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Abstract

LetG be a finite group acting on a finite-dimensional vector spaceV , such that the ring of invariants
is polynomial. The purpose of this note is to describe exactly the finitely generated inverse systems
such that the associatedG-representation is the direct sum of copies of the regular representation of
G. This generalizes work of Steinberg, Bergeron, Garsia, and Tesler. Related results are also recalled.
All of the results are contained in the main theorem.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Let R = k[y1, . . . , yn] be the polynomial ring inn-variables over a fieldk of charac-
teristic zero. For any polynomialr ∈ R let L�(r) be thek-linear subspace ofR spanned
by r and its partial derivatives of all orders. Similarly, for a collectionr1, . . . , rm of poly-
nomials, we letL�(r1, . . . , rm) be thek-linear subspace spanned by theri ’s and all their
partial derivatives of all orders.

1.2. Suppose that a finite groupG acts faithfully by homogeneous linear substitutions on
R. If r1, . . . , rm are a collection of polynomials inR such that the space they span is stable
under the action ofG, then the same is true forL�(r1, . . . , rm). The basic question is to
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connect theG-representation that arises to properties of the initial polynomialsr1, . . . , rm
generating the subspace.

1.3. Let V be thek-vector space spanned byy1, . . . , yn, i.e., the ringR in degree 1. By
hypothesis,G acts linearly onV . Call an elementr of R aG-alternantif g · r = detg(V ∗)r
for all g ∈ G.

1.4. Suppose thatV is a pseudo-reflection representation (Section 2.1) ofG, andr = �G

is the product of the reflection vectors, each raised to the power one less than their order.
Thenr is aG-alternant and it follows from[11] thatL�(r) is the regular representation of
G.

More generally, Bergeron et al.[1, Theorem 3.2]prove that ifV is a pseudo-reflection
representation ofV andr is anyG-alternant, thenL�(r) is a sum of copies of the regular
representation ofG.

The main result of this note is

Theorem. Suppose thatV is a pseudo-reflection representation of G.ThenL�(r1, . . . , rm)

is a direct sum of copies of the regular representation of G if and only ifL�(r1, . . . , rm)

can be generated by G-alternants.

In other words, ifr1, . . . , rm areG-alternants, thenL�(r1, . . . , rm) is a sum of copies
of the regular representation ofG, and conversely, ifL�(r1, . . . , rm) is a sum of copies of
the regular representation ofG, then there areG-alternantsr ′1, . . . , r ′m′ in L�(r1, . . . , rm)

such thatL�(r
′
1, . . . , r

′
m′)=L�(r1, . . . , rm).

The proof is independent of the results above, and gives a conceptual explanation for the
appearance of the alternants: by Lemma 6.7 the generators ofL�(r1, . . . , rm) are dual to
the socle of a certain module. Eachg ∈ G acts on the socle by multiplication by detg(V ),
a consequence either of Grothendieck duality, or direct computation with the basic “tile”
moduleTG (Section 4.2); this means that the generators must also be alternates.

The hypothesis thatV be a pseudo-reflection representation cannot be removed. There is
simply no consistent answer possible in other cases, stemming from the fact that the relevant
ring of invariants (Section 2.3) is not polynomial, and hence represents a singular variety.

1.5. A convenient way to deal with the process of taking derivatives is given by Macaulay’s
inverse system construction (Section 6.4). LetA= k[x1, . . . , xn] be a polynomial ring inn
variables. Letxi act onR as the differential operator�/�yi , and extend this to an action of
A onR via the obvious interpretation of polynomials inA as linear differential operators.

For any collectionr1, . . . , rm of elements ofR, let I ′ := I ′r1,...,rm be the set of elements
in A which annihilater1, . . . , rm. ThenI ′ is an ideal ofA supported at the origin (Section
2.6). This process sets up a one-to-one correspondence between idealsI ′ of A supported at
the origin andk-subspaces of the formL�(r1, . . . , rm) of R.

From the construction, it follows thatA/I ′ is thek-dual ofL�(r1, . . . , rm). If A is given
the correctG-action, then this is also the dual as aG-representation. It is easier to deal with
this problem by looking atA, and this leads naturally to the ring of invariantsB = AG.
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1.6. The perspective in this note is to start withA, and constructR appropriately. In the
language of inverse systems, the theorem mentioned above is parts (d) and (e) of the main
theorem (Section 3).

Parts (a) and (b) of the main theorem are very well known, and certainly not new results.
They are included for completeness, and since the ideas involved in their proofs lead natu-
rally to the proofs of parts (c)–(e). Part (c) of the theorem is also useful. Although not listed
in the statement of the theorem, the canonical equality in Eq. (5.3.1) is the cleanest way to
understand the comparison between the socles.

