
POSITIVE SYSTEMS OF KOSTANT ROOTS

IVAN DIMITROV AND MIKE ROTH

ABSTRACT. Let g be a simple complex Lie algebra and let t ⊂ g be a toral subalgebra of g.
As a t-module g decomposes as

g = s⊕
(
⊕ν∈R gν

)
where s ⊂ g is the reductive part of a parabolic subalgebra of g and R is the Kostant
root system associated to t. When t is a Cartan subalgebra of g the decomposition above
is nothing but the root decomposition of g with respect to t; in general the properties of R
resemble the properties of usual root systems. In this note we study the following problem:
“Given a subset S ⊂ R, is there a parabolic subalgebra p of g containingM = ⊕ν∈Sg

ν and
whose reductive part equals s?”. Our main results is that, for a classical simple Lie algebra
g and a saturated S ⊂ R, the condition (Sym·(M))s = C is necessary and sufficient for
the existence of such a p. In contrast, we show that this statement is no longer true for
the exceptional Lie algebras F4,E6,E7, and E8. Finally, we discuss the problem in the case
when S is not saturated.

Keywords: Parabolic subalgebras, Kostant root systems, Positive roots.

1. INTRODUCTION

1.1. Let g be a simple complex Lie algebra and let h ⊂ g be a Cartan subalgebra. The root
decomposition of g with respect to h is

(1.1) g = h⊕
(
⊕α∈∆ gα

)
where, for any α ∈ h∗,

gα := {x ∈ g | [t, x] = α(t)x for every t ∈ h} and ∆ = {α ∈ h∗ \ {0} | gα 6= 0}.
The Borel subalgebras of g containing h are in a bijection with the positive systems ∆+ ⊂ ∆,
i.e., the subsets ∆+ satisfying the following properties: (i) ∆ = ∆+ ∪ (−∆+), (ii) ∆+ ∩
(−∆+) = ∅, and (iii) α, β ∈ ∆+, α + β ∈ ∆ implies α + β ∈ ∆+. Positive systems of
roots represent a much studied and well-understood topic in the theory of semisimple
Lie algebras. Here is a particular problem that arises in various situations: “Given a
subset Φ ⊂ ∆, determine if there is a positive system ∆+ containing Φ”. The answer is
that such a positive system exists if and only if the semigroup generated by Φ does not
contain 0. The aim of this paper is to address the analogous problem in a more general
situation.

1.2. Let t ⊂ g be a toral subalgebra of g, that is, a commutative subalgebra of semisimple
elements. As a t-module g decomposes as
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(1.2) g = s⊕
(
⊕ν∈R gν

)
where

gν := {x ∈ g | [t, x] = ν(t)x for every t ∈ t}, s = g0, and R = {ν ∈ t∗ \ {0} | gν 6= 0}.
We refer to R as the t-root system of g, to the elements of R as the t-roots, and to the
spaces gν as the t-root spaces. Often we will drop the reference to t when it is clear from
the context.

To explain the relation between the decompositions (1.1) and (1.2), extend t to a Cartan
subalgebra h. The inclusion t ⊂ h then induces a surjection h∗ → t∗. The t-root system
R consists of the nonzero elements of the image of ∆ under this map, and for any ν ∈ R
the t-root space gν is the sum of the h-root spaces gα such that α 7→ ν. Since t may be an
arbitrary complex subspace of h we see that, in contrast to the case of an h-decomposition,
t-root spaces may be more than one-dimensional, and t-roots may be complex multiples
of one another. (For h-root systems, α, rα ∈ ∆ implies that r = ±1.)

1.3. The subalgebra s is a reductive subalgebra of g and, moreover, s is a reductive part
of a parabolic subalgebra of g. Note that t is contained in Z(s), the centre of s. In the case
when t = Z(s) the properties of R and the decomposition (1.2) were studied by Kostant,
[K]. Kostant proved that, for every ν ∈ R, gν is an irreducible s-module and showed that
R inherits many of the properties of ∆. To recognize Kostant’s contribution, we refer to
the elements of R as “Kostant roots” in the title, however we use the shorter “t-roots” in
the text.

1.4. To describe and motivate the problem we address in this note, we assume in this sub-
section that t = Z(s). We caution the reader that not all of equivalences in the following
discussion hold when t 6= Z(s).

One introduces the notion of a positive system R+ ⊂ R exactly as above: (i) R =
R+ ∪ (−R+), (ii) R+ ∩ (−R+) = ∅, and (iii) µ, ν ∈ R+, µ + ν ∈ R implies µ + ν ∈ R+.
Proposition VI.1.7.20 in [B] implies that positive systems in R are in a bijection with par-
abolic subalgebras of g whose reductive part is s. The paper [DFG] contains a detailed
discussion (in slightly different terms) of positive systems R+. In particular, a result of
[DFG] implies that a subset T ⊂ R is a positive system if and only if there exists a linear
function ϕ : V → R, V being the real vector space spanned by R, such that kerϕ ∩ T = ∅
and ν ∈ T if and only if ϕ(ν) > 0. Note that every positive system R+ is saturated, i.e.,
ν ∈ R+, r ∈ Q+ and rν ∈ R imply rν ∈ R+.

