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Abstract

Let G be afinite group acting on a finite-dimensional vector spacich that the ring of invariants
is polynomial. The purpose of this note is to describe exactly the finitely generated inverse systems
such that the associaté#irepresentation is the direct sum of copies of the regular representation of
G. This generalizes work of Steinberg, Bergeron, Garsia, and Tesler. Related results are also recalled.
All of the results are contained in the main theorem.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Let R=k[y1,...,y,] bethe polynomial ring im-variables over a field of charac-
teristic zero. For any polynomial € R let #3(r) be thek-linear subspace ak spanned
by r and its partial derivatives of all orders. Similarly, for a collectian. . ., r,, of poly-

nomials, we let#s(r1, . .., ) be thek-linear subspace spanned by this and all their
partial derivatives of all orders.

1.2. Suppose that a finite group acts faithfully by homogeneous linear substitutions on
R.Ifr1, ..., ry, are acollection of polynomials iR such that the space they span is stable
under the action o5, then the same is true fad¢s(r1, . . ., r). The basic question is to
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connect theG-representation that arises to properties of the initial polynomials ., ry,
generating the subspace.

1.3. Let V be thek-vector space spanned by, ..., y,, i.e., the ringR in degree 1. By
hypothesisi acts linearly orv. Call an element of R aG-alternantif g - » =det, (V*)r
forallg € G.

1.4. Suppose thaV is a pseudo-reflection representation (Section 2.1} ,cdndr = A
is the product of the reflection vectors, each raised to the power one less than their order.
Thenr is aG-alternant and it follows fronil 1] that #3(r) is the regular representation of
G.

More generally, Bergeron et dll, Theorem 3.2prove that ifV is a pseudo-reflection
representation of andr is anyG-alternant, therZ;(r) is a sum of copies of the regular
representation of.

The main result of this note is
Theorem. Suppose that is a pseudo-reflection representation oflGen?y(r1, .. ., m)

is a direct sum of copies of the regular representation of G if and on¥dfr1, ..., r»)
can be generated by G-alternants

In other words, ifry, ..., r, areG-alternants, thed?s(r1, ..., ry) is @ sum of copies
of the regular representation 6f, and conversely, i¢5(r1, . . ., 1) is a sum of copies of
the regular representation 6f, then there ar&-alternants-, ..., r, , in Lo(r1, ..., 7rm)

such thatZs(ry, ..., r) ) = Lo(r, ..., rm).

The proof is independent of the results above, and gives a conceptual explanation for the
appearance of the alternants: by Lemma 6.7 the generata#$ 6f;, . . ., r,,,) are dual to
the socle of a certain module. Eagle G acts on the socle by multiplication by gev),
a consequence either of Grothendieck duality, or direct computation with the basic “tile”
moduleTg (Section 4.2); this means that the generators must also be alternates.

The hypothesis that be a pseudo-reflection representation cannot be removed. There is
simply no consistent answer possible in other cases, stemming from the fact that the relevant
ring of invariants (Section 2.3) is not polynomial, and hence represents a singular variety.

1.5. A convenient way to deal with the process of taking derivatives is given by Macaulay’s
inverse system construction (Section 6.4). Ket k[x1, ..., x,] be a polynomial ring im
variables. Lety; act onR as the differential operat@y/dy;, and extend this to an action of
A on R via the obvious interpretation of polynomials 4nas linear differential operators.

For any collectiony, ..., r, of elements o, let /" := [;, . be the set of elements
in A which annihilaters, ..., r,,. ThenI’ is an ideal ofA supported at the origin (Section
2.6). This process sets up a one-to-one correspondence betweer idéaissupported at
the origin andk-subspaces of the forts(r1, . . ., r) Of R.

From the construction, it follows that/1’ is thek-dual of 5(r1, ..., rp). If Ais given
the correctG-action, then this is also the dual a§aepresentation. It is easier to deal with
this problem by looking a#i, and this leads naturally to the ring of invariafits= AC.
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1.6. The perspective in this note is to start with and construcR appropriately. In the
language of inverse systems, the theorem mentioned above is parts (d) and (e) of the main
theorem (Section 3).

Parts (a) and (b) of the main theorem are very well known, and certainly not new results.
They are included for completeness, and since the ideas involved in their proofs lead natu-
rally to the proofs of parts (c)—(e). Part (c) of the theorem is also useful. Although not listed
in the statement of the theorem, the canonical equality in Eq. (5.3.1) is the cleanest way to
understand the comparison between the socles.

