevant to
our work is in [BK1] where Belkale and Kumar define a new product in the ring
H∗(X, Z) by keeping the structural constants dw3

w1,w2
(see (7) below) corresponding

to triples satisfying Φw3
= Φw1

⊔ Φw2
the same, and setting all other structure

constants equal to zero. This alternate product on H∗(X, Z) is then used to pa-
rameterize a minimal set of inequalities determining the cone of solutions of an
eigenvalue problem associated to G.

The solution of Problem 1 is given by the following theorem.

Theorem 1. The map π is a surjection of nontrivial G–modules if and only if
Φwλ+µ

= Φwλ
⊔ Φwµ

and q = l(λ + µ).

Here are a few words about the proof. The cohomology ring H∗(X, Z) plays a

crucial role. For each w ∈ W , let Xw := BwB/B ⊂ X denote the Schubert variety
associated to w. The classes {[Xw]}w∈W of all Schubert varieties form a basis of
H∗(X, Z). The Poincaré dual basis {[Ωw]}w∈W is given by Ωw := Xw0w, where w0

denotes the longest element of W , cf. [De1]. If l(w3) = l(w1) + l(w2) set

(7) dw3

w1,w2
:= ([Ωw1

] ∩ [Ωw2
]) · [Xw3

].

If we assume that π is a surjection of nontrivial G–modules, then we first show
that d

wλ+µ
wλ,wµ 6= 0. Furthermore, d

wλ+µ
wλ,wµ 6= 0 together with cν′

λ′,µ′ 6= 0 implies that
Φwλ+µ

= Φwλ
⊔ Φwµ

which establishes one direction of the theorem. The other

2 We thank N. Reading for telling us about this interpretation.
3 We thank B. Kostant for telling us this fact.
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direction is more difficult to prove. The first step is to see that d
wλ+µ
wλ,wµ 6= 0 and

then a rather delicate geometric argument completes the proof. This last step is
somewhat simpler if d

wλ+µ
wλ,wµ = 1. In fact it seems that this may always be the case.

Claim 1. If G is a simple classical group, then Φw3
= Φw1

⊔ Φw2
implies that

dw3
w1,w2

= 1.

P. Belkale and S. Kumar showed us a proof of Claim 1 in the case of G = SLn+1,
[BK2]. Their proof goes through for simple groups of type B and C as well. The
case of simple groups of type D is more difficult and involves both combinatorial
and geometric machinery. It is also not difficult to check the statement above for
the group G2. The remaining exceptional groups (at least E8) seem to be beyond
a computer verification.

We complete this section by stating two open questions.

Question 1. Is it true that Φw3
= Φw1

⊔ Φw2
implies that dw3

w1,w2
= 1 for any

G?

Question 2. Is it true that if l(ν) = l(λ) + l(µ) then π is surjective map of

nontrivial G–modules if and only if cν′

λ′,µ′ 6= 0?

3. Generalized PRV components and cohomological components.

In this section we discuss Problem 2. If λ′, µ′ ∈ P+ and ν′ is the dominant
character in the W-orbit of λ′ + w0µ

′, where w0 is the longest element of W , then
V (ν′) is a component of V (λ′) ⊗ V (µ′) of multiplicity one, see [PRV] . The com-
ponent V (ν′) is called the PRV component of V (λ′) ⊗ V (µ′). More generally, for
any w ∈ W , if ν′ is the dominant character in the W-orbit of λ′ + wµ′ then V (ν′)
is still a component of V (λ′) ⊗ V (µ′), see [Ku1]. These are called generalized
PRV components of V (λ′) ⊗ V (µ′). Unlike the PRV component, generalized PRV
components may have multiplicities greater than one. We first show that every
cohomological component of V (λ′)⊗V (µ′) is a generalized PRV component. Equa-
tion (4) can be rewritten as ν′ = w−1

3 · (w−1
1 · λ′ + w−1

2 · µ′) which resembles the
expression relating the highest weights of the generalized PRV components except
for the fact that we have the affine action of the Weyl group instead of the ho-
mogeneous one. However, if V (ν′) is a cohomological component then Theorem 1
implies that Φw3