In a previous paper [DR] we came across the analogue of the problem mentioned above:
“Given a subset S ⊂ R determine whether there is a positive system R+ containing S”.
An obvious necessary and sufficient condition (equivalent to the existence of the linear
function ϕ above) for the existence of a positive system R+ containing S is the require-
ment that the semigroup generated by S does not contain 0. Unfortunately, this combi-
natorial condition is not easy to verify. On the other hand, in our intended application in
[DR], the condition (Sym·(M))s = C whereM = ⊕ν∈S gν , arose naturally in the context
of Geometric Invariant Theory. This latter condition is necessary for the existence of a
positive system R+ as above. To see this, note that (Sym·(M))s always contains at least
the constants C, the inclusion t ⊂ s implies (Sym·(M))s ⊂ (Sym·(M))t, and the condition
that the semigroup generated by S does not contain 0 is equivalent to (Sym·(M))t = C.
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In fact, there is a stronger necessary condition for S to be contained in a positive system.
Since R+ is saturated, if S ⊂ R+ then S ⊂ R+, where S denotes the saturation of S,
i.e., S = Q+S ∩ R. Set M := ⊕ν∈S gν . It is easy to see that (Sym·(M))t = C if and
only if (Sym·(M))t = C and that we have the inclusions (Sym·(M))s ⊂ (Sym·(M))s ⊂
(Sym·(M))t. In other words, if S is contained in a positive system then (Sym·(M))s = C.

The goal of this note is to investigate whether either of the conditions (Sym·(M))s = C
or (Sym·(M))s = C is sufficient for the existence of a positive system R+ containing
M. It turns out that (Sym·(M))s = C is sufficient if and only if g is of type A or D and
(Sym·(M))s = C is sufficient if and only if g is classical or g = G2.

Using the connection between positive systems and linear functions ϕ (valid when t =
Z(s)), finding a positive system containing M is the same as finding a parabolic subal-
gebra pM containing M with reductive part s, and we will state our main result in this
form. We will also state whether S is saturated or not, rather than using the notationM.
In the general case when t 6= Z(s), the existence of positive systems containingM is not
equivalent to the existence of such a parabolic pM. However, our result, as stated below
in terms of pM, is still valid in this case.

1.5. Main Theorem: Let g be a simple Lie algebra, t ⊂ g a toral subalgebra, s the central-
izer of t,R the set of t-roots, S ⊂ R, and setM = ⊕ν∈S gν .

(a) Assume that (Sym·(M))s = C. If g is of type A or D or if S is saturated and g is of
type B, C, or G2 then there exists a parabolic subalgebra pM with reductive part s
such thatM⊂ pM.

(b) If g is not of type A or D, there exist S satisfying the condition that (Sym·(M))s = C
such that no such parabolic pM exists. Moreover, if g is F4, E6, E7, or E8, then S can
be chosen to be saturated.

1.6. Reduction to t = Z(s). In the main theorem we do not require that t = Z(s).
However, the general case reduces to this case as follows: Set t′ := Z(s) and let R′ be the
set of t′-roots. The natural projection π : (t′)∗ → t∗ induces a surjection of R′ onto R. Set
S ′ := π−1(S) and notice that

M = ⊕ν∈S gν = ⊕ν′∈S′ gν
′
,

and that if S is saturated, so is S ′. Moreover, the centralizer of t′ is again s. Thus in proving
that (Sym·(M))s = C is a sufficient condition we may assume that t = Z(s). In the cases
when we are proving that (Sym·(M))s = C is not sufficient, we provide examples in
which t = Z(s).

For the rest of the paper we assume that t = Z(s).

1.7. Organization and Conventions. In section 2 we describe explicitly all t-root systems
and the respective t-root spaces for each of the classical simple Lie algebras. In section
3 we first prove the existence of pM when g is classical and S is saturated. We then
handle the case of non-saturated S in types A and D, and finish the section by giving
examples in types B and C of non-saturated S satisfying the condition (Sym·(M))s = C
for which no parabolic subalgebra pM exists. In section 4 we first treat the case when
g is of type G2, proving the result when S is saturated and giving an example where S
is non-saturated. We then construct examples in types F4, E6, E7, and E8 of saturated S
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for which (Sym·(M))s = C and for which no parabolic subalgebra pM exists. That is, in
section 3 we establish all parts of the theorem dealing with classical Lie algebras, and in
section 4 we establish all parts dealing with the exceptional Lie algebras.

Throughout the paper we work over the field of complex numbers C. All Lie algebras,
modules, etc., are over C unless explicitly stated otherwise. The notation ⊂ includes the
possibility of equality.

2. t-ROOTS AND t-ROOT SPACES FOR CLASSICAL LIE ALGEBRAS g.

2.1. First we describe the parabolic subalgebras and the corresponding sets R for the
classical Lie algebras. For convenience of notation we will work with the reductive Lie
algebra gln instead of sln. For the rest of this section g is a classical simple Lie algebra of
type B, C, or D or g = gln. Moreover, we fix a Cartan subalgebra h ⊂ g. For a compre-
hensive source on simple complex Lie algebras we refer the reader to [B]. For a treatment
of parabolic subalgebras of g containing a fixed Cartan subalgebra h, the reader may also
consult [DP].

2.2. Let P = {I1, . . . , Ik} be a partition of {1, . . . , n}. We say that P is totally ordered if
we have given a total order on the set {I1, . . . , Ik}. We write P(i) for the part of P which
contains i. The inequalities P(i) ≺ P(j) and P(i) � P(j) are taken in the total order
of the parts of P . For the standard basis {ε1, . . . , εn} of h∗ we denote the dual basis of h
by {h1, . . . , hn}. A total order on the set {±δ1, . . . ,±δk} is compatible with multiplication by
−1 if, for x, y ∈ {±δ1, . . . ,±δk}, x ≺ y implies −y ≺ −x. To simplify notation we adopt
the convention that B1, respectively C1, is a subalgebra of g = Bn, respectively g = Cn,
isomorphic to A1 and whose roots are short, respectively long roots, of g. The subalgebras
D2 = A1 ⊕ A1 and D3 = A3 of Dn have similar meaning.