Because th& -representations underlying and R are dual, it is sometimes awkward
to keep track of what-alternant should mean in either case, and hence we will always
explicitly spell out whether we are looking at elements which, when acted apgrehy,
are multiplied by det(V) or det, (V*).

2. Setup and notation

2.1. Let vV be am-dimensional vector space over a fiéldf characteristic zerd; a finite
group, andp : G — End(V) a faithful representation of . We further require that the
representation be a pseudo-reflection representation.

A pseudo-reflectiois an elemeng € G such that when diagonalized (after possibly
extending scalars to the algebraic closkiy@(g) is of the form

1

p(g) = ,

£

where( is a root of unity. An ordinary reflection is the case tliat —1. An alternate
characterization of a pseudo-reflection is simply that raril¢) — 1) < 1. A representation
p is called a complex reflection or pseudo-reflection representatiénisf generated by
elementqg;} such that eacjp(g;) is a pseudo-reflection.

2.2. Two examples of pseudo-reflection representationgsates,,, the symmetric group,
acting on am-dimensional vector spacé by the usual permutation representation, and
G = D, the dihedral group of orders2 acting on a two-dimensional vector spate
over C via its usual real action on a regulargon centered at the origin. Both of these
representations are generated by genuine reflections.

2.3. Let A = Syn*(V*) = @DOSymd(V*) be the ring of polynomial functions oW.
After choosing a basis;, .. ., x, for V*, we haveA =~k[x1, ..., x,].

Let B = A be the ring of invariants of;. The condition that; be a pseudo-reflection
representation is, by a well-known theorem of Shephard and[Byddheorem 5.1]exactly
the condition that the rin@ be polynomial i.e., that there exisky, ..., F, in A, invari-
ant underG, such that every invariant is a polynomial in t#és, or in other words that
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B = k[Fy, ..., F,]. For an excellent discussion of this theorem, and certainly the most
beautiful proof of it, the reader is advised to consult the lecture of $&fre

2.4. In the case thaG = S, with the usual permutation representation, theare the
elementary symmetric polynomials. In case tGa& D,, it is convenient to first change
basis so that the generating rotatiand the generating reflectiar{satisfyingror = 6—1)
are of the form

p(a)=[cg gol} and p(r)=[2 (ﬂ

where(,, = exp(2ri/m) is a primitivemth root of unity. Choosing the corresponding dual
basis forV*, the ring of invariants is generated by = x1x, andF = x7" + x5'.

2.5. It will be conceptually clearer for us to not to think 8fas a subring ofi, but rather
as a polynomial ringB = k[uz, ..., u,] in indeterminates, ..., u,, along with a ring
homomorphismB — A sending each; to F;.

Letd; be the degree af;,i =1, ..., n. We consider the indeterminateto have degree
d;, so thatB — A is a graded homomorphism. All references to degredswill be with
respect to this grading.

2.6. Let J be anideal o such thatB/J is a finite-dimensional-algebra, and let=A - J
be the ideal ofA generated by . For example, if the ideal is the maximal homogeneous
idealJ = (u1, ..., u,) of B, thenl would bel = (Fy, ..., Fy,), the ideal generated by the
positive degree invariants. Picking= (u2, uz, . .., u,) would givel = (F2, F2, ..., Fy).

We will usually also make the restriction thay J is “supported at the origin”, mean-
ing that the radical of/ is the ideal(us, ..., u,), and implying that the radical of is
(X1, ..., Xn)-

2.7.1f I = A - J as above, thed is stable under the action @f, andA/I is a finite-
dimensionalG-representation. The main question explored in this note is the relationship
betweer/, the representatiaf/ I and the inverse systeim; associatedtd /I (see Section
6 for a discussion of inverse systems and the notatigh

The purpose of introducing theés is to force us to be clear about which ring we are
working in. ConsideringB as a subring ofd, an ideal written in the forrmFlz, o Fy)
is ambiguous: is it an ideal of or of B? We will also be concerned with computing the
dimension (as vector spaces) of quotieB{s/ or A/I, and in this case the notation will
also help us be clear about where we are computing the quotient.