Because theG-representations underlyingA andR are dual, it is sometimes awkward
to keep track of whatG-alternant should mean in either case, and hence we will always
explicitly spell out whether we are looking at elements which, when acted apon byg ∈ G,
are multiplied by detg(V ) or detg(V ∗).

2. Setup and notation

2.1. LetV be ann-dimensional vector space over a fieldk of characteristic zero,G a finite
group, and� : G → End(V ) a faithful representation ofV . We further require that the
representation be a pseudo-reflection representation.

A pseudo-reflectionis an elementg ∈ G such that when diagonalized (after possibly
extending scalars to the algebraic closurek̄) �(g) is of the form

�(g)=




1
1 0

. . .

0 1
�


 ,

where� is a root of unity. An ordinary reflection is the case that� = −1. An alternate
characterization of a pseudo-reflection is simply that rank(�(g)− 1)�1. A representation
� is called a complex reflection or pseudo-reflection representation ifG is generated by
elements{gi} such that each�(gi) is a pseudo-reflection.

2.2. Two examples of pseudo-reflection representations areG= Sn, the symmetric group,
acting on ann-dimensional vector spaceV by the usual permutation representation, and
G = Dm, the dihedral group of order 2m acting on a two-dimensional vector spaceV

over C via its usual real action on a regularm-gon centered at the origin. Both of these
representations are generated by genuine reflections.

2.3. Let A = Sym•(V ∗) =⊕
d�0 Symd(V ∗) be the ring of polynomial functions onV .

After choosing a basisx1, . . . , xn for V ∗, we haveA�k[x1, . . . , xn].
Let B = AG be the ring of invariants ofG. The condition thatG be a pseudo-reflection

representation is, by a well-known theorem of Shephard and Todd[8, Theorem 5.1], exactly
the condition that the ringB bepolynomial, i.e., that there existF1, . . . , Fn in A, invari-
ant underG, such that every invariant is a polynomial in theF ′s, or in other words that
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B = k[F1, . . . , Fn]. For an excellent discussion of this theorem, and certainly the most
beautiful proof of it, the reader is advised to consult the lecture of Serre[7].

2.4. In the case thatG = Sn with the usual permutation representation, theFi are the
elementary symmetric polynomials. In case thatG = Dm it is convenient to first change
basis so that the generating rotation� and the generating reflection� (satisfying���=�−1)
are of the form

�(�)=
[
�m 0
0 �−1

m

]
and �(�)=

[
0 1
1 0

]
,

where�m = exp(2�i/m) is a primitivemth root of unity. Choosing the corresponding dual
basis forV ∗, the ring of invariants is generated byF1= x1x2 andF2= xm1 + xm2 .

2.5. It will be conceptually clearer for us to not to think ofB as a subring ofA, but rather
as a polynomial ringB = k[u1, . . . , un] in indeterminatesu1, . . . , un, along with a ring
homomorphismB → A sending eachui to Fi .

Let di be the degree ofFi, i=1, . . . , n. We consider the indeterminateui to have degree
di , so thatB → A is a graded homomorphism. All references to degrees inB will be with
respect to this grading.

2.6. LetJ be an ideal ofB such thatB/J is a finite-dimensionalk-algebra, and letI=A ·J
be the ideal ofA generated byJ . For example, if the idealJ is the maximal homogeneous
idealJ = (u1, . . . , un) of B, thenI would beI = (F1, . . . , Fn), the ideal generated by the
positive degree invariants. PickingJ = (u2

1, u2, . . . , un) would giveI = (F 2
1 , F2, . . . , Fn).

We will usually also make the restriction thatB/J is “supported at the origin”, mean-
ing that the radical ofJ is the ideal(u1, . . . , un), and implying that the radical ofI is
(x1, . . . , xn).

2.7. If I = A · J as above, thenI is stable under the action ofG, andA/I is a finite-
dimensionalG-representation. The main question explored in this note is the relationship
betweenJ , the representationA/I and the inverse systemMI associated toA/I (see Section
6 for a discussion of inverse systems and the notationMI ).

The purpose of introducing theu’s is to force us to be clear about which ring we are
working in. ConsideringB as a subring ofA, an ideal written in the form(F 2

1 , . . . , Fn)

is ambiguous: is it an ideal ofA or of B? We will also be concerned with computing the
dimension (as vector spaces) of quotientsB/J or A/I , and in this case the notation will
also help us be clear about where we are computing the quotient.

2.8. Notation. The symbolsV,G,A,B, Fi, ui , and di will always have the meanings
above. We will always assume thatG is acting onV via a faithful pseudo-reflection rep-
resentation. The symbolJ will always mean an ideal ofB such that the quotientB/J is a
finite-dimensional vector space overk. The symbolsI andI ′ will always denote ideals of
A. The idealI will always be an ideal of the formI =A · J for an idealJ of B, while I ′ is
not necessarily an ideal of this form, although it will usually turn out to be so a posteriori.
The symbolMI will denote the inverse system (see Section 6) associated toI .
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2.9. If M is a graded module, then the Hilbert seriesh(M) of M is the formal series int

h(M) :=
∑
d�0

dimk(Md)t
d ,

whereMd is the homogeneous part ofM in degreed. If M is also a finite-dimensional
vector space overk then the Hilbert series is a polynomial.