Let g be of type Xn = An, Bn, Cn, or Dn and let s be a subalgebra of g which is the reductive
part of a parabolic subalgebra of g. Every simple ideal of s is isomorphic to Ar or Xr for
some r. Furthermore, if g is not of type An, s has at most one simple ideal of type Xr.
For g of type Xn = Bn, Cn, or Dn the parabolic subalgebras of g are split into two types
depending on whether their reductive parts contain (Type II) or do not contain (Type I) a
simple ideal of type Xr (including B1, C1, D2, or D3).

In the description of the combinatorics of the simple classical Lie algebras below, the
formulas for their parabolic subalgebras p containing a fixed reductive part s look very
uniform (e.g. ). In some instances this is misleading since the formulas do not explicitly
indicate the subalgebra s which, however, is an integral part of the structure of p.

We now list the combinatorial descriptions of the parabolic subalgebras and related data
in the classical cases.
2.3. g = gln.

. The roots of g are: ∆ = {εi − εj | 1 6 i 6= j 6 n}
. Parabolic subalgebras of g are in one-to-one correspondence with:

totally ordered partitions P = (I1, . . . , Ik) of {1, . . . , n}.
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Given a totally ordered partition P ,

. The roots of pP are {εi − εj | i 6= j,P(i) � P(j)}
. The roots of sP are {εi − εj | i 6= j,P(i) = P(j)}
. sP = ⊕i siP , where siP

∼= gl|Ii|;
. The Cartan subalgebra of siP is spanned by {hj}j∈Ii

. The roots of siP are {εj − εl | j 6= l ∈ Ii}.
. tP has a basis {t1, . . . , tk}with ti = 1

|Ii|
∑

j∈Ii
hj

If {δ1, . . . , δk} is the basis of t∗ dual to {t1, . . . , tk} then

. R = {δi − δj | 1 6 i 6= j 6 k}.
. For ν = δi − δj ∈ R, gν ∼= Vi ⊗ V∗j , where Vi and V∗j are the natural siP-module

and the dual of the natural sjP-module respectively, all other factors of sP acting
trivially.

. The parabolic subalgebras of g whose reductive part is sP are in a bijection with
the ordered partitions Q of {1, . . . , n} whose parts are the same as the parts of P
or, equivalently, with total orders on the set {δ1, . . . , δk}.

2.4. g = Bn

. The roots of g are: ∆ = {±εi ± εj,±εi | 1 6 i 6= j 6 n}.
. Parabolic subalgebras of g are in one-to-one correspondence with:

Type I: pairs (P , σ), where P = (I1, . . . , Ik) is a totally ordered partition of
{1, . . . , n} and σ : {1, . . . , n} → {±1} is a choice of signs.

Type II: pairs (P , σ), where P = (I0, I1, . . . , Ik) is a totally ordered partition
of {1, . . . , n}with largest element I0 and σ : {1, . . . , n}\I0 → {±1} is
a choice of signs.

In Type I:

. The roots of p(P,σ) are

{σ(i)εi − σ(j)εj | i 6= j,P(i) � P(j)} ∪ {σ(i)εi + σ(j)εj, σ(i)εi | i 6= j}

. The roots of s(P,σ) are {σ(i)εi − σ(j)εj | i 6= j,P(i) = P(j)}.
. s(P,σ) = ⊕i si(P,σ), where si(P,σ)

∼= gl|Ii|.
. The Cartan subalgebra of siP is spanned by {σ(j)hj}j∈Ii

. The roots of siP are {σ(j)εj − σ(l)εl | j 6= l ∈ Ii}.
. t(P,σ) has a basis {t1, . . . , tk}with ti = 1

|Ii|
∑

j∈Ii
σ(j)hj .

If {δ1, . . . , δk} the basis of t∗ dual to {t1, . . . , tk} then

. R = {±δi ± δj,±δi | 1 6 i 6= j 6 k} ∪ {±2δi | |Ii| > 1}.
. For ν ∈ R,

(a) gν ∼= V±i ⊗ V±j if ν = ±δi ± δj ,
(b) gν ∼= V±i if ν = ±δi, and
(c) gν ∼= Λ2V±i if ν = ±2δi,
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where V+
i and V−i respectively are the natural si(P,σ)-module and its dual, and all

other factors of s(P,σ) act trivially.

. The parabolic subalgebras of g whose reductive part is sP,σ are in a bijection with
the pairs (Q, τ) such that the parts of Q are the same as the parts of P and σ|Ii =
±τ|Ii for every part Ii or, equivalently, with total orders on the set {±δ1, . . . ,±δk}
compatible with multiplication by −1.

In Type II:

. The roots of p(P,σ) are

{σ(i)εi − σ(j)εj | i 6= j,P(i) � P(j) ≺ I0} ∪ {±εi ± εj,±εi | i 6= j, i ∈ I0, j ∈ I0}

∪{σ(i)εi + σ(j)εj, σ(i)εi | i 6= j, i 6∈ I0, j 6∈ I0} ∪ {σ(i)εi ± εj | i 6∈ I0, j ∈ I0}
. The roots of s(P,σ) are

{σ(i)εi − σ(j)εj | i 6= j,P(i) = P(j) ≺ I0} ∪ {±εi ± εj,±εi | i 6= j ∈ I0}.

. s(P,σ) = ⊕i si(P,σ), where s0
(P,σ)

∼= B|I0| and si(P,σ)
∼= gl|Ii| for i > 0.

. The Cartan subalgebra of siP is spanned by {hj}j∈I0 for i = 0 and {σ(j)hj}j∈Ii for
i > 0.

. The roots of siP are {±εj ± εl,±εj | j 6= l ∈ I0} for i = 0 and {σ(j)εj − σ(l)εl | j 6= l ∈
Ii} for i > 0.