2.8. Notation. The symbolsV, G, A, B, F;, u;, andd; will always have the meanings
above. We will always assume th@tis acting onV via a faithful pseudo-reflection rep-
resentation. The symbdl will always mean an ideal aB such that the quotier8/J is a
finite-dimensional vector space overThe symbolg and/’ will always denote ideals of

A. The ideall will always be an ideal of the formh= A - J for an idealJ of B, while I’ is

not necessarily an ideal of this form, although it will usually turn out to be so a posteriori.
The symbolM; will denote the inverse system (see Section 6) associated to



M. Roth / Journal of Pure and Applied Algebra 199 (2005) 219-234 223

2.9. If M is a graded module, then the Hilbert seri€a/) of M is the formal series in

h(M) =Y dimg (Mg)t“,
d>0

where M, is the homogeneous part & in degreed. If M is also a finite-dimensional
vector space over then the Hilbert series is a polynomial.

Let A be the character ring @, i.e., the Grothendieck group of the category of finitely
generated[G] modules. For any finite-dimensionél-representatioriv, we denote by
[W] the element ofl corresponding to the representatidh

If M is a gradedd-module withG action (the action preserving the grading), then we
denote byZ (M) thegraded Frobenius Characteristwf M, i.e., the element

F (M) = Z [Mg]t?
d>0

of A[¢]. If M is afinite dimensional vector space oehenZ (M) is an element oft[].

2.10. If M is an A-module we say tha¥/ is supported at the origirf M is killed by a
power of the maximal ideali = (x1, . . ., x,,). We are only considering finitely generatéd
modules, and so this automatically means tais a finite-dimensional vector space over
k. If M is supported at the origin then we define soeleSoq M) of M by

SoaM):={me M| f-m=0forall femj.

We will chiefly use this for modules of the fortd = A/I wherem is the radical of/.
The appeal of the socle is that

(i) Itisthe simplest possible kind of-module supported at the origin.
(ii) If M is a nonzero module supported at the origin, then(&c#£ 0.

From point (ii) it follows by induction that i/ is a nonzercA-module supported at the
origin then there exists a filtration

O=MpoCcMiCMxC---CMy=M

such that eacld; /M;_1 is killed by m (set M1 = SoqM) and then pullback the corre-
sponding filtration fromM /M1). Thus any module supported at the origin is filtered by
submodules with the simplest possible factors. This fact plus flatness will prove part (a) of
the main theorem below.

In Section 5 it will be convenient to use the identity & = Homy (A/m, M), valid
for any A-moduleM supported at the origin.

The definitions are similar for #-module N, but with respect to the maximal ideal
n=(uq,...,u,) of B.

3. Main theorem

With the above notational conventions in place,Jdie an ideal o3 such thatB/J is
a finite-dimensional vector space owgrand let/ = A - J. For parts (c)—(e) below we also
assume thaB/J is supported at the origin. Then:
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3.1. Theorem. (a) A/I is a direct sum of copies of the regular representation o\ have
dimi(A/I) = |G|dimg(B/J) so that in factA/I is a direct sum oflim;(B/J) copies of
the regular representation

There is a fixed polynomidl € Z[¢] and a fixedF € A[t] such thatwhenever J is a
homogeneousidealard=A-J,we havei(A/I)=H -h(B/J),andZ (A/I)=F -h(B/J)
(see SectioR.9for notation).

(b) Converselysuppose thaf’ is an ideal of A such that’ is stable under the action
of G andA /I’ is supported at the originf the G-representatiom /I’ is a direct sum of
copies of the regular representation thEn= A - J’ for some ideall’ of B.

(c) We havelim; Sod A/I)=dim; SoqB/J). The socle ofA/I is G-stable, and for any
a € SoqA/I), and anyg € G, g acts ona by multiplication bydet, (V). In other words
Soq A/I)isthetrivial representation of G tensored with the one-dimensional representation
where G acts viaet(V). If J is homogeneouyshen degrees ddoq A/ 1) are the degrees of
SoaB/J) shifted by := Y""_; (d; — 1), or h(SodA/I)) = h(SodB/J)) - 1°.

(d) If M is the inverse system associated,tthenM; is generated as an A-module by
elements where G acts by multiplication @gt(V*). That is there is a set ofA-module
generatorsni, ..., m, for M; such that each g in G acts on eaehy by multiplication by
det, (V*).