Let � be the character ring ofG, i.e., the Grothendieck group of the category of finitely
generatedk[G] modules. For any finite-dimensionalG-representationW , we denote by
[W ] the element of� corresponding to the representationW .

If M is a gradedA-module withG action (the action preserving the grading), then we
denote byF(M) thegraded Frobenius Characteristicof M, i.e., the element

F(M) :=
∑
d�0

[Md ]td

of ��t�. If M is a finite dimensional vector space overk thenF(M) is an element of�[t].
2.10. If M is anA-module we say thatM is supported at the originif M is killed by a
power of the maximal idealm= (x1, . . . , xn). We are only considering finitely generatedA

modules, and so this automatically means thatM is a finite-dimensional vector space over
k. If M is supported at the origin then we define thesocleSoc(M) of M by

Soc(M) := {m ∈ M |f ·m= 0 for all f ∈ m}.
We will chiefly use this for modules of the formM = A/I wherem is the radical ofI .

The appeal of the socle is that

(i) It is the simplest possible kind ofA-module supported at the origin.
(ii) If M is a nonzero module supported at the origin, then Soc(M) �= 0.

From point (ii) it follows by induction that ifM is a nonzeroA-module supported at the
origin then there exists a filtration

0=M0 ⊂ M1 ⊂ M2 ⊂ · · · ⊂ M =M

such that eachMi/Mi−1 is killed bym (setM1 = Soc(M) and then pullback the corre-
sponding filtration fromM/M1). Thus any module supported at the origin is filtered by
submodules with the simplest possible factors. This fact plus flatness will prove part (a) of
the main theorem below.

In Section 5 it will be convenient to use the identity Soc(M) = HomA(A/m,M), valid
for anyA-moduleM supported at the origin.

The definitions are similar for aB-moduleN , but with respect to the maximal ideal
n= (u1, . . . , un) of B.

3. Main theorem

With the above notational conventions in place, letJ be an ideal ofB such thatB/J is
a finite-dimensional vector space overk, and letI =A · J . For parts (c)–(e) below we also
assume thatB/J is supported at the origin. Then:
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3.1. Theorem. (a)A/I is a direct sum of copies of the regular representation of G.We have
dimk(A/I) = |G|dimk(B/J ) so that in factA/I is a direct sum ofdimk(B/J ) copies of
the regular representation.

There is a fixed polynomialH ∈ Z[t] and a fixedF ∈ �[t] such that, whenever J is a
homogeneous ideal andI=A·J , we haveh(A/I)=H ·h(B/J ), andF(A/I)=F ·h(B/J )

(see Section2.9 for notation).
(b) Conversely, suppose thatI ′ is an ideal of A such thatI ′ is stable under the action

of G andA/I ′ is supported at the origin. If the G-representationA/I ′ is a direct sum of
copies of the regular representation thenI ′ = A · J ′ for some idealJ ′ of B.

(c)We havedimk Soc(A/I)=dimk Soc(B/J ). The socle ofA/I is G-stable, and for any
ā ∈ Soc(A/I), and anyg ∈ G, g acts onā by multiplication bydetg(V ). In other words,
Soc(A/I) is the trivial representation of G tensored with the one-dimensional representation
where G acts viadet(V ). If J is homogeneous, then degrees ofSoc(A/I) are the degrees of
Soc(B/J ) shifted by� :=∑n

i=1 (di − 1), or h(Soc(A/I))= h(Soc(B/J )) · t�.
(d) If MI is the inverse system associated to I, thenMI is generated as an A-module by

elements where G acts by multiplication bydet(V ∗). That is, there is a set ofA-module
generatorsm1, . . . , mr for MI such that each g in G acts on eachmi by multiplication by
detg(V ∗).

(e)Conversely, suppose thatI ′ is an ideal of A such thatA/I ′ is supported at the origin,
and such that its inverse systemMI ′ is generated as an A-module by elements where G acts
by multiplication bydet(V ∗). ThenI ′ = A · J ′ for some idealJ ′ of B and hence(by part
((a)) bothA/I ′ andMI ′ are direct sums of copies of the regular representation.

4. Proof of (a) and (b)

4.1. Flatness.The assumption thatB is polynomial implies that the inclusionB → A

makesA into a flatB-module.
There are many ways to see this. For instance, since the fibres of the induced map

Spec(A) → Spec(B) are all zero dimensional and hence Cohen–Macaulay, and sinceB

is regular, the map must be flat, by the wonderful flatness theorem of[3, IV2, 6.1.5] or[6,
Theorem 23.1].