= Φw1
⊔ Φw2

. Using the equality w−1 · 0 = w−1ρ − ρ = −s(Φw),
where s(Φw) =

∑

α∈Φw
α as above, we conclude that Φw3

= Φw1
⊔Φw2

implies that

w−1
3 ρ+ρ = w−1

1 ρ+w−1
2 ρ. The last equation ensures that w−1

3 ·ν′ = w−1
1 ·λ′+w−1

2 ·µ′

is equivalent to ν′ = w3(w
−1
1 λ′ + w−1

2 µ′), which shows that every cohomological
component of V (λ′) ⊗ V (µ′) is a generalized PRV component. Notice that the
argument above relies on the fact that

Φw3
= Φw1

⊔ Φw2
implies that w−1

3 · 0 = w−1
1 · 0 + w−1

2 · 0.

The converse is also true when dw3
w1,w2

6= 0 as the following statement shows.

Claim 2. Let w1, w2, w3 ∈ W be such that l(w3) = l(w1)+l(w2) and dw3
w1,w2

6= 0.

Then w−1
3 · 0 = w−1

1 · 0 + w−1
2 · 0 implies Φw3

= Φw1
⊔ Φw2

.

A partial solution to Problem 2 is given by the next theorem.

Theorem 2. If V (ν′) is a cohomological component of V (λ′) ⊗ V (µ′) then
V (ν′) is a generalized PRV component of V (λ′) ⊗ V (µ′) of multiplicity one.
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Theorem 1 implies that if V (ν′) is a cohomological component of V (λ′)⊗V (µ′)
then V (kν′) is a cohomological component of V (kλ′) ⊗ V (kµ′) for every positive
integer k. This, combined with Theorem 2, implies the following.

Claim 3. If V (ν′) is a cohomological component of V (λ′)⊗V (µ′) then ckν′

kλ′,kµ′ =
1 for every positive integer k.

We believe that the converse of Claim 3 is also correct.

Conjecture. V (ν′) is a cohomological component of V (λ′)⊗V (µ′) if and only
if V (ν′) is a generalized PRV component of V (λ′)⊗V (µ′) of stable multiplicity one,

i.e. ckν′

kλ′,kµ′ = 1 for every positive integer k.

This conjecture is supported by the following particular cases.

Claim 4. In each of the following cases, V (ν′) is a generalized PRV component
of stable multiplicity one in V (λ′) ⊗ V (µ′). Moreover, V (ν′) is a cohomological
component of V (λ′) ⊗ V (µ′).

(i) When V (ν′) is the PRV component of V (λ′) ⊗ V (µ′).
(ii) When λ′ ≫ µ′, in the sense that λ′ + wµ′ ∈ P+ for every w ∈ W, and

ν′ = λ′ + wµ′ for some w ∈ W.

The fact that V (ν′) above is of stable multiplicity one in V (λ′)⊗V (µ′) follows
from [PRV] in the first case, and is an elementary exercise in the second one.
The construction of the corresponding triple (w1, w2, w3) is straightforward in both
cases. For the PRV component the triple is given by (w0σ

−1, σ−1, w0), where σ ∈ W
is an element so that ν′ = σ(λ′ + w0µ

′) ∈ P+. In the second case we can simply
take the triple to be (w−1, e, w−1).

For G = GLn+1 a conjecture of Fulton, proved by Knutson, Tao, and Wood-

ward [KTW], states that cν′

λ′,µ′ = 1 is equivalent to ckν′

kλ′,kµ′ = 1 for every positive
integer k. When G is of type A the conjecture would therefore imply that a com-
ponent V (ν′) of V (λ′)⊗V (µ′) is cohomological if and only if V (ν′) is a generalized
PRV component of multiplicity one. The fact that multiplicity one implies stable
multiplicity one is not true in general. The next example illustrates this and our
conjecture for G = SO5.

Example 2. Let G = SO5 and let λ′ = µ′ = ρ = ω1 + ω2, where ω1 and ω2

are the fundamental weights. V (ρ) ⊗ V (ρ) contains the following components

(0, 0), (1, 0), (2, 0), (3, 0), (0, 2), (1, 2), (2, 2), (0, 4),

where (a, b) denotes aω1 + bω2 (see the middle picture in Figure 1 for this decom-
position). The generalized PRV components are

(0, 0), (1, 0), (3, 0), (0, 2), (1, 2), (2, 2), (0, 4)

of which (1, 2) and (0, 2) have multiplicity 2 and the rest have multiplicity 1. The
cohomological components are

(0, 0), (3, 0), (2, 2), (0, 4).

