POSITIVE SYSTEMS OF KOSTANT ROOTS

IVAN DIMITROV AND MIKE ROTH

ABSTRACT. Let \mathfrak{g} be a simple complex Lie algebra and let $\mathfrak{t} \subset \mathfrak{g}$ be a toral subalgebra of \mathfrak{g} . As a t-module \mathfrak{g} decomposes as

$$\mathfrak{g} = \mathfrak{s} \oplus ig(\oplus_{
u \in \mathcal{R}} \mathfrak{g}^
u ig)$$

where $\mathfrak{s} \subset \mathfrak{g}$ is the reductive part of a parabolic subalgebra of \mathfrak{g} and \mathcal{R} is the Kostant root system associated to t. When t is a Cartan subalgebra of \mathfrak{g} the decomposition above is nothing but the root decomposition of \mathfrak{g} with respect to t; in general the properties of \mathcal{R} resemble the properties of usual root systems. In this note we study the following problem: "Given a subset $\mathcal{S} \subset \mathcal{R}$, is there a parabolic subalgebra \mathfrak{p} of \mathfrak{g} containing $\mathcal{M} = \bigoplus_{\nu \in \mathcal{S}} \mathfrak{g}^{\nu}$ and whose reductive part equals \mathfrak{s} ?". Our main results is that, for a classical simple Lie algebra \mathfrak{g} and a saturated $\mathcal{S} \subset \mathcal{R}$, the condition $(\text{Sym}^+(\mathcal{M}))^{\mathfrak{s}} = \mathbf{C}$ is necessary and sufficient for the existence of such a \mathfrak{p} . In contrast, we show that this statement is no longer true for the exceptional Lie algebras F_4, E_6, E_7 , and E_8 . Finally, we discuss the problem in the case when \mathcal{S} is not saturated.

Keywords: Parabolic subalgebras, Kostant root systems, Positive roots.

1. INTRODUCTION

1.1. Let \mathfrak{g} be a simple complex Lie algebra and let $\mathfrak{h} \subset \mathfrak{g}$ be a Cartan subalgebra. The root decomposition of \mathfrak{g} with respect to \mathfrak{h} is

$$\mathfrak{g} = \mathfrak{h} \oplus \big(\oplus_{\alpha \in \Delta} \mathfrak{g}^{\alpha} \big)$$

where, for any $\alpha \in \mathfrak{h}^*$,

$$\mathfrak{g}^{\alpha} := \{ x \in \mathfrak{g} \mid [t, x] = \alpha(t)x \text{ for every } t \in \mathfrak{h} \}$$
 and $\Delta = \{ \alpha \in \mathfrak{h}^* \setminus \{0\} \mid \mathfrak{g}^{\alpha} \neq 0 \}$

The Borel subalgebras of \mathfrak{g} containing \mathfrak{h} are in a bijection with the *positive systems* $\Delta^+ \subset \Delta$, i.e., the subsets Δ^+ satisfying the following properties: (i) $\Delta = \Delta^+ \cup (-\Delta^+)$, (ii) $\Delta^+ \cap (-\Delta^+) = \emptyset$, and (iii) $\alpha, \beta \in \Delta^+, \alpha + \beta \in \Delta$ implies $\alpha + \beta \in \Delta^+$. Positive systems of roots represent a much studied and well-understood topic in the theory of semisimple Lie algebras. Here is a particular problem that arises in various situations: "Given a subset $\Phi \subset \Delta$, determine if there is a positive system Δ^+ containing Φ ". The answer is that such a positive system exists if and only if the semigroup generated by Φ does not contain 0. The aim of this paper is to address the analogous problem in a more general situation.

1.2. Let $\mathfrak{t} \subset \mathfrak{g}$ be a toral subalgebra of \mathfrak{g} , that is, a commutative subalgebra of semisimple elements. As a t-module \mathfrak{g} decomposes as

²⁰¹⁰ Mathematics Subject Classification. Primary 17B22; Secondary 17B20, 17B25.