(e) Converselysuppose that’ is an ideal of A such that /I’ is supported at the origin,
and such that its inverse systéif). is generated as an A-module by elements where G acts
by multiplication bydet(V*). ThenI’ = A - J’ for some ideal/’ of B and hencéby part
((a) bothA/I’ and M, are direct sums of copies of the regular representation

4. Proof of (a) and (b)

4.1. Flatness.The assumption tha is polynomial implies that the inclusioB — A
makesA into a flat B-module.

There are many ways to see this. For instance, since the fibres of the induced map
SpecA) — SpecB) are all zero dimensional and hence Cohen—Macaulay, and 8ince
is regular, the map must be flat, by the wonderful flathess theord®) bf,, 6.1.5] or[6,
Theorem 23.1]

Alternatively, sinceA is a finiteB-module, and is regular, it is a well known theorem
of Serre[7, 8-06, Lemmathat B is regular if and only if the map — A is flat.

Flatness implies that the crucial case to understand is whem = (uy, ..., u,), Or
equivalently when = (Fy, ..., F,), sometimes called the Hilbert ideal. This particular
A-module will come up several times in the proof and it is worthwhile to give it its own
name. A generall /I (again with/ = A - J for some ideal/ of B) is “tiled” by copies of
this module, so we will use the symbf}; to refer to it.

4.2. Structure of Tg. Let Tg := B/n®@pA = A/(F1, ..., F,). SinceTg is a complete
intersection, it is Gorenstein, and so has a one-dimensional socle. The Hilbert series of
any complete intersection is easy to compute; since the degrees Bfslaed, ..., d,,
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we have

n 1_ d; n
nto =11 %=1—[<l+f+t2+-~~+rdf‘l>.
i=1 i=1

In particular, 7 is one dimensional in the top degrée= ) "_, (d; — 1), and so the
socle must be that one-dimensional subspace.

4.3. The map Spel) — SpegB) is the geometric quotient of the affine space $pec
by G. The locus of points in Spéa) with nontrivial stabilizer subgroup is a proper closed
subset of Speel), so for a general point € Spec B) the fibre will consist of & -orbit with

|G| distinct points. Ifp = (p1, ..., p,) is such a point, this implies th#&/(u1 — p1, uz —

D2, ... Uy — pp)Q@BA=A/(FL=p1, F2 — p2, ..., F, — p,) is the regular representation
of G, since this is the coordinate ring of the fibre oyer

Forr € kdefinel,=(F1—tpy, Fo—tp;, ..., Fy—tp,)=A-(u1—1tp1, u2—1tp,, ..., Uy —
tp,). The quotientB/(u1 — tpq1, u2 — tpo, ..., u, — tp,) has the same dimension (i.e., 1)
for all z. Since the ring maB — A is finite and flat, this implies that quotiedt/ I, has
the same dimension for all € k. Sincel, is stable undet; the quotientA/I, is also a
representation of.

As ¢ varies ink we therefore get a family of;-representations of the same dimension.
Since the set ofG-representations is discrete (being determined by the character) it is
impossible for the representation to vary continuously, and therefore the representation is
the same for alt.

In particular,Tg = A/ Iy is the regular representation 6f sinceA/I; is.

A shorter version of the argument is this: since Sggc— SpecB) is a finite flat map,
all scheme theoretic fibres are of the same dimension. By continuity;tfepresentation
on each must be the same. To see what that representation is, it suffices to take any fibre.
Pickingn € Spec¢B) to be the generic point, the fibre is the quotient fieldddis a vector
space over the quotient field &f By the normal basis theorem in Galois theory, this is the
regular representation.

4.4. We will see in Section 5 as a consequence of Grothendieck duality that the one-
dimensional representation 6f on the socle off; is multiplication by detV). On the
other hand, establishing that fact independently will allow an alternate proof of (c) avoiding
duality altogether.

The determinant

0F, 0OF> oF,
W o e
0F1 0OF OF,
AFy, ... Fy):=|0xs 0x»  ox2
oF 0F,  0F,
Ox, Ox, Ox,,

of the Jacobian matrix is a polynomial of degiee: Y7 ; (d; — 1) inx1, ..., xy.
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The variables, . .., x,, are a basis fov*. The first-order differential operato@goxy,
..., 0/0x, pair naturally by differentiation with these basis vectors, and so the vector space
spanned by them is naturally isomorphicWoas aG-representation. Since thg’s are
invariant, it follows thatG acts on4 by multiplication by detV).

By Stanley[9, Proposition 4.7the set of elements of which are acted apon by by
multiplication by detV) is a free module oveB with generatord. Here 4 is not in the
Hilbert ideall, and so gives a nonzero elementlif. Alternatively, by SteinberffLl0] 6 is
the smallest degree in which there is an element acted upon by multiplication (%) det
and so againl cannot be in the Hilbert ideal. This shows explicitly that the socl&gpfs
acted upon by by multiplication by detV).