. t(P,σ) has a basis {t1, . . . , tk}with ti = 1
|Ii|
∑

j∈Ii
σ(j)hj .

If {δ1, . . . , δk} is the basis of t∗ dual to {t1, . . . , tk} then

. R = {±δi ± δj,±δi | 1 6 i 6= j 6 k} ∪ {±2δi | |Ii| > 1}.
. For ν ∈ R,

(a) gν ∼= V±i ⊗ V±j if ν = ±δi ± δj ,
(b) gν ∼= V±i ⊗ V0 if ν = ±δi, and
(c) gν ∼= Λ2V±i if ν = ±2δi

where V+
i and V−i denote the natural si(P,σ)-module and its dual respectively for i >

0, V0 denotes the natural s0
(P,σ)-module, and all other factors of s(P,σ) act trivially.

Note that, if s(P,σ) = B1
∼= sl2, then V0 is the three dimensional irreducible s(P,σ)-

module.

. The parabolic subalgebras of g whose reductive part is sP,σ are in a bijection with
the pairs (Q, τ) such that the parts of Q are the same as the parts of P , I0 is the
largest element of Q, and σ|Ii = ±τ|Ii for every part Ii 6= I0 or, equivalently, with
total orders on the set {±δ1, . . . ,±δk} compatible with multiplication by −1.

2.5. g = Cn

. The roots of g are: ∆ = {±εi ± εj,±2εi | 1 6 i 6= j 6 n}.
. Parabolic subalgebras of g are in one-to-one correspondence with:

Type I: pairs (P , σ), where P = (I1, . . . , Ik) is a totally ordered partition of
{1, . . . , n} and σ : {1, . . . , n} → {±1} is a choice of signs.
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Type II: pairs (P , σ), where P = (I0, I1, . . . , Ik) is a totally ordered partition
of {1, . . . , n}with largest element I0 and σ : {1, . . . , n}\I0 → {±1} is
a choice of signs.

In Type I:

. The roots of p(P,σ) are

{σ(i)εi − σ(j)εj | i 6= j,P(i) � P(j)} ∪ {σ(i)εi + σ(j)εj, 2σ(i)εi | i 6= j}
. The roots of s(P,σ) are {σ(i)εi − σ(j)εj | i 6= j,P(i) = P(j)}.
. s(P,σ) = ⊕i si(P,σ), where si(P,σ)

∼= gl|Ii|.
. The Cartan subalgebra of siP is spanned by {σ(j)hj}j∈Ii .
. The roots of si(P,σ) are {σ(j)εj − σ(l)εl | j 6= l ∈ Ii}.
. t(P,σ) has a basis {t1, . . . , tk}with ti = 1

|Ii|
∑

j∈Ii
σ(j)hj .

If {δ1, . . . , δk} is the basis of t∗ dual to {t1, . . . , tk} then

. R = {±δi ± δj,±2δi | 1 6 i 6= j 6 k}.
. For ν ∈ R,

(a) gν ∼= V±i ⊗ V±j if ν = ±δi ± δj .
(b) gν ∼= Sym2 V±i if for ν = ±2δi.

where V+
i and V−i are the natural si(P,σ)-module and its dual, and all other factors

of s(P,σ) act trivially.

. The parabolic subalgebras of g whose reductive part is sP,σ are in a bijection with
the pairs (Q, τ) such that the parts of Q are the same as the parts of P and σ|Ii =
±τ|Ii for every part Ii or, equivalently, with total orders on the set {±δ1, . . . ,±δk}
compatible with multiplication by −1.

In Type II:

. The roots of p(P,σ) are

{σ(i)εi − σ(j)εj | i 6= j,P(i) � P(j) ≺ I0} ∪ {±εi ± εj,±2εi | i 6= j, i ∈ I0, j ∈ I0}∪
{σ(i)εi + σ(j)εj, σ(i)2εi | i 6= j, i 6∈ I0, j 6∈ I0} ∪ {σ(i)εi ± εj | i 6∈ I0, j ∈ I0}

. The roots of s(P,σ) are

{σ(i)εi − σ(j)εj | i 6= j,P(i) = P(j) ≺ I0} ∪ {±εi ± εj,±2εi | i 6= j ∈ I0}.
. s(P,σ) = ⊕ki=0 s

i
(P,σ), where s0

(P,σ)
∼= C|I0| and si(P,σ)

∼= gl|Ii| for i > 0.
. The Cartan subalgebra of si(P,σ) is spanned by {hj}j∈I0 for i = 0 and {σ(j)hj}j∈Ii for
i > 0.

. The roots of si(P,σ) are {±εj ± εl,±2εj | j 6= l ∈ I0} for i = 0 and {σ(j)εj − σ(l)εl | j 6=
l ∈ Ii} for i > 0.

. t(P,σ) has a basis {t1, . . . , tk}with ti = 1
|Ii|
∑

j∈Ii
σ(j)hj

If {δ1, . . . , δk} is the basis of t∗ dual to {t1, . . . , tk} then

. R = {±δi ± δj,±δi,±2δi | 1 6 i 6= j 6 k}.
. For ν ∈ R,

(a) gν ∼= V±i ⊗ V±j if ν = ±δi ± δj ,
(b) gν ∼= V±i ⊗ V0 if ν = ±δi,
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(c) gν is isomorphic to Sym2 V±i if ν = ±2δi,

where V+
i and V−i denote the natural si(P,σ)-module and its dual for i > 0, V0 is the

natural s0
(P,σ)-module, and where all other factors of s(P,σ) act trivially. Note that,

if s(P,σ) = C1
∼= sl2, then V0 is the two dimensional irreducible s(P,σ)-module.