Alternatively, sinceA is a finiteB-module, andA is regular, it is a well known theorem
of Serre[7, 8-06, Lemma]thatB is regular if and only if the mapB → A is flat.

Flatness implies that the crucial case to understand is whenJ = n = (u1, . . . , un), or
equivalently whenI = (F1, . . . , Fn), sometimes called the Hilbert ideal. This particular
A-module will come up several times in the proof and it is worthwhile to give it its own
name. A generalA/I (again withI = A · J for some idealJ of B) is “tiled” by copies of
this module, so we will use the symbolTG to refer to it.

4.2. Structure of TG. Let TG := B/n⊗BA = A/(F1, . . . , Fn). SinceTG is a complete
intersection, it is Gorenstein, and so has a one-dimensional socle. The Hilbert series of
any complete intersection is easy to compute; since the degrees of theFi ’s ared1, . . . , dn,
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we have

h(TG)=
n∏

i=1

(1− tdi )

(1− t)
=

n∏
i=1

(1+ t + t2+ · · · + tdi−1).

In particular,TG is one dimensional in the top degree� := ∑n
i=1 (di − 1), and so the

socle must be that one-dimensional subspace.

4.3. The map Spec(A)→ Spec(B) is the geometric quotient of the affine space Spec(A)

byG. The locus of points in Spec(A) with nontrivial stabilizer subgroup is a proper closed
subset of Spec(A), so for a general pointp ∈ Spec(B) the fibre will consist of aG-orbit with
|G| distinct points. Ifp= (p1, . . . , pn) is such a point, this implies thatB/(u1− p1, u2−
p2, . . . , un−pn)⊗BA=A/(F1=p1, F2−p2, . . . , Fn−pn) is the regular representation
of G, since this is the coordinate ring of the fibre overp.

Fort ∈ k defineIt=(F1−tp1, F2−tpt , . . . , Fn−tpn)=A·(u1−tp1, u2−tpt , . . . , un−
tpn). The quotientB/(u1− tp1, u2− tp2, . . . , un − tpn) has the same dimension (i.e., 1)
for all t . Since the ring mapB → A is finite and flat, this implies that quotientA/It has
the same dimension for allt ∈ k. SinceIt is stable underG the quotientA/It is also a
representation ofG.

As t varies ink we therefore get a family ofG-representations of the same dimension.
Since the set ofG-representations is discrete (being determined by the character) it is
impossible for the representation to vary continuously, and therefore the representation is
the same for allt .

In particular,TG = A/I0 is the regular representation ofG, sinceA/I1 is.
A shorter version of the argument is this: since Spec(A)→ Spec(B) is a finite flat map,

all scheme theoretic fibres are of the same dimension. By continuity, theG-representation
on each must be the same. To see what that representation is, it suffices to take any fibre.
Picking	 ∈ Spec(B) to be the generic point, the fibre is the quotient field ofA as a vector
space over the quotient field ofB. By the normal basis theorem in Galois theory, this is the
regular representation.

4.4. We will see in Section 5 as a consequence of Grothendieck duality that the one-
dimensional representation ofG on the socle ofTG is multiplication by det(V ). On the
other hand, establishing that fact independently will allow an alternate proof of (c) avoiding
duality altogether.

The determinant

�(F1, . . . , Fn) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

�F1

�x1

�F2

�x1
· · · �Fn

�x1

�F1

�x2

�F2

�x2
· · · �Fn

�x2
...

...
. . .

...
�F1

�xn

�F2

�xn
· · · �Fn

�xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
of the Jacobian matrix is a polynomial of degree�=∑n

i=1 (di − 1) in x1, . . . , xn.
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The variablesx1, . . . , xn are a basis forV ∗. The first-order differential operators�/�x1,

. . . , �/�xn pair naturally by differentiation with these basis vectors, and so the vector space
spanned by them is naturally isomorphic toV as aG-representation. Since theFi ’s are
invariant, it follows thatG acts on� by multiplication by det(V ).

By Stanley[9, Proposition 4.7]the set of elements ofA which are acted apon byG by
multiplication by det(V ) is a free module overB with generator�. Here� is not in the
Hilbert idealI , and so gives a nonzero element ofTG. Alternatively, by Steinberg[10] � is
the smallest degree in which there is an element acted upon by multiplication by det(V ),
and so again� cannot be in the Hilbert ideal. This shows explicitly that the socle ofTG is
acted upon byG by multiplication by det(V ).

For convenient reference, we summarize these facts aboutTG:

4.5. Proposition. TheA-moduleTG is the regular representation ofGwith a one-dimensional
socle in degree� =∑n

i=1 (di − 1). The action of G on this one-dimensional vector space
is by multiplication bydet(V ).