For convenient reference, we summarize these facts diout

4.5. Proposition. The A-modul@; isthe regular representation 6f with a one-dimensional
socle in degre® = )", (d; — 1). The action of G on this one-dimensional vector space
is by multiplication bydet(V').

4.6. Proof of (a). Suppose thaf is an ideal ofB such thatB/J is supported at the origin.
By Section 2.10 we can find a series of submodules

OCNICNyC---CN¢g=B/J

such that eaclv; /N;_; is killed by n = (u1, ..., u,). By enlarging the filtration we can
assume in addition thaf; / N; _1 is a one-dimensional vector space, and hence eqghto
as aB-module. With this type of filtration, it follows that= dim(B/J).

Tensoring withA, we get a filtration

0C Mi®pA C No®pA C ---C Ny@pA=A/I
and sinceA is a flat B-module, we have that
(Ni®pA)/(Ni—1®pBA) = (N;/Ni—1)®pA = B/n®pA =T1g.

This shows thatd /I has a filtration by a sequence ©& dim;(B/J) submodules where
each quotientis isomorphic ;. Hence as &-module,A /I consists of dim(B/J) copies
of the regular representation, proving the first part of (a).

This filtration also proves the second part of (&)l iE homogeneous, then we can choose
the filtration to respect the grading, so that each of the quotiéns’; _; are graded. The
filtration then shows thakl := h(Tg) andF := 7 (T) have the desired propertiesl]

4.7. Proof of (b). Suppose thal’ is an ideal ofA stable undeiG and supported at the
origin, and thatd /1’ is a direct sum of copies of the regular representation/Set(1)¢
and/ =A-J.

Taking G-invariants of the exact sequence

0—-1'-A— A/I' >0
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gives
0—>J—>B— (A/1N° >0

and hence thaB/J = (A/I')°.
SinceA/I’ is a direct sum of copies of the regular representation,

dimg(B/J) = dimg ((A/1)) = I%I dime(A/T).

By part (a) of the theorem, we have

dimg(A/I) = |G| dimg(B/J) = % dimg(A/1') = dimg(A/1).

SinceA/I’ is a quotient ofA /I this givesA/I = A/I’ and hencd =1'. [
5. Proof of (c)

5.1. Grothendieck duality. We want to apply Grothendieck duality in the following ex-
tremely simple case. Suppose thaand B are regular rings and th& — A is a homo-
morphism of rings making\ into a finitely generate® module. Under these conditions,
for any A-moduleM and B-moduleN, Grothendieck duality is simply that

(5.1.1)

Homu (M, AQgN)®amwa = Homp (M, N)®@pwg,

where the equality is @anonicalequality of B-modules. Here the entire left-hand side, and

the A-moduleM on the right-hand side are treated&snodules via the homomorphism

B — A. The modulesv, andwp are the canonical modules afand B. One property of

these canonical modules under our hypotheses is that they are locally free modules of rank
1 overA andB, respectively. (This form of Grothendieck duality may be extracted from the
general form of duality for a finite majg, introduction]combined with4, V, Proposition
2.4]and the fact that is a locally freeB-module.)

5.2. ForourringsA =k[x1, ..., x,] andB =k[uz, ..., u,], w4 is the freeA-module with
generator @i AdxoA- - -Adx,, andw g the freeB module with generatond Adus A - - - Adu,.
In particular,G acts on the generator af4 by multiplication by detV*). Also, in terms of
grading, the generator of4 has degree which the sum of the degrees of thés, and the
generator ofvp has degre@";_; d; which is the sum of the degrees of thgs.

5.3. Given an ideal/ of B such thatB/J is supported at the origin, |l = A/m and
N = B/J with m = (x1, ..., x,) the graded maximal ideal od. If I = A - J, then
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(5.1.1) gives
Homa (A/m, A/)®awa =Homg(B/n, B/J)@pws,

wheren is the maximal ideah = (u1, ..., u,) of B.

To see that this is the conclusion of (5.1.1), we just need to noteltRat(B/J) = A/,
which follows from the definition of and right exactness of the tensor product, and that
A/m considered as & module isB/n which follows from the fact thatA /m is a one-
dimensional vector space ovierkilled by all elements oft.

Using the identities in Section 2.10 this is more usefully written as

(5.3.1)
So0qA/I)®ama =S0AB/J)@pwp.