. The parabolic subalgebras of g whose reductive part is sP,σ are in a bijection with
the pairs (Q, τ) such that the parts of Q are the same as the parts of P , I0 is the
largest element of Q, and σ|Ii = ±τ|Ii for every part Ii 6= I0 or, equivalently, with
total orders on the set {±δ1, . . . ,±δk} compatible with multiplication by −1.

2.6. g = Dn.

. The roots of g are: ∆ = {±εi ± εj, | 1 6 i 6= j 6 n}.
. Parabolic subalgebras of g are determined by:

Type I: pairs (P , σ), where P = (I0, I1, . . . , Ik) is a totally ordered partition
of {1, . . . , n} and σ : {1, . . . , n} → {±1} is a choice of signs.

Two pairs (P ′, σ′) and (P ′′, σ′′) determine the same parabolic sub-
algebra if and only if P ′ and P ′′ are the same ordered partitions
whose maximal part I0 contains one element and σ′ and σ′′ coin-
cide on {1, . . . , n}\I0.

Type II: pairs (P , σ), where P = (I0, I1, . . . , Ik) is a totally ordered parti-
tion of {1, . . . , n} with largest element I0 such that |I0| > 2 and
σ : {1, . . . , n}\I0 → {±1} is a choice of signs.

In Type I:

. The roots of p(P,σ) are {σ(i)εi− σ(j)εj | i 6= j,P(i) � P(j)} ∪ {σ(i)εi + σ(j)εj | i 6= j}
. The roots of s(P,σ) are {σ(i)εi − σ(j)εj | i 6= j,P(i) = P(j)}.
. s(P,σ) = ⊕i si(P,σ), where si(P,σ)

∼= gl|Ii|.
. The Cartan subalgebra of siP is spanned by {σ(j)hj}j∈Ii

. The roots of si(P,σ) are {σ(j)εj − σ(l)εl | j 6= l ∈ Ii}.
. t(P,σ) has a basis {t1, . . . , tk}with ti = 1

|Ii|
∑

j∈Ii
σ(j)hj .

If {δ1, . . . , δk} is the basis of t∗ dual to {t1, . . . , tk} then

. R = {±δi ± δj| 1 6 i 6= j 6 k} ∪ {±2δi | |Ii| > 1}.
. For ν ∈ R,

(a) gν ∼= V±i ⊗ V±j if ν = ±δi ± δj .
(b) gν ∼= Λ2V±i if ν = ±2δi.

where V+
i and V−i are the natural si(P,σ)-module and its dual, and all other factors

of s(P,σ) act trivially.

. Every parabolic subalgebra of g whose reductive part is sP,σ corresponds to a pair
(Q, τ) such that the parts of Q are the same as the parts of P and σ|Ii = ±τ|Ii for
every part Ii or, equivalently, to a total order on the set {±δ1, . . . ,±δk} compatible
with multiplication by−1. Note that this correspondence is not bijective since two
different total orders may determine the same parabolic subalgebra.
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In Type II:

. Roots of p(P,σ) =

{σ(i)εi − σ(j)εj | i 6= j,P(i) � P(j) ≺ I0} ∪ {±εi ± εj | i 6= j, i ∈ I0, j ∈ I0}
∪{σ(i)εi + σ(j)εj | i 6= j, i 6∈ I0, j 6∈ I0} ∪ {σ(i)εi ± εj | i 6∈ I0, j ∈ I0}

. Roots of s(P,σ) = {σ(i)εi − σ(j)εj | i 6= j,P(i) = P(j) ≺ I0} ∪ {±εi ± εj | i 6= j ∈ I0}.

. s(P,σ) = ⊕ki=0 s
i
(P,σ), where s0

(P,σ)
∼= D|I0| and si(P,σ)

∼= gl|Ii| for i > 0.
. Cartan subalgebra of si(P,σ) is spanned by {hj}j∈I0 for i = 0 and by {σ(j)hj}j∈Ii for
i > 0;

. roots of si(P,σ) are {±εj ± εl | j 6= l ∈ I0} for i = 0 and {σ(j)εj − σ(l)εl | j 6= l ∈ Ii} for
i > 0.

. t(P,σ) has a basis {t1, . . . , tk}with ti = 1
|Ii|
∑

j∈Ii
σ(j)hj .

If {δ1, . . . , δk} is the basis of t∗ dual to {t1, . . . , tk} then

. R = {±δi ± δj,±δi | 1 6 i 6= j 6 k} ∪ {±2δi | |Ii| > 1}.
. For ν ∈ R,

(a) gν ∼= V±i ⊗ V±j if ν = ±δi ± δj ,
(b) gν ∼= V±i ⊗ V0 if ν = ±δi,
(c) gν ∼= Λ2V±i if ν = ±2δi,

where V+
i and V−i denote the natural si(P,σ)-module and its dual for i > 0, V0 is

the natural s0
(P,σ)-module, and where all other factors of s(P,σ) act trivially. Note

that, if s(P,σ) = D2
∼= sl2 ⊕ sl2, then V0 is the (external) tensor product of two two-

dimensional irreducible sl2-modules; if s(P,σ) = D3
∼= sl4, then V0 the six dimen-

sional irreducible s(P,σ)-module which is the second exterior power of the natural
representation of sl4.

. The parabolic subalgebras of g whose reductive part is s(P,σ) are in a bijection with
the pairs (Q, τ) such that the parts of Q are the same as the parts of P , I0 is the
largest element of Q, and σ|Ii = ±τ|Ii for every part Ii or, equivalently, with total
orders on the set {±δ1, . . . ,±δk}.