Research of I. Dimitrov and M. Roth was partially supported by NSERC grants.

$$\mathfrak{g} = \mathfrak{s} \oplus \big(\oplus_{\nu \in \mathcal{R}} \mathfrak{g}^{\nu} \big)$$

where

 $\mathfrak{g}^{\nu} := \{ x \in \mathfrak{g} \, | \, [t, x] = \nu(t) x \text{ for every } t \in \mathfrak{t} \}, \quad \mathfrak{s} = \mathfrak{g}^0, \quad \text{and} \quad \mathcal{R} = \{ \nu \in \mathfrak{t}^* \setminus \{0\} \, | \, \mathfrak{g}^{\nu} \neq 0 \}.$

We refer to \mathcal{R} as the t-root system of \mathfrak{g} , to the elements of \mathcal{R} as the t-roots, and to the spaces \mathfrak{g}^{ν} as the t-root spaces. Often we will drop the reference to t when it is clear from the context.

To explain the relation between the decompositions (1.1) and (1.2), extend t to a Cartan subalgebra \mathfrak{h} . The inclusion $\mathfrak{t} \subset \mathfrak{h}$ then induces a surjection $\mathfrak{h}^* \to \mathfrak{t}^*$. The t-root system \mathcal{R} consists of the nonzero elements of the image of Δ under this map, and for any $\nu \in \mathcal{R}$ the t-root space \mathfrak{g}^{ν} is the sum of the \mathfrak{h} -root spaces \mathfrak{g}^{α} such that $\alpha \mapsto \nu$. Since t may be an arbitrary complex subspace of \mathfrak{h} we see that, in contrast to the case of an \mathfrak{h} -decomposition, t-root spaces may be more than one-dimensional, and t-roots may be complex multiples of one another. (For \mathfrak{h} -root systems, $\alpha, r\alpha \in \Delta$ implies that $r = \pm 1$.)

1.3. The subalgebra \mathfrak{s} is a reductive subalgebra of \mathfrak{g} and, moreover, \mathfrak{s} is a reductive part of a parabolic subalgebra of \mathfrak{g} . Note that \mathfrak{t} is contained in $\mathcal{Z}(\mathfrak{s})$, the centre of \mathfrak{s} . In the case when $\mathfrak{t} = \mathcal{Z}(\mathfrak{s})$ the properties of \mathcal{R} and the decomposition (1.2) were studied by Kostant, [K]. Kostant proved that, for every $\nu \in \mathcal{R}$, \mathfrak{g}^{ν} is an irreducible \mathfrak{s} -module and showed that \mathcal{R} inherits many of the properties of Δ . To recognize Kostant's contribution, we refer to the elements of \mathcal{R} as "Kostant roots" in the title, however we use the shorter "t-roots" in the text.

1.4. To describe and motivate the problem we address in this note, we assume in this subsection that $\mathfrak{t} = \mathcal{Z}(\mathfrak{s})$. We caution the reader that not all of equivalences in the following discussion hold when $\mathfrak{t} \neq \mathcal{Z}(\mathfrak{s})$.