5.4. Proof of (c). The equality ofB-modulesin (5.3.1) is canonical. Let us just check what
this canonical equality implies at various level of structure on the two sides.

As vector space©n each side of (5.3.1) we are tensoring a finite dimensional vector
space with a rank 1 free module. This does not change the dimension of the vector space,
hence dim(SoqA/I)) = dimg(SodB/J)).

As G-modulesThe action of5 on the right-hand side of (5.3.1) is trivial, hence itmust also
be trivial on the left-hand side. As representations the left-hand side {gi$bctensored
with a one-dimensional representation whéracts by multiplication by dév*). In order
for this to be the trivial representatio@, must act on all of Sae /1) by multiplication by
det(V).

In the case thaf is homogeneous, then both sides of the equation are graded.

As graded vector space$he effect of tensoring witlw4 is to shift the grading by:.

The effect of tensoring witlw g is to shift the grading by _"_; d;. Hence the degrees of
SoqA/I) are the degrees of S@&/J) shifted byo =Y""_;(di —1). O

5.5. Alternate proof of (c). It is possible to give a proof of (c) without appealing to
Grothendieck duality. Lef and/ be as above, and consider the nia/ — @} ; B/J
where the map to theh factor is multiplication by, . By definition, the kernel of this map
is exactly the socle oB/J, so that we have an exact sequence

un]

®'_1B/J.
Tensoring withA we get the sequence

0— SodB/J)@pA — A/1 s

i1 A/l

which is still exact, sinced is a flat B-module. The socle ofi/I is killed by multipli-
cation by F1 throughF},, hence SoA/I) € SodB/J)®pA, and therefore Sga /1) =
SoqSodB/J)®pA), and so we can restrict our attention to thenodule So¢B/J)Qp A.
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As aB-module, So¢B/J) is adirect sum of copies @& /n. Itfollows that So¢B/J)Qp A
is a direct sum of copies oB/n®pzA=T;, the number of copies being equal to
dimy(SodB/J)).

We now just need to recall the propertiesTif from Section 4.2.

Each7s has a one-dimensional socle, on whiglcts by multiplication by dév'), hence
we recover that dig(Sod B/J)) = dim;(Soq A/I)), and that the5-action on So¢A /1)
is multiplication by detV).

If Jishomogeneous, then S@&yJ) is graded, and sois the expression of @t/ )Qp A
as a direct sum ofs’s, the grading on eacfi; being shifted by the degree of the corre-
sponding element in S¢B/J). Since the socle of; is in degree, we recover the fact
that the degrees of S@&/7) are the degrees of S@&/J) shifted bys. O

We finish with an easy lemma which will be useful in the proof of (e).

5.6. Lemma. If Jis an ideal of B such that B/J is supported at the orjginda an element
of SodA/I)withI = A - J, then there is a submodule T af I with T ~T; anda € T.

Proof. If bis anonzero element of Sa&/J) let (b) be the one-dimensional subspace over
k spanned by. As a B module, (b) is isomorphic toB/n and soT := (bh)QpA =T as

an A-module. The socle df; is one-dimensional, and either of the two proofs of part (c)
show that the procedures

(b)~ (bY@ A~~S0d(b)RpA)
set up a one to one correspondence:

{ One-dimensionak- } 11 { A-submodules” of } 11 { One-dimensionak- }

subspaces of SoB/J) A/I isomorphic toTg e subspaces of Sod /1)

proving the lemma. [

6. Inverse systems

6.1. Axiomatics of the moduleR. Given the polynomial ringd, we want to look for a
gradedA-moduleR = ®, >0 Ry With the following properties:

(i) dimg(Ry) =dimg(Ay) forall d >0.
(if) The A actionlowersdegrees: for € A;,r € Rj,thena-r e R;_; (=0if j —i <0).
SinceRy is one-dimensional, that means we have a pairing

(-,)g 1 Ag X Rg = RoXk,

(a,r)g =a-r.
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(iii) The pairing (-, -), is perfectin all degreeg> 0.
This means one (and hence all) of the following equivalent statements are true:

For eachu € A, thereis anr € R; such that: - r # 0.

For eachr € R, thereis am € A; such thatz - r £ 0.

The pairing makes, into the dual spacér,)* of R;.