3. PROOF OF THE MAIN THEOREM WHEN g IS CLASSICAL.

3.1. Existence of pM when S is saturated. The idea is simple: using S we define a binary
relation ≺ on the set {δ1, . . . , δk} (respectively on {±δ1, . . . ,±δk}) and using the fact that
(Sym·(M))s = C we prove that ≺ can be extended to a total order (respectively, to a total
order compatible with multiplication by−1). The proof follows the same logic in all cases
but is least technical in the case when g = gln. For clarity of exposition we present the
proof for g = gln first. Throughout the proof the partition P (and the choice of signs σ)
are fixed and instead of sP (or s(P,σ)) and siP (or si(P,σ)) we write s and si respectively.

First we consider the case when g = gln. Define a binary relation ≺ on {δ1, δ2, . . . , δk} by
setting

(3.1) δi ≺ δj if ν = δi − δj ∈ S.
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The existence of a parabolic subalgebra pM with reductive part s and containing M is
equivalent to the existence of a total order on {δ1, δ2, . . . , δk}which extends ≺.

Note that ≺ can be extended to a total order on {δ1, δ2, . . . , δk} if and only if there is no
cycle

(3.2) δi1 ≺ δi2 ≺ · · · ≺ δil ≺ δi1 .

Assume that ≺ cannot be extended to a total order on {δ1, · · · , δk} and consider a cycle
(3.2) of minimal length. Then ν1 = δi1 − δi2 , ν2 = δi2 − δi3 , · · · , νl = δil − δi1 is a sequence
of distinct elements of S. Hence gν1 ⊕ gν2 ⊕ · · · ⊕ gνl is a submodule ofM and Syml(gν1 ⊕
gν2 ⊕ · · · ⊕ gνl) is a submodule of Sym·(M) containing gν1 ⊗ gν2 ⊗ · · · ⊗ gνl . On the other
hand,

(3.3) gν1 ⊗ gν2 ⊗ · · · ⊗ gνl ∼= (Vi1 ⊗ V∗i2)⊗ (Vi2 ⊗ V∗i3)⊗ · · · ⊗ (Vil ⊗ V∗i1)∼= (Vi1 ⊗ V∗i1)⊗ (Vi2 ⊗ V∗i2)⊗ · · · ⊗ (Vil ⊗ V∗il),

where the lower index of a module shows which component of s acts non-trivially on
it. Since, for every 1 6 j 6 l, Vij ⊗ V∗ij contains the trivial sij -module, (3.3) shows that
gν1 ⊗ gν2 ⊗ · · · ⊗ gνl contains the trivial s-module which contradicts the assumption that
(Sym·(M))s = C. This contradiction shows that ≺ can be extended to a total order on the
set {δ1, · · · , δk}, which completes the proof when g = gln.

Next we consider the case when g 6= gln, i.e., we assume that g is a simple classical Lie
algebra not of type A. Define a binary relation ≺ on {±, δ1,±δ2, · · · ,±δk} by setting

(3.4)
siδi ≺ sjδj, i 6= j if ν = siδi − sjδj ∈ S

siδi ≺ −siδi if ν =

{
siδi when g = Bn or g = Dn, Type II
2siδi when g = Cn or g = Dn, Type I ∈ S,

where si, sj = ±. Note that ≺ is compatible with multiplication by −1.

The existence of a parabolic subalgebra pM with reductive part s and containing M is
equivalent the existence of a total order on {±δ1,±δ2, · · · ,±δk} compatible with multipli-
cation by −1 which extends ≺.

Note that≺ can be extended to a total order on {±δ1,±δ2, · · · ,±δk} compatible with mul-
tiplication by −1 if and only if there is no cycle

(3.5) s1δi1 ≺ s2δi2 ≺ · · · ≺ slδil ≺ s1δi1

Assume that ≺ cannot be extended to a total order on {±δ1, · · · ,±δk} compatible with
multiplication by −1 and consider a cycle (3.5) of minimal length. It gives rise to a se-
quence ν1, · · · , νl ∈ S induced from (3.4). More precisely,

νj =

 sjδij − sj+1δij+1
if δij 6= δij+1

sjδij if δij = δij+1
, g = Bn or g = Dn, Type II

2sjδij if δij = δij+1
, g = Cn or g = Dn, Type I,

where sl+1 = s1 and δil+1
= δi1 .
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The minimality of (3.5) implies that every element ν of R appears at most twice in the
sequence ν1, ν2, . . . , nl. Moreover, if ν = ±δi or ν = ±2δi, then ν appears at most once in
this sequence.

First we consider the case when δij 6= δij+1
for every j. In this case νj = sjδij − sj+1δij+1

for
every j. Let λ1, . . . , λs be the elements of R that appear once in the sequence ν1, ν2, . . . , νl
and let µ1, . . . , µt be those that appear twice. Clearly, l = s + 2t. Moreover gλ1 ⊕ · · · ⊕
gλs ⊕ gµ1 ⊕ · · · ⊕ gµt is a submodule ofM and Syml(gλ1 ⊕ · · · ⊕ gλs ⊕ gµ1 ⊕ · · · ⊕ gµt) is a
submodule of Sym·(M) containing

(3.6) gλ1 ⊗ · · · ⊗ gλs ⊗ Sym2 gµ1 ⊗ · · · ⊗ Sym2 gµt .

We will prove that the s-module (3.6) contains the trivial s-module which, as in the case
when g = gln, will complete the proof.

Indeed, if µj′ = νj then

(3.7)
Sym2 gµj′ = Sym2 gνj = Sym2(V

sj
ij
⊗ V

−sj+1

ij+1
) =

Sym2 V
sj
ij
⊗ Sym2 V

−sj+1

ij+1
⊕ Λ2V

sj
ij
⊗ Λ2V

−sj+1

ij+1
⊃ Sym2 V

sj
ij
⊗ Sym2 V

−sj+1

ij+1
.