The component (1, 0) is a generalized PRV component of multiplicity 1 which is not
cohomological. This does not contradict the Conjecture since for k = 2 we have

c
(2,0)
(2,2),(2,2) = 2.
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It is interesting to know for which k we need to check the multiplicities ckν′

kλ′,kµ′ .

Kapovich and Millson, [KM], proved that there exists k = k(G) such that ckν′

kλ′,kµ′ 6=

0 if and only if cNν′

Nλ′,Nµ′ 6= 0 for N ≥ k. However we do not know whether a similar
result holds for detecting stable multiplicity one.

4. Reduction patterns and the proof of Theorem 2 for G = GLn+1.

The proof of Theorem 2 is type–independent.4 However, if G = GLn+1 there
is a different proof which exploits the fact that the Littlewood–Richardson coeffi-
cients appear as structure constants for the multiplication in the cohomology ring
of Grassmannians. Since this proof establishes yet another connection between
cohomological components and classical geometric objects, we will outline it here.

Let G = GLn+1 and G̃ = GLn. Assuming that V (ν′) is a cohomological

component of V (λ′) ⊗ V (µ′) for the group G we will construct a triple (λ̃′, µ̃′, ν̃′)

such that V (ν̃′) is a cohomological component of V (λ̃′) ⊗ V (µ̃′) for the group G̃

and with the property that cν′

λ′,µ′ = cν̃′

λ̃′,µ̃′
. We call the assignment

Rn : (λ′, µ′, ν′) → (λ̃′, µ̃′, ν̃′)

a reduction of (λ′, µ′, ν′). Since V (ν̃′) is again a cohomological component of

V (λ̃′)⊗V (µ̃′) there is a reduction Rn−1 of (λ̃′, µ̃′, ν̃′) which again preserves the cor-
responding Littlewood–Richardson coefficients. Continuing inductively we obtain a
reduction pattern R, i.e. a composition R = R1 ◦R2◦ . . .◦Rn of consecutive reduc-
tions that can be applied to (λ′, µ′, ν′) which at each step preserves the property
of being a cohomological component and preserves the corresponding Littlewood–
Richardson coefficient. Since the tensor product of irreducible GL(1)–modules is

irreducible we conclude that cν′

λ′,µ′ = 1.

To find characters λ̃′, µ̃′, and ν̃′ such that cν′

λ′,µ′ = cν̃′

λ̃′,µ̃′
we will make use of

the fact that the Littlewood-Richardson coefficients coincide with the intersection
numbers of Schubert cycles on Grassmannians. More precisely, in the notation of
[GH], cν′

λ′,µ′ = #(σλ′ · σµ′ · σ(ν′)∗), where σ(ν′)∗ is the cycle which is Poincaré dual
to σν′ . The reduction Rn will be defined as the counterpart of Reduction Formula
I on p. 202 of [GH], i.e. through the diagram

cν′

λ′,µ′

Rn

��

#(σλ′ · σµ′ · σ(ν′)∗)

Reduction Formula I

��

cν̃′

λ̃′,µ̃′
#(σλ̃′ · σµ̃′ · σ(ν̃′)∗).

Here are the explicit formulas for Rn. Let λ′ = (λ′
0, λ

′
1, . . . , λ

′
n), µ′ = (µ′

0, µ
′
1, . . . , µ

′
n),

and ν′ = (ν′
0, ν

′
1, . . . , ν

′
n). Suppose that we can find i, j, and k in {0, . . . , n} such

that i + j = k + n and λ′
i + µ′

j = ν′
k. Let λ̃′, µ̃′, and ν̃′ be the characters obtained

by removing the ith, jth, and kth coordinates from λ′, µ′, and ν′ respectively, i.e.,

λ̃′ := (λ′
0, . . . , λ

′
i−1, λ

′
i+1, . . . , λ

′
n), µ̃′ := (µ′

0, . . . , µ
′
j−1, µ

′
j+1, . . . , µ

′
n),

and ν̃′ := (ν′
0, . . . , ν

′
k−1, ν

′
k+1, . . . , ν

′
n).