The pairing makes®, into the dual spaceA,)* of A,.
Requirement (iii) of course implies (i), but for purposes of clarity it was listed separately.
Finally, if there is a groug; acting onV then we also require

(iv) The groupG acts onR in such a way that thd-module action isG-equivariant:
(ga) - (gr)y=g(a-r)

forallg € G,a € A, andr € R.
6.2. There are three typical ways of constructingasmoduleR with these properties:

(@) R=Sym*(V) =@, Synt (V).

(b) R=k[y1,...,y,] withx; in A acting as the differential operatdfoy;, and the action
extended to polynomials in the's by the obvious interpretation as differential operators
with constant coefficients.

(c) R= H]'T’I‘l(A), the top local cohomology group df with respect to the maximal ideal
m=(x1,...,x,) Of A.

Choice (a) is perhaps the cleanest, thection is automatic, as is the operation of
pairing an element oft(=Sym®(V*)) with an element ofR ([2, Ill, Section 11.10]s a
good reference for the pairing). Choice (b) is perhaps the most concrete, although it does
not come with an intrinsiG -action. Assuming that acts trivially on the constan#®y ~k,
the only choice of5-action which satisfies (iv) is to l&¥ act on they’s in the way dual to
its action on thec’s. With this G-action, (b) is the same as (a).

Choice (c) is somewhat different. It has two apparent disadvantages. First the action
on the “constants’Rp is not actually constant, it is the one-dimensional representation
det(V*). SecondR in this case is not itself a ring, although this is not usually important in
applications, since only th&-module structure is typically relevant.

The two disadvantages are matched by two advantages: First, this construction also
works in characteristip > 0. The derivative construction in (b) and the pairing in (a) fail
to be perfect pairings in positive characteristic, but, by Serre dualitydthetion on the
local cohomology groups induces a perfect pairing in all characteristics. Second, if we are
concerned with an algorithmic approach for going from part (e) to part (a) of the theorem,
then the local cohomology constructionis more easily compared with the corresponding
module forB.

Our main concern is proving a result about inverse systems, as classically defined, and
so we will stick with the more down-to-earth (a) or (b) for our choiceRof
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6.3. Trivial remarks on dualizing. If W is a finite-dimensional vector space ovgrand
W’ a subspace di, then we have the exact sequence

0O->W —>W-—=> W/ W)=0
which we can dualize to get
0« (WH* < W* <« (W/W)* < 0.

Dualizing reverses the arrows and interchanges injective and surjective maps. It also
expressesW/W’)* as a subspace d¥*; it is exactly the subspace of linear functional
annihilatingW’.

6.4. Inverse systemsSuppose thal is an ideal ofA such thatA/I is supported at the
origin (see 2.10). Looking at the exact sequence

0—>1—-A—A/I >0

and remembering thak was constructed as kind of a gradediual to A, we look for a
subspace oR corresponding to the quotiert// of A. By the above remarks, this is the
set of elements iR which annihilatel. We therefore define

M;:=anpg()={reR|f-r=0forall f el

Note thatM;=(A/I)*, the dual being asiavector space, and thaf; is anA-submodule
of R. This last observation follows from the fact thiais an A-module, and that the pairing
betweenk and A comes from ami-module action.

The moduleM; is called theinverse system associated toln light of the fact that
M; = (A/I)*, it might be better to think of it as something associated té instead.

6.5. The inverse system construction inherits the usual properties of dualizing, for instance,
if 1 C I’ are ideals, so that the natural mapl — A/I’ is surjective, then the induced
mapM; < My is injective. Similarly, ifa is any element ofA then the mapA/I — A/l

given by multiplication bya is dual to the map{; < M; given by lettinga act on the
A-moduleM;.

6.6. Suppose thati /I is supported at the origin, i.e., is killed by a powernwof then the
inverse systenmM; is as well. Nakayma’s lemma tells us that the quotight/mM; is
of interest, for example its dimension is the minimum number of generatav s an
A-module.

Considering the exact sequence expresgihgmM; as a quotient, it is natural to ask
for the submodule ofA /I dual to the quotiend; /mM;.

0—-mM; - M;— Mp/mM; — 0O
$ dual $ dual
(A/I) <= 2?7
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The answer is given by

6.7. Lemma(Macaulay)lIf | is an ideal of A supported at the origiandm = (x1, ..., x,)
the maximal idealthenM; /mM; = SoqA/I)*.