Replacing in (3.6) each term of the form Sym2 gµj′ with the corresponding term Sym2 V
sj
ij
⊗

Sym2 V
−sj+1

ij+1
from (3.7), we obtain another submodule of (3.6). This latest submodule is

a tensor product of factors of the form V±ij and Sym2 V±ij . Moreover, the component Vi

appears in one of the following groups:

V+
i ⊗ V+

i ⊗ V−i ⊗ V−i , V+
i ⊗ V+

i ⊗ Sym2 V−i , V−i ⊗ V−i ⊗ Sym2 V+
i , Sym2 V+

i ⊗ Sym2 V−i .

Since each of them contains the trivial si-module, we conclude that (3.6) contains the
trivial s-module.

Finally, we consider the case when δij = δij+1
for some 1 6 j 6 l. (The minimality of the

cycle (3.5) implies that there are at most two such indices but we will not use this obser-
vation.) We split the roots ν1, ν2, . . . , νl into two groups λ1, λ2, . . . , λs and µ1, µ2, . . . , µt in
the following way: If νj = sjδij − sj+1δij+1

, then we put νj in the first or second group
depending on whether it appears once or twice in ν1, ν2, . . . , νl, if νj = sjδij , we put νj in
the second group, and if νj = 2sjδij , we put νj in the first group. Set l′ := s+ 2t; note that
l′ 6= l.

From this point on the argument repeats the argument above with the following modifi-
cations:

(i) We consider Syml′(gλ1 ⊕· · ·⊕ gλs ⊕ gµ1 ⊕· · ·⊕ gµt) in place of Syml(gλ1 ⊕· · ·⊕ gλs ⊕
gµ1 ⊕ · · · ⊕ gµt).

(ii) In the case when g = Dn and (P , σ) is of Type I, we replace Sym2 V
sj
ij
⊗Sym2 V

−sj+1

ij+1

by Λ2V
sj
ij
⊗ Λ2V

−sj+1

ij+1
in (3.7). Correspondingly, Vi appears in one of the following

groups

V+
i ⊗ V+

i ⊗ V−i ⊗ V−i , V+
i ⊗ V+

i ⊗ Λ2V−i , V−i ⊗ V−i ⊗ Λ2V+
i , Λ2V+

i ⊗ Λ2V−i .

Exactly as above, for i > 0, each of the groups above contains the trivial module si-
module. Finally, if g = Bn or g = Dn and (P , σ) is of Type II, V0 appears in groups
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Sym2 V0 (one for each νj = sjδij ). Since in these cases s0 = B|I0| or s0 = D|I0|, Sym2 V0

contains the trivial s0-module. This completes the proof. �

We now turn to the case that S is not saturated.

3.2. Existence of pM in types A and D. If g is of type A there is nothing to prove since
every subsetR is saturated and the statement is equivalent to the first part of this section.
The situation is the same when g = Dn and (P , σ) is of type I.

Let g = Dn and let (P , σ) be of type II. We will extend the proof of part (a) to this case.

First we note that−2δi ∈ S and δi ∈ S imply that (Sym·(M))s 6= C. Indeed, Λ2V−i ⊕V+
i ⊗V0

is a submodule ofM and hence we have the following inclusions of modules:

(3.8)
Sym6(Λ2V−i ⊕ V+

i ⊗ V0) ⊂ Sym·(M)
Sym2(Λ2V−i )⊗ Sym4(V+

i ⊗ V0) ⊂ Sym6(Λ2V−i ⊕ V+
i ⊗ V0)

S(2,2)V+
i ⊗ S(2,2)V0 ⊂ Sym4(V+

i ⊗ V0) , S(2,2)V−i ⊂ Sym2(Λ2V−i ),

where S(2,2)W denotes the result of applying the Schur functor S(2,2) to W. The above in-
clusions along the fact that S(2,2)V0 contains the trivial s0-module imply that (Sym6(M))s 6=
0. A symmetric argument shows that 2δi ∈ S and −δi ∈ S imply that (Sym·(M))s 6= C.

From this point on the proof follows the proof of part (a) with the following modifications:

(i) In the definition of ≺we use siδi ≺ −siδi if siδi ∈ S or 2siδi ∈ S.
(ii) If siδi ≺ −siδi, νi denotes the corresponding element of S above; if there are two

such elements, we set νi := siδi.
(iii) In splitting ν1, ν2, . . . , νl into two groups λ1, λ2, . . . , λs and µ1, µ2, . . . , µt, we put a

root νi from (ii) into the first group if νi = 2siδi and in the second group otherwise.
(iv) We consider Sym2l′(gλ1⊕· · ·⊕gλs⊕gµ1⊕· · ·⊕gµt) in place of Syml(gλ1⊕· · ·⊕gλs⊕

gµ1 ⊕ · · · ⊕ gµt).
(v) We replace the module in (3.6) by Sym2 gλ1⊗· · ·⊗Sym2 gλs⊗Sym4 gµ1⊗· · ·⊗Sym4 gµt .

Using the inclusions (3.8) we conclude that (Sym·(M))s 6= C. This completes the proof
when g = Dn. �

3.3. Examples in types B and C whenM is not saturated. We will now construct exam-
ples in types B and C of s and S such that (Sym·(M))s = C and for which there does not
exist a parabolic subalgebra pM of g with reductive part s andM⊂ pM.