4.6. Proof of (a). Suppose thatJ is an ideal ofB such thatB/J is supported at the origin.
By Section 2.10 we can find a series of submodules

0⊂ N1 ⊂ N2 ⊂ · · · ⊂ N = B/J

such that eachNi/Ni−1 is killed by n = (u1, . . . , un). By enlarging the filtration we can
assume in addition thatNi/Ni−1 is a one-dimensional vector space, and hence equal toB/n

as aB-module. With this type of filtration, it follows that = dimk(B/J ).
Tensoring withA, we get a filtration

0⊂ N1⊗BA ⊂ N2⊗BA ⊂ · · · ⊂ N ⊗BA= A/I

and sinceA is a flatB-module, we have that

(Ni⊗BA)/(Ni−1⊗BA)= (Ni/Ni−1)⊗BA= B/n⊗BA= TG.

This shows thatA/I has a filtration by a sequence of = dimk(B/J ) submodules where
each quotient is isomorphic toTG. Hence as aG-module,A/I consists of dimk(B/J ) copies
of the regular representation, proving the first part of (a).

This filtration also proves the second part of (a): IfJ is homogeneous, then we can choose
the filtration to respect the grading, so that each of the quotientsNi/Ni−1 are graded. The
filtration then shows thatH := h(TG) andF :=F(TG) have the desired properties.�

4.7. Proof of (b). Suppose thatI ′ is an ideal ofA stable underG and supported at the
origin, and thatA/I ′ is a direct sum of copies of the regular representation. SetJ = (I ′)G
andI = A · J .

TakingG-invariants of the exact sequence

0→ I ′ → A→ A/I ′ → 0
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gives

0→ J → B → (A/I ′)G→ 0

and hence thatB/J = (A/I ′)G.
SinceA/I ′ is a direct sum of copies of the regular representation,

dimk(B/J )= dimk((A/I ′)G)= 1

|G| dimk(A/I ′).

By part (a) of the theorem, we have

dimk(A/I)= |G|dimk(B/J )= |G||G| dimk(A/I ′)= dimk(A/I ′).

SinceA/I ′ is a quotient ofA/I this givesA/I = A/I ′ and henceI = I ′. �

5. Proof of (c)

5.1. Grothendieck duality. We want to apply Grothendieck duality in the following ex-
tremely simple case. Suppose thatA andB are regular rings and thatB → A is a homo-
morphism of rings makingA into a finitely generatedB module. Under these conditions,
for anyA-moduleM andB-moduleN , Grothendieck duality is simply that

(5.1.1)

HomA(M,A⊗BN)⊗A
A = HomB(M,N)⊗B
B,

where the equality is acanonicalequality ofB-modules. Here the entire left-hand side, and
theA-moduleM on the right-hand side are treated asB-modules via the homomorphism
B → A. The modules
A and
B are the canonical modules ofA andB. One property of
these canonical modules under our hypotheses is that they are locally free modules of rank
1 overA andB, respectively. (This form of Grothendieck duality may be extracted from the
general form of duality for a finite map[4, introduction]combined with[4, V, Proposition
2.4] and the fact thatA is a locally freeB-module.)

5.2. For our ringsA= k[x1, . . . , xn] andB= k[u1, . . . , un],
A is the freeA-module with
generator dx1∧dx2∧· · ·∧dxn and
B the freeB module with generator du1∧du2∧· · ·∧dun.
In particular,G acts on the generator of
A by multiplication by det(V ∗). Also, in terms of
grading, the generator of
A has degreen which the sum of the degrees of thexi ’s, and the
generator of
B has degree

∑n
i=1 di which is the sum of the degrees of theui ’s.

5.3. Given an idealJ of B such thatB/J is supported at the origin, letM = A/m and
N = B/J with m = (x1, . . . , xn) the graded maximal ideal ofA. If I = A · J , then
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(5.1.1) gives

HomA(A/m, A/I)⊗A
A = HomB(B/n, B/J )⊗B
B,

wheren is the maximal idealn= (u1, . . . , un) of B.
To see that this is the conclusion of (5.1.1), we just need to note thatA⊗B(B/J )=A/I ,

which follows from the definition ofI and right exactness of the tensor product, and that
A/m considered as aB module isB/n which follows from the fact thatA/m is a one-
dimensional vector space overk, killed by all elements ofn.

Using the identities in Section 2.10 this is more usefully written as

(5.3.1)

Soc(A/I)⊗A
A = Soc(B/J )⊗B
B.

5.4. Proof of (c). The equality ofB-modules in (5.3.1) is canonical. Let us just check what
this canonical equality implies at various level of structure on the two sides.

As vector spaces: On each side of (5.3.1) we are tensoring a finite dimensional vector
space with a rank 1 free module. This does not change the dimension of the vector space,
hence dimk(Soc(A/I))= dimk(Soc(B/J )).