Proof. We are looking for the subspace af// which annihilatesnMy, i.e., elements
a € A/l suchthati - (f -m)=0forall f € mandm € M;. This is the same as asking
that(fa)-m=0forall f € mandm € M;. Butsince the action od /I on M; makesM;
into thek-dual of A/ I (that is, the pairing is perfect), we hayga) -m =0 forallm € M

if and only if fa =0. This is true for allf € mifand onlyifa € SoqA/I). O

6.8. If I is a homogeneous ideal, ther'l, M;, SoqA/I), andM;/mM; are graded-
modules. The proof shows that in this cage/mM; is the graded dual of Sea/I). This

fact is usually used in reverse: If we want to construct a finite dimensional quotient of
with socle in certain degrees, the lemma shows that it suffices to pick elements, r¢

of R inthose degrees, l&f be theA-module generated by thés, and! the ideal such that

M = M, i.e, the ideal annihilating/. The quotientd /I will then have socle in exactly
the desired degrees. The inverse system construction was first introduced by M@gaulay
Chapter 4for this purpose.

7. Proof of (d) and (e)

7.1. Proof of (d). By the inverse system constructial; is k-dual of A/I. By Lemma
6.7 and Nakayama’s lemma, the generator&fpfare dual to SocA /1), the hence part (d)

of the theorem follows from part (c).[J
In order to prove the converse statement, we first need a small result about quotients of
TG.

7.2. Lemma. Let T; be the module df4.2,then the only quotients’ of T such that the
G acts on the socle df’ viadet(V) are eitherT’ = T or T/ = 0.

In other words, a quotient dfg such that the socle is acted on by multiplication by
det(V) is “all or nothing”; we either quotient out by the zero module tofet or by 7 to
get the zero module.

Proof. Let M be the inverse system associated’¢o Any quotientT’ of T corresponds
to a submoduley’ of M. The condition thatG acts on the socle df’ via de(V) is, by
Lemma 6.7 the same as the condition thHtbe generated by elements whéreacts by
multiplication by defV*).

SinceTg; isthe regular representation@f{Proposition 4.5)1 is as well, and therefore the
subspace of elements & whereG acts by multiplication by d€V*) is one dimensional.
By Lemma 6.7 and part (d) of the theorem any nonzero element in this one-dimensional
subspace generatgétas anA-module. It follows that if\f’ contains a nonzero generator, it
must be all ofM. The only alternative is tha?’ is the zero module. Sincd’ is thek-dual
of T’, this proves the lemma.]
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7.3. Proof of (e). Let I’ be an ideal ofA, supported at the origin, such that 1’ is a finite
dimensional vector space and such that its inverse sysfenis generated by elements
whereG acts by multiplication by dév *).

SetJ = (I'Y andI = A - J. ThenI C I’ and so we have a natural surjective map
A/I — A/I'. LetI’ be the image of’ in A/I, so thatA/I’ is the quotient ofd/I by I’.
By construction, there is no nonzero element'ofvariant unders, since any such element
would give an element af’ invariant undeiG, hence be contained ihand thereford .

Let M; be the inverse system &f We have a natural inclusiod; < M; dual to the
surjectionA/I — A/I’. Using the fact thaG acts on the socle of /I by multiplication
by de(V) (part (c) of the theorem), the fact that the same thing is trueAfal’ (by the
hypothesis about/; and Lemma 6.7), and that no element/6fs invariant undeiG we
will show thatM; = M;, and hence that /I’ = A/I, and sol’ = I.

Consider the diagram

All — A/l

Soc@A/l) — — > Soc@l/l")

The key point is to see that the induced map@9d) — Soq A/I’) is injective.

Leta be any nonzero element of Se/7). By Lemma 5.6 there is aA-submodule of
A/I isomorphic toTs containinga. The image of this submodule /7’ is a quotient of
T, and the socle of this image will be contained in the soclé af . HenceG acts on the
socle of this image by multiplication by dét) and we can apply Lemma 7.2 to conclude
that the image is either all df; or the zero module. Sinc&; contains an element invariant
underG, and since no element invariant undegis in the kernelofA /I — A/I’, the image
cannot be the zero module. Therefore the image is dll;ofand in particularg is not in
the kernel.

Now that we know that the map Set/I) < SodA/I’) is injective, we dualize the
diagram to obtain:

M, O M,

ANy <O (A/l'y

| :

Soc @A/1)* <~<—  Soc@/1")*

/
/ N\

\

M, /mM, M, /mM,,
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The injectivity of the map between socles now becomes the surjectivity of the map
Mjp/mM;« M /mM. This shows that the submodulg contains elements which gen-
erateM; as anA-module. Hencé/;» = M; and sol’ = I, proving part (). [
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