4 As Raja has taught I. D., one does not really understand a theorem about semisimple
groups until there is a type–independent proof.
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One checks immediately that this is the Littlewood-Richardson version of Reduction
Formula I from [GH], and hence that cν′

λ′,µ′ = cν̃′

λ̃′,µ̃′
.

To find such i, j, and k we use Theorem 1. Let w1, w2, and w3 be the corre-
sponding Weyl group elements, i.e. Φw3

= Φw1
⊔Φw2

and w−1
3 ·ν′ = w−1

1 ·λ′+w−1
2 ·µ′.

Since W is the symmetric group on n + 1 elements, we may think of elements of
W as bijective functions on {0, 1, . . . , n}. For any w ∈ W define the displacement
function δw by δw(i) = w(i) − i. It is clear that δw = ρ − w−1ρ = −w−1 · 0 and
hence w−1 ·τ = w−1τ −δw. Now Φw3

= Φw1
⊔Φw2

implies w−1
3 ·0 = w−1

1 ·0+w−1
2 ·0

which by the previous calculation may be written as

(8) δw3
= δw1

+ δw2
.

The identity w−1
3 · ν′ = w−1

1 · λ′ + w−1
2 · µ′ together with (8) gives

(9)
(ν′

w3(0)
, ν′

w3(1), . . . , ν
′
w3(n)) = (λ′

w1(0), λ
′
w1(1), . . . , λ

′
w1(n))+(µ′

w2(0)
, µ′

w2(1), . . . , µ
′
w2(n)).

A comparison of the last coordinates of (8) yields w3(n) = δw3
(n) + n = δw1

(n) +
δw2

(n) + n = w1(n) + w2(n) − n while the last coordinates of (9) yield ν′
w3(n) =

λ′
w1(n) + µ′

w2(n). Therefore, setting i := w1(n), j := w2(n), and k := w3(n), the

previous identities become

i + j = k + n, and λ′
i + µ′

j = ν′
k.

The final step is to verify that this particular reduction preserves the property
of being a cohomological component, i.e, that V (ν̃′) is a cohomological component

of V (λ̃′) ⊗ V (µ̃′). Define permutations of {0, 1, . . . , n − 1} by

w̃1(s) =

{

w1(s) if w1(s) < i

w1(s) − 1 if w1(s) > i
,

(10) w̃2(s) =

{

w2(s) if w2(s) < j

w2(s) − 1 if w2(s) > j
,

w̃3(s) =

{

w3(s) if w3(s) < k

w3(s) − 1 if w3(s) > k
.

It is not difficult to check that (10) ensures that w̃−1
3 · ν̃′ = w̃−1

1 · λ̃′ + w̃−1
2 · µ̃′ and

Φw̃3
= Φw̃1

⊔ Φw̃2
. Therefore, by Theorem 1, V (ν̃′) is a cohomological component

of V (λ̃′) ⊗ V (µ̃′); i.e. we have proved the following claim.

Claim 5. Let G = GLn+1 and let V (ν′) be a cohomological component of
V (λ′) ⊗ V (µ′). Then the triple (λ′, µ′, ν′) admits a reduction pattern and therefore

cν′

λ′,µ′ = 1.

Note that it is not true in general that an application of Reduction Formula
I results in a cohomological component. Let us call a sequence Rn,Rn−1, . . . ,R1

of reductions which can be applied consecutively to a triple (λ′, µ′, ν′) a weak re-
duction pattern (i.e., we do not require that each step results in a cohomological
component). There exist weak reduction patterns which are not reduction patterns,
but if at least one of the characters λ′, µ′, or ν′ is strictly dominant, then any weak
reduction pattern is a reduction pattern. We do not know whether the existence of
a weak reduction pattern for (λ′, µ′, ν′) always implies the existence of a reduction
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pattern for (λ′, µ′, ν′). In other words, we do not know the answer to the following
question.

Question 3. Is is true that if a triple (λ′, µ′, ν′) of dominant characters admits
a weak reduction pattern then V (ν′) is a cohomological component of V (λ′)⊗V (µ′)?

Notice that the Conjecture implies a positive answer to Question 3. Indeed,
if (λ′, µ′, ν′) admits a weak reduction pattern then V (ν′) is a generalized PRV
component of V (λ′)⊗V (µ′) of multiplicity one. We expect, however, that Question
3 may be answered by a direct combinatorial argument.