As G-modules:The action ofGon the right-hand side of (5.3.1) is trivial, hence it must also
be trivial on the left-hand side. As representations the left-hand side is Soc(A/I) tensored
with a one-dimensional representation whereG acts by multiplication by det(V ∗). In order
for this to be the trivial representation,G must act on all of Soc(A/I) by multiplication by
det(V ).

In the case thatJ is homogeneous, then both sides of the equation are graded.
As graded vector spaces: The effect of tensoring with
A is to shift the grading byn.

The effect of tensoring with
B is to shift the grading by
∑n

i=1 di . Hence the degrees of
Soc(A/I) are the degrees of Soc(B/J ) shifted by�=∑n

i=1(di − 1). �

5.5. Alternate proof of (c). It is possible to give a proof of (c) without appealing to
Grothendieck duality. LetJ andI be as above, and consider the mapB/J → ⊕n

i=1B/J

where the map to theith factor is multiplication byui . By definition, the kernel of this map
is exactly the socle ofB/J , so that we have an exact sequence

0→ Soc(B/J )→ B/J
[u1,...,un]→ ⊕n

i=1B/J.

Tensoring withA we get the sequence

0→ Soc(B/J )⊗BA→ A/I
[F1,...,Fn]→ ⊕n

i=1A/I

which is still exact, sinceA is a flatB-module. The socle ofA/I is killed by multipli-
cation byF1 throughFn, hence Soc(A/I) ⊆ Soc(B/J )⊗BA, and therefore Soc(A/I) =
Soc(Soc(B/J )⊗BA), and so we can restrict our attention to theA-module Soc(B/J )⊗BA.
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As aB-module, Soc(B/J ) is a direct sum of copies ofB/n. It follows that Soc(B/J )⊗BA

is a direct sum of copies ofB/n⊗BA�TG, the number of copies being equal to
dimk(Soc(B/J )).

We now just need to recall the properties ofTG from Section 4.2.
EachTG has a one-dimensional socle, on whichGacts by multiplication by det(V ), hence

we recover that dimk(Soc(B/J )) = dimk(Soc(A/I)), and that theG-action on Soc(A/I)

is multiplication by det(V ).
If J is homogeneous, then Soc(B/J ) is graded, and so is the expression of Soc(B/J )⊗BA

as a direct sum ofTG’s, the grading on eachTG being shifted by the degree of the corre-
sponding element in Soc(B/J ). Since the socle ofTG is in degree�, we recover the fact
that the degrees of Soc(A/I) are the degrees of Soc(B/J ) shifted by�. �

We finish with an easy lemma which will be useful in the proof of (e).

5.6. Lemma. If J is an ideal of B such that B/J is supported at the origin, andā an element
of Soc(A/I) with I = A · J , then there is a submodule T ofA/I with T�TG and ā ∈ T .

Proof. If b̄ is a nonzero element of Soc(B/J ) let 〈b̄〉 be the one-dimensional subspace over
k spanned bȳb. As aB module,〈b̄〉 is isomorphic toB/n and soT := 〈b̄〉⊗BA�TG as
anA-module. The socle ofTG is one-dimensional, and either of the two proofs of part (c)
show that the procedures

〈b̄〉�〈b̄〉⊗BA�Soc(〈b̄〉⊗BA)

set up a one to one correspondence:

{
One-dimensionalk-
subspaces of Soc(B/J )

}
1:1↔

{
A-submodulesT of
A/I isomorphic toTG

}
1:1↔

{
One-dimensionalk-
subspaces of Soc(A/I)

}
,

proving the lemma. �

6. Inverse systems

6.1. Axiomatics of the moduleR. Given the polynomial ringA, we want to look for a
gradedA-moduleR =⊗d�0 Rd with the following properties:

(i) dimk(Rd)= dimk(Ad) for all d�0.
(ii) TheA actionlowersdegrees: fora ∈ Ai, r ∈ Rj , thena · r ∈ Rj−i (= 0 if j − i <0).

SinceR0 is one-dimensional, that means we have a pairing

〈·, ·〉d : Ad × Rd → R0�k,

〈a, r〉d := a · r.
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(iii) The pairing〈·, ·〉d is perfect in all degreesd�0.
This means one (and hence all) of the following equivalent statements are true:

• For eacha ∈ Ad there is anr ∈ Rd such thata · r �= 0.
• For eachr ∈ Rd there is ana ∈ Ad such thata · r �= 0.
• The pairing makesAd into the dual space(Rd)

∗ of Rd .
• The pairing makesRd into the dual space(Ad)

∗ of Ad .
Requirement (iii) of course implies (i), but for purposes of clarity it was listed separately.

Finally, if there is a groupG acting onV then we also require

(iv) The groupG acts onR in such a way that theA-module action isG-equivariant:

(ga) · (gr)= g(a · r)

for all g ∈ G, a ∈ A, andr ∈ R.