One introduces the notion of a positive system $\mathcal{R}^+ \subset \mathcal{R}$ exactly as above: (i) $\mathcal{R} = \mathcal{R}^+ \cup (-\mathcal{R}^+)$, (ii) $\mathcal{R}^+ \cap (-\mathcal{R}^+) = \emptyset$, and (iii) $\mu, \nu \in \mathcal{R}^+$, $\mu + \nu \in \mathcal{R}$ implies $\mu + \nu \in \mathcal{R}^+$. Proposition VI.1.7.20 in [B] implies that positive systems in \mathcal{R} are in a bijection with parabolic subalgebras of \mathfrak{g} whose reductive part is \mathfrak{s} . The paper [DFG] contains a detailed discussion (in slightly different terms) of positive systems \mathcal{R}^+ . In particular, a result of [DFG] implies that a subset $\mathcal{T} \subset \mathcal{R}$ is a positive system if and only if there exists a linear function $\varphi : V \to \mathbf{R}$, V being the real vector space spanned by \mathcal{R} , such that ker $\varphi \cap \mathcal{T} = \emptyset$ and $\nu \in \mathcal{T}$ if and only if $\varphi(\nu) > 0$. Note that every positive system \mathcal{R}^+ is *saturated*, i.e., $\nu \in \mathcal{R}^+$, $r \in \mathbf{Q}_+$ and $r\nu \in \mathcal{R}$ imply $r\nu \in \mathcal{R}^+$.

In a previous paper [DR] we came across the analogue of the problem mentioned above: "Given a subset $S \subset \mathcal{R}$ determine whether there is a positive system \mathcal{R}^+ containing S". An obvious necessary and sufficient condition (equivalent to the existence of the linear function φ above) for the existence of a positive system \mathcal{R}^+ containing S is the requirement that the semigroup generated by S does not contain 0. Unfortunately, this combinatorial condition is not easy to verify. On the other hand, in our intended application in [DR], the condition $(\text{Sym}^{-}(\mathcal{M}))^{\mathfrak{s}} = \mathbb{C}$ where $\mathcal{M} = \bigoplus_{\nu \in S} \mathfrak{g}^{\nu}$, arose naturally in the context of Geometric Invariant Theory. This latter condition is necessary for the existence of a positive system \mathcal{R}^+ as above. To see this, note that $(\text{Sym}^{-}(\mathcal{M}))^{\mathfrak{s}}$ always contains at least the constants \mathbb{C} , the inclusion $\mathfrak{t} \subset \mathfrak{s}$ implies $(\text{Sym}^{-}(\mathcal{M}))^{\mathfrak{s}} \subset (\text{Sym}^{-}(\mathcal{M}))^{\mathfrak{t}}$, and the condition that the semigroup generated by S does not contain 0 is equivalent to $(\text{Sym}^{-}(\mathcal{M}))^{\mathfrak{t}} = \mathbb{C}$. In fact, there is a stronger necessary condition for S to be contained in a positive system. Since \mathcal{R}^+ is saturated, if $S \subset \mathcal{R}^+$ then $\overline{S} \subset \mathcal{R}^+$, where \overline{S} denotes the saturation of S, i.e., $\overline{S} = \mathbf{Q}_+ S \cap \mathcal{R}$. Set $\overline{\mathcal{M}} := \bigoplus_{\nu \in \overline{S}} \mathfrak{g}^{\nu}$. It is easy to see that $(\text{Sym}^{\cdot}(\mathcal{M}))^{\mathfrak{t}} = \mathbf{C}$ if and only if $(\text{Sym}^{\cdot}(\overline{\mathcal{M}}))^{\mathfrak{t}} = \mathbf{C}$ and that we have the inclusions $(\text{Sym}^{\cdot}(\mathcal{M}))^{\mathfrak{s}} \subset (\text{Sym}^{\cdot}(\overline{\mathcal{M}}))^{\mathfrak{s}} \subset (\text{Sym}^{\cdot}(\overline{\mathcal{M}}))^{\mathfrak{s}} = \mathbf{C}$.

The goal of this note is to investigate whether either of the conditions $(\text{Sym}(\mathcal{M}))^{\mathfrak{s}} = \mathbf{C}$ or $(\text{Sym}(\overline{\mathcal{M}}))^{\mathfrak{s}} = \mathbf{C}$ is sufficient for the existence of a positive system \mathcal{R}^+ containing \mathcal{M} . It turns out that $(\text{Sym}(\mathcal{M}))^{\mathfrak{s}} = \mathbf{C}$ is sufficient if and only if \mathfrak{g} is of type A or D and $(\text{Sym}(\overline{\mathcal{M}}))^{\mathfrak{s}} = \mathbf{C}$ is sufficient if and only if \mathfrak{g} is classical or $\mathfrak{g} = G_2$.