5. Cohomological components are extreme components of the tensor

product.

In this section we continue the discussion of Problem 2. Theorem 2 gives
a partial solution – which would be completed by the Conjecture – but here we
present properties of cohomological components related to the combinatorics of the
Littlewood–Richardson cone.

Denote by LR the Littlewood–Richardson cone, i.e., the rational convex cone
generated by {(λ′, µ′, ν′) ∈ (P+)3 | cν′

λ′,µ′ 6= 0}. Given λ′, µ′ ∈ P+, let LR(λ′, µ′)
be the slice of the Littlewood-Richardson cone LR obtained by fixing the first two
coordinates to be λ′ and µ′ respectively. The slice LR(λ′, µ′) is a convex polytope;
this follows, for example, from the solution of Horn’s conjecture, see [Kl], [KT],
and [KM]. The solution of Horn’s conjecture also implies that a point ν′ is in
LR(λ′, µ′) if and only if there is a positive integer m such that mν′ ∈ P+ and such
that Vmν′ is a component of Vmλ′ ⊗ Vmµ′ .

Part of the original theorem of Parthasarathy–Ranga Rao–Varadarajan implies
that the highest weight of the PRV component is a vertex of LR(λ′, µ′). Indeed,
they proved that V (λ′) ⊗ V (µ′) is generated by the vector vλ′ ⊗ vw0µ′ where vλ′ is
the highest weight vector of V (λ′) and vw0µ′ is the lowest weight vector of V (µ′). In
particular, the character of vλ⊗vw0µ′ is contained in the support of any irreducible
submodule of V (λ′) ⊗ V (µ′). Since this also holds after scaling by an arbitrary
positive integer m, this implies that this character is a vertex of LR(λ′, µ′). We
have the following generalization of this fact.

Claim 6. If V (ν′) is a cohomological component of V (λ′) ⊗ V (µ′), then ν′ is
a vertex of LR(λ′, µ′).

The following pictures illustrate this statement. We have drawn the polytope
LR(λ′, µ′) and the highest weights of the components of V (λ′)⊗V (µ′) in the cases
G = SL3 and V ((3, 5)) ⊗ V ((1, 2)), G = SO5 and V (ρ) ⊗ V (ρ), and G = SL3 and
V ((7, 2))⊗V ((1, 3)). The cohomological components are circled and the generalized
PRV components which are not cohomological are marked with a square.
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V ((3, 5)) ⊗ V ((1, 2))

SL3 SO5

V (ρ) ⊗ V (ρ)

SL3

V ((7, 2)) ⊗ V ((1, 3))

Figure 1

There are several observations we can make about the diagrams above. In the
first case all generalized PRV components are cohomological, while in the other
two only some of them are. Furthermore, in the first two cases all vertices of
LR(λ′, µ′) are cohomological, while in the last one two vertices of LR(λ′, µ′) are not
(although they are not generalized PRV components either). Finally, the number
of cohomological components varies from 4 to 6. These observations lead to the
following natural questions.

Question 4. Is it true that a generalized PRV component of V (λ′) ⊗ V (µ′) is
cohomological if and only if it is a vertex of LR(λ′, µ′)?

Question 5. How many cohomological components does V (λ′) ⊗ V (µ′) have?
How many vertices does LR(λ′, µ′) have?

As a first step towards answering Question 5 one may try to determine the pos-
sible number of cohomological components or vertices. In studying these questions
it makes sense to count the generalized PRV components with multiplicities, i.e.
we count V (σ′(λ′ + w′µ′)) and V (σ′′(λ′ + w′′µ′)) with w′ 6= w′′ as different gener-
alized PRV components even if σ′(λ′ + w′µ′) = σ′′(λ′ + w′′µ′′). Thus the number
of generalized PRV components of V (λ′)⊗ V (µ′) is equal to the order of W . With
this convention in mind we see that V (λ′)⊗ V (µ′) has at most |W| and at least 2n

cohomological components, where n is the semisimple rank of G. Indeed, for any
parabolic subalgebra P of G containing B, let w0(P ) be the longest element of W
which stabilizes the roots of P . The generalized PRV component corresponding to
w0(P ) is parabolically induced from the PRV component of the reductive part of
P . A moment’s thought shows that parabolic induction preserves the property of a
component being cohomological. Since there are exactly 2n parabolic subgroups of
G containing B (including B and G themselves), we conclude that there are at least
that many cohomological components. Both of these limits are achievable. Claim
4(ii) provides us with examples in which there are |W| cohomological components.
The next example shows that the number 2n can also be achieved.