6.2. There are three typical ways of constructing anA-moduleR with these properties:

(a) R = Sym•(V )=⊕
d�0 Symd(V ).

(b) R = k[y1, . . . , yn] with xi in A acting as the differential operator�/�yi , and the action
extended to polynomials in thexi ’s by the obvious interpretation as differential operators
with constant coefficients.

(c) R =Hn−1
m (A), the top local cohomology group ofA with respect to the maximal ideal

m= (x1, . . . , xn) of A.
Choice (a) is perhaps the cleanest, theG-action is automatic, as is the operation of

pairing an element ofA(=Sym•(V ∗)) with an element ofR ([2, III, Section 11.10]is a
good reference for the pairing). Choice (b) is perhaps the most concrete, although it does
not come with an intrinsicG-action. Assuming thatG acts trivially on the constantsR0�k,
the only choice ofG-action which satisfies (iv) is to letG act on they’s in the way dual to
its action on thex’s. With thisG-action, (b) is the same as (a).

Choice (c) is somewhat different. It has two apparent disadvantages. First the action
on the “constants”R0 is not actually constant, it is the one-dimensional representation
det(V ∗). Second,R in this case is not itself a ring, although this is not usually important in
applications, since only theA-module structure is typically relevant.

The two disadvantages are matched by two advantages: First, this construction also
works in characteristicp>0. The derivative construction in (b) and the pairing in (a) fail
to be perfect pairings in positive characteristic, but, by Serre duality, theA-action on the
local cohomology groups induces a perfect pairing in all characteristics. Second, if we are
concerned with an algorithmic approach for going from part (e) to part (a) of the theorem,
then the local cohomology construction ofR is more easily compared with the corresponding
module forB.

Our main concern is proving a result about inverse systems, as classically defined, and
so we will stick with the more down-to-earth (a) or (b) for our choice ofR.
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6.3. Trivial remarks on dualizing. If W is a finite-dimensional vector space overk, and
W ′ a subspace ofW , then we have the exact sequence

0→ W ′ → W → (W/W ′)→ 0

which we can dualize to get

0← (W ′)∗ ← W ∗ ← (W/W ′)∗ ← 0.

Dualizing reverses the arrows and interchanges injective and surjective maps. It also
expresses(W/W ′)∗ as a subspace ofW ∗; it is exactly the subspace of linear functional
annihilatingW ′.

6.4. Inverse systems.Suppose thatI is an ideal ofA such thatA/I is supported at the
origin (see 2.10). Looking at the exact sequence

0→ I → A→ A/I → 0

and remembering thatR was constructed as kind of a gradedk-dual toA, we look for a
subspace ofR corresponding to the quotientA/I of A. By the above remarks, this is the
set of elements inR which annihilateI . We therefore define

MI := annR(I)= {r ∈ R |f · r = 0 for all f ∈ I }.
Note thatMI=(A/I)∗, the dual being as ak-vector space, and thatMI is anA-submodule

of R. This last observation follows from the fact thatI is anA-module, and that the pairing
betweenR andA comes from anA-module action.

The moduleMI is called theinverse system associated toI . In light of the fact that
MI = (A/I)∗, it might be better to think of it as something associated toA/I instead.

6.5. The inverse system construction inherits the usual properties of dualizing, for instance,
if I ⊆ I ′ are ideals, so that the natural mapA/I → A/I ′ is surjective, then the induced
mapMI ← MI ′ is injective. Similarly, ifa is any element ofA then the mapA/I → A/I

given by multiplication bya is dual to the mapMI ← MI given by lettinga act on the
A-moduleMI .

6.6. Suppose thatA/I is supported at the origin, i.e., is killed by a power ofm, then the
inverse systemMI is as well. Nakayma’s lemma tells us that the quotientMI/mMI is
of interest, for example its dimension is the minimum number of generators ofMI as an
A-module.

Considering the exact sequence expressingMI/mMI as a quotient, it is natural to ask
for the submodule ofA/I dual to the quotientMI/mMI .

0→ mMI → MI → MI/mMI → 0
� dual � dual
(A/I)←↩ ???
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The answer is given by

6.7. Lemma(Macaulay).If I is an ideal of A supported at the origin, andm= (x1, . . . , xn)

the maximal ideal, thenMI/mMI = Soc(A/I)∗.