Using the connection between positive systems and linear functions φ (valid when $\mathfrak{t} = \mathcal{Z}(\mathfrak{s})$), finding a positive system containing \mathcal{M} is the same as finding a parabolic subalgebra $\mathfrak{p}_{\mathcal{M}}$ containing \mathcal{M} with reductive part \mathfrak{s} , and we will state our main result in this form. We will also state whether \mathcal{S} is saturated or not, rather than using the notation $\overline{\mathcal{M}}$. In the general case when $\mathfrak{t} \neq \mathcal{Z}(\mathfrak{s})$, the existence of positive systems containing \mathcal{M} is not equivalent to the existence of such a parabolic $\mathfrak{p}_{\mathcal{M}}$. However, our result, as stated below in terms of $\mathfrak{p}_{\mathcal{M}}$, is still valid in this case.

1.5. Main Theorem: Let \mathfrak{g} be a simple Lie algebra, $\mathfrak{t} \subset \mathfrak{g}$ a toral subalgebra, \mathfrak{s} the centralizer of \mathfrak{t} , \mathcal{R} the set of \mathfrak{t} -roots, $\mathcal{S} \subset \mathcal{R}$, and set $\mathcal{M} = \bigoplus_{\nu \in \mathcal{S}} \mathfrak{g}^{\nu}$.

- (a) Assume that (Sym^{*}(M))^{\$} = C. If g is of type A or D or if S is saturated and g is of type B, C, or G₂ then there exists a parabolic subalgebra p_M with reductive part \$\$\$ such that M ⊂ p_M.
- (*b*) If \mathfrak{g} is not of type A or D, there exist S satisfying the condition that $(\text{Sym}^{\cdot}(\mathcal{M}))^{\mathfrak{s}} = \mathbf{C}$ such that no such parabolic $\mathfrak{p}_{\mathcal{M}}$ exists. Moreover, if \mathfrak{g} is F_4 , E_6 , E_7 , or E_8 , then S can be chosen to be saturated.

1.6. Reduction to $\mathfrak{t} = \mathcal{Z}(\mathfrak{s})$. In the main theorem we do not require that $\mathfrak{t} = \mathcal{Z}(\mathfrak{s})$. However, the general case reduces to this case as follows: Set $\mathfrak{t}' := \mathcal{Z}(\mathfrak{s})$ and let \mathcal{R}' be the set of \mathfrak{t}' -roots. The natural projection $\pi : (\mathfrak{t}')^* \to \mathfrak{t}^*$ induces a surjection of \mathcal{R}' onto \mathcal{R} . Set $\mathcal{S}' := \pi^{-1}(\mathcal{S})$ and notice that

$$\mathcal{M} = \oplus_{\nu \in \mathcal{S}} \mathfrak{g}^{\nu} = \oplus_{\nu' \in \mathcal{S}'} \mathfrak{g}^{\nu'},$$

and that if S is saturated, so is S'. Moreover, the centralizer of \mathfrak{t}' is again \mathfrak{s} . Thus in proving that $(\operatorname{Sym}^{\mathfrak{c}}(\mathcal{M}))^{\mathfrak{s}} = \mathbb{C}$ is a sufficient condition we may assume that $\mathfrak{t} = \mathcal{Z}(\mathfrak{s})$. In the cases when we are proving that $(\operatorname{Sym}^{\mathfrak{c}}(\mathcal{M}))^{\mathfrak{s}} = \mathbb{C}$ is not sufficient, we provide examples in which $\mathfrak{t} = \mathcal{Z}(\mathfrak{s})$.

For the rest of the paper we assume that $\mathfrak{t} = \mathcal{Z}(\mathfrak{s})$.