Example 3. Consider the tensor product V (ρ) ⊗ V (ρ). The first observation
is that if V (ν′) is a cohomological component then ν′ = ρ + w3ρ ∈ P+. The sec-
ond observation is that ρ + wρ ∈ P+ with w ∈ W implies that w = w0(P ) for
some parabolic subgroup P . Both of these observations are easy exercises that we
leave to the reader (and/or their students). Thus we obtain 2n distinct cohomo-
logical components among the (not distinct) generalized PRV components. We can
also modify this example to obtain 2n cohomological components in a case when all
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generalized PRV components are distinct. Indeed, it is enough to take the tensor
product V ((N + 1)ρ) ⊗ V (Nρ) for a large enough N . The cohomological compo-
nents are still parabolically induced from PRV components and the generalized PRV
components are all distinct.

The tensor product considered in the example above seems to be more ap-
proachable than the general case while still retaining a very interesting structure.
It may be a good test for some of the questions we stated throughout the paper and
in particular for the Conjecture. We do not know whether the Conjecture holds for
V (ρ) ⊗ V (ρ).

We end the paper with two more questions concerning the combinatorics of
cohomological components. Unlike Question 5 where we are interested in the co-
homological components of a particular tensor product, the following questions ask
about cohomological components “at large”.

Question 6. Describe all triples (w1, w2, w3) which satisfy Φw3
= Φw1

⊔ Φw2
.

This question is intentionally stated in a very general and vague way. There are
different combinatorial interpretations of Φw3

= Φw1
⊔ Φw2

, and we have already
discussed some of them in Section 2. To explain what kind of an answer we are
looking for we turn to Demazure’s proof of the Borel–Weil–Bott theorem, [De2].
The proof boils down to showing that the Weyl group “acts” on the cohomology of
line bundles on X in a way compatible with the affine action on characters. The
answer to Question 6 we are hoping for would construct a graph whose vertices are
the triples under consideration and whose edges correspond to natural transforma-
tions from a triple to another triple. This very general question is related to some
of the questions we stated above.

A very concrete version of Question 6 is to ask for the number of such triples.
We do not know the answer, but here is a related interesting fact. If G = SLn+1,
the number of n–tuples (w1, w2, . . . , wn) of nontrivial elements of W such that
∆+ = Φw1

⊔ Φw2
⊔ . . . ⊔ Φwn

is exactly the nth Catalan number 1
n+1

(

2n
n

)

.

For the last question we fix a triple (w1, w2, w3) as in Question 6 and consider
the rational cone Cw3

w1,w2
generated by the set

{(λ′, µ′, ν′) ∈ (P+)3 |w−1
3 ν′ = w−1

1 λ′ + w−1
2 µ′}

= {(λ′, µ′, ν′) ∈ (P+)3 |w−1
3 · ν′ = w−1

1 · λ′ + w−1
2 · µ′},

where the equality of sets above is due to the equation w−1
3 · 0 = w−1

1 · 0 + w−1
2 · 0,

implied by the condition Φw3
= Φw1

⊔ Φw2
. The cone Cw3

w1,w2
is not empty as it

always contains the triple (0, 0, 0).

Question 7. What is the dimension of Cw3
w1,w2

?

The cones Cw3
w1,w2

are connected to many of the previous questions. As an
example, if Cw3

w1,w2
contains a point (λ′, µ′, ν′) with at least one strictly dominant

entry then dw3
w1,w2

= 1, giving an answer to Question 1 for the triple (w1, w2, w3).
Finally we note that combinations of the open questions stated in the paper

may also be posed. For example, we can combine Question 5 and Question 7
by asking whether the triple (w1, w2, w3) determines the number of cohomological
components and if so, how.
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Note added in proof. After this paper was accepted for publication we ob-
tained an almost complete proof of the Conjecture. More precisely, we have proved
that the Conjecture holds

1. when G is a simple classical group;
2. when G is any semisimple group and at least one of the characters λ′, µ′,

or ν′ is strictly dominant.
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