Proof. We are looking for the subspace ofA/I which annihilatesmMI , i.e., elements
ā ∈ A/I such that̄a · (f · m) = 0 for all f ∈ m andm ∈ MI . This is the same as asking
that(f ā) ·m=0 for all f ∈ m andm ∈ MI . But since the action ofA/I onMI makesMI

into thek-dual ofA/I (that is, the pairing is perfect), we have(f ā) ·m= 0 for all m ∈ M

if and only if f ā = 0. This is true for allf ∈ m if and only if ā ∈ Soc(A/I). �

6.8. If I is a homogeneous ideal, thenA/I,MI ,Soc(A/I), andMI/mMI are gradedA-
modules. The proof shows that in this caseMI/mMI is the graded dual of Soc(A/I). This
fact is usually used in reverse: If we want to construct a finite dimensional quotient ofA

with socle in certain degrees, the lemma shows that it suffices to pick elementsr1, . . . , rk
of R in those degrees, letM be theA-module generated by ther ’s, andI the ideal such that
M =MI , i.e, the ideal annihilatingM. The quotientA/I will then have socle in exactly
the desired degrees. The inverse system construction was first introduced by Macaulay[5,
Chapter 4]for this purpose.

7. Proof of (d) and (e)

7.1. Proof of (d). By the inverse system construction,MI is k-dual ofA/I . By Lemma
6.7 and Nakayama’s lemma, the generators ofMI are dual to Soc(A/I), the hence part (d)
of the theorem follows from part (c).�

In order to prove the converse statement, we first need a small result about quotients of
TG.

7.2. Lemma. LetTG be the module of�4.2,then the only quotientsT ′ of TG such that the
G acts on the socle ofT ′ via det(V ) are eitherT ′ = TG or T ′ = 0.

In other words, a quotient ofTG such that the socle is acted on by multiplication by
det(V ) is “all or nothing”; we either quotient out by the zero module to getTG, or byTG to
get the zero module.

Proof. Let M be the inverse system associated toTG. Any quotientT ′ of TG corresponds
to a submoduleM ′ of M. The condition thatG acts on the socle ofT ′ via det(V ) is, by
Lemma 6.7 the same as the condition thatM ′ be generated by elements whereG acts by
multiplication by det(V ∗).

SinceTG is the regular representation ofG (Proposition 4.5)M is as well, and therefore the
subspace of elements ofM whereG acts by multiplication by det(V ∗) is one dimensional.
By Lemma 6.7 and part (d) of the theorem any nonzero element in this one-dimensional
subspace generatesM as anA-module. It follows that ifM ′ contains a nonzero generator, it
must be all ofM. The only alternative is thatM ′ is the zero module. SinceM ′ is thek-dual
of T ′, this proves the lemma.�
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7.3. Proof of (e). Let I ′ be an ideal ofA, supported at the origin, such thatA/I ′ is a finite
dimensional vector space and such that its inverse systemMI ′ is generated by elements
whereG acts by multiplication by det(V ∗).

SetJ = (I ′)G andI = A · J . ThenI ⊆ I ′ and so we have a natural surjective map
A/I → A/I ′. Let Ī ′ be the image ofI ′ in A/I , so thatA/I ′ is the quotient ofA/I by Ī ′.
By construction, there is no nonzero element ofĪ ′ invariant underG, since any such element
would give an element ofI ′ invariant underG, hence be contained inJ and thereforeI .

Let MI be the inverse system ofI . We have a natural inclusionMI ′ ↪→ MI dual to the
surjectionA/I → A/I ′. Using the fact thatG acts on the socle ofA/I by multiplication
by det(V ) (part (c) of the theorem), the fact that the same thing is true forA/I ′ (by the
hypothesis aboutMI ′ and Lemma 6.7), and that no element ofĪ ′ is invariant underG we
will show thatMI ′ =MI , and hence thatA/I ′ = A/I , and soI ′ = I .

Consider the diagram

A / I A / I ′

Soc (A / I ′)Soc (A / I )

The key point is to see that the induced map Soc(A/I)→ Soc(A/I ′) is injective.
Let ā be any nonzero element of Soc(A/I). By Lemma 5.6 there is anA-submodule of

A/I isomorphic toTG containingā. The image of this submodule inA/I ′ is a quotient of
TG, and the socle of this image will be contained in the socle ofA/I ′. HenceG acts on the
socle of this image by multiplication by det(V ) and we can apply Lemma 7.2 to conclude
that the image is either all ofTG or the zero module. SinceTG contains an element invariant
underG, and since no element invariant underG is in the kernel ofA/I → A/I ′, the image
cannot be the zero module. Therefore the image is all ofTG, and in particular,̄a is not in
the kernel.

Now that we know that the map Soc(A/I) ↪→ Soc(A/I ′) is injective, we dualize the
diagram to obtain:

MI
MI ′

MI ′ / � MI ′MI  / � MI 

(A / I ′)*(A / I )*

Soc (A / I ′)*Soc (A / I )*
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The injectivity of the map between socles now becomes the surjectivity of the map
MI/mMI�MI ′/mMI ′ . This shows that the submoduleMI ′ contains elements which gen-
erateMI as anA-module. HenceMI ′ =MI and soI ′ = I , proving part (e). �
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