If g = Bn, consider s = s(P,σ), where P is the partition of type I

{1, 2} ≺ {3} ≺ {4} ≺ · · · ≺ {n}
and σ(i) = 1 is constant. Then s1 = gl2. Moreover, U := g−δ1 is the gl2-module which is the
natural representation of sl2 and on which the identity matrix of gl2 acts as multiplication
by −1 and W := g2δ1 is the one dimensional gl2-module on which the identity matrix acts
as multiplication by 2. Let S := {−δ1, 2δ1}. ThenM = U⊕W and

SymkM = ⊕j Symj U⊗ Symk−j W.

Note that Symj U⊗Symk−j W is the irreducible sl2-module of dimension j+1 on which the
identity matrix of gl2 acts as multiplication by 2k − 3j. This proves that (Sym·(M))s = C
but there is no parabolic subalgebra pM of g with reductive part s such thatM⊂ pM.
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If g = Cn, consider s = s(P,σ), where P is the partition of type II

{1} ≺ {2} ≺ {3} ≺ · · · ≺ {n}
and σ(i) = 1 is constant. Then s0 = C1

∼= sl2 and s1 = gl1, i.e. s0 ⊕ s1 ∼= gl2. Moreover,
setting U := g−δ1 and W := g2δ1 , we arrive at exactly the same situation as in the case
g = Bn above. �

4. PROOF OF THE MAIN THEOREM WHEN g IS EXCEPTIONAL.

4.1. First we recall some standard notation following the conventions in [B]. If g is a
simple Lie algebra of rank n we label the simple roots of g as α1, . . . , αn as in [B]. The
fundamental dominant weight of g are denoted by ω1, . . . , ωn. If −α0 is the highest root,
then α0, α1, . . . , αn label the extended Dynkin diagram of g.

4.2. Existence of pM in type G2 when S is saturated. Let g = G2. Let S be a saturated
subset of R and letM = ⊕ν∈Sgν . If (Sym·(M))s = C, then there exists a parabolic subal-
gebra pM of g with reductive part s such thatM⊂ pM. Indeed, if s is a proper subalgebra
of g which is not equal to h, then all elements ofR are proportional and there is nothing to
prove. If s = h, then the spaces gν are just the root spaces of g which are one dimensional
and again the statement is clear. �

4.3. Example in type G2 when S is not saturated. On the other hand, let s ∼= gl2 ⊂ g be
the parabolic subalgebra of g with roots±α2. ThenR = {±δ,±2δ,±3δ}. Moreover, g±kδ is
the irreducible s-module of dimension 2, 1, or 2 (corresponding to k = 1, 2, or 3) on which
a fixed element in the centre of s acts as multiplication by ±k. Then, for S = {−δ, 2δ},
setting U := g−δ and W := g2δ, we arrive at exactly the same situation as at the end of
Section 2 above. In particular, (Sym·(M))s = C but there is no parabolic subalgebra pM
of g with reductive part s such thatM⊂ pM. �

4.4. Examples in types F4, E6, E7, and E8 with S saturated. Let g = F4,E6,E7, or E8.
We will construct a saturated set S such that (Sym·(M))s = C but there is no parabolic
subalgebra pM of g with reductive part s such thatM⊂ pM.

Denote the rank of g by n. Consider the extended Dynkin diagram of g. Removing the
node connected to the root α0 we obtain the Dynkin diagram of a semisimple subalgebra
m⊕ c of g of rank n where m ∼= A1 is the subalgebra of g with roots {±α0} and c is the sub-
algebra if g with simple roots obtained from the simple roots of g after removing the one
adjacent to α0. More precisely, we remove the roots α1, α2, α1, α8 when g = F4,E6,E7,E8

respectively. The respective subalgebras c ⊂ g are isomorphic to c ∼= C3,A5,D6, or E7

respectively. As an m–module g decomposes as

(4.1) g = (Adm⊗ trc)⊕ (trm⊗Adc)⊕ (V ⊗ U),

where Adm and Adc are the adjoint modules of m and c respectively; trm and trc —the re-
spective trivial modules; V is the natural m ∼= A1–module; and U is the c–module whose
highest weight is the fundamental weight of c corresponding to the simple root of c linked
to the removed node of the extended Dynkin diagram of g. In fact, for g = F4,E6,E7,E8,
the highest weight of c is ω3, ω3, ω6, ω7 respectively. Here the weights of U are given ac-
cording to the labeling conventions of c. For example, if β1, β2, β3 are the simple roots of
c = C3 in the case when g = F4, we have β1 = α4, β2 = α3, and β3 = α2.
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Set s = m + h. From the construction of s we conclude that t = hc, the Cartan subalgebra
of c. Furthermore, (4.1) impliesR = ∆c ∪ supp U, where supp U denotes the set of weights
of U and, for ν ∈ R the s = m⊕ hc–module gν is given by

gν ∼=

{
trm⊗ν if ν ∈ ∆c

V ⊗ ν if ν ∈ supp U.

Let ω be the highest weight of U and write ω = q1β1 + · · ·+qn−1βn−1 where β1, . . . , βn−1 are
the simple roots of c and qi ∈ Q+. Set S = {−ω, β1, . . . , βn−1}. ThenM = gω ⊕ (⊕n−1

i=1 gβi)
and

SymkM =
⊕

j+i1+···+in−1=k

Symj g−ω ⊗ Symi1 gβ1 ⊗ · · · ⊗ Symin−1 gβn−1 .

Moreover, Symj g−ω ⊗ Symi1 gβ1 ⊗ · · · ⊗ Symin−1 gβn−1 is an irreducible m–module which
is not trivial unless j = 0 and on which hc acts via −jω + i1β1 + · · · + in−1βn1 . This
implies that, for k > 0, (SymkM)s = 0 and hence (Sym·M)s = C. On the other hand, the
equation ω = q1β1 + · · · + qn−1βn−1 implies that there is no parabolic subalgebra pM of g
with reductive part s such thatM⊂ pM. �
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