1.7. Organization and Conventions. In section 2 we describe explicitly all t-root systems and the respective t-root spaces for each of the classical simple Lie algebras. In section 3 we first prove the existence of $\mathfrak{p}_{\mathcal{M}}$ when \mathfrak{g} is classical and \mathcal{S} is saturated. We then handle the case of non-saturated \mathcal{S} in types A and D, and finish the section by giving examples in types B and C of non-saturated \mathcal{S} satisfying the condition $(\text{Sym}^{-}(\mathcal{M}))^{\mathfrak{s}} = \mathbf{C}$ for which no parabolic subalgebra $\mathfrak{p}_{\mathcal{M}}$ exists. In section 4 we first treat the case when \mathfrak{g} is of type G_2 , proving the result when \mathcal{S} is saturated and giving an example where \mathcal{S} is non-saturated. We then construct examples in types F_4 , E_6 , E_7 , and E_8 of saturated \mathcal{S}

for which $(\text{Sym}^{\cdot}(\mathcal{M}))^{\mathfrak{s}} = \mathbf{C}$ and for which no parabolic subalgebra $\mathfrak{p}_{\mathcal{M}}$ exists. That is, in section 3 we establish all parts of the theorem dealing with classical Lie algebras, and in section 4 we establish all parts dealing with the exceptional Lie algebras.

Throughout the paper we work over the field of complex numbers C. All Lie algebras, modules, etc., are over C unless explicitly stated otherwise. The notation \subset includes the possibility of equality.

2. t-roots and t-root spaces for classical Lie algebras ${\mathfrak g}.$

2.1. First we describe the parabolic subalgebras and the corresponding sets \mathcal{R} for the classical Lie algebras. For convenience of notation we will work with the reductive Lie algebra \mathfrak{gl}_n instead of \mathfrak{sl}_n . For the rest of this section \mathfrak{g} is a classical simple Lie algebra of type B, C, or D or $\mathfrak{g} = \mathfrak{gl}_n$. Moreover, we fix a Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$. For a comprehensive source on simple complex Lie algebras we refer the reader to [B]. For a treatment of parabolic subalgebras of \mathfrak{g} containing a fixed Cartan subalgebra \mathfrak{h} , the reader may also consult [DP].

2.2. Let $\mathcal{P} = \{I_1, \ldots, I_k\}$ be a partition of $\{1, \ldots, n\}$. We say that \mathcal{P} is *totally ordered* if we have given a total order on the set $\{I_1, \ldots, I_k\}$. We write $\mathcal{P}(i)$ for the part of \mathcal{P} which contains *i*. The inequalities $\mathcal{P}(i) \prec \mathcal{P}(j)$ and $\mathcal{P}(i) \preceq \mathcal{P}(j)$ are taken in the total order of the parts of \mathcal{P} . For the standard basis $\{\varepsilon_1, \ldots, \varepsilon_n\}$ of \mathfrak{h}^* we denote the dual basis of \mathfrak{h} by $\{h_1, \ldots, h_n\}$. A total order on the set $\{\pm \delta_1, \ldots, \pm \delta_k\}$ is *compatible with multiplication by* -1 if, for $x, y \in \{\pm \delta_1, \ldots, \pm \delta_k\}$, $x \prec y$ implies $-y \prec -x$. To simplify notation we adopt the convention that B_1 , respectively C_1 , is a subalgebra of $\mathfrak{g} = B_n$, respectively $\mathfrak{g} = C_n$, isomorphic to A_1 and whose roots are short, respectively long roots, of \mathfrak{g} . The subalgebras $D_2 = A_1 \oplus A_1$ and $D_3 = A_3$ of D_n have similar meaning.

Let \mathfrak{g} be of type $X_n = A_n$, B_n , C_n , or D_n and let \mathfrak{s} be a subalgebra of \mathfrak{g} which is the reductive part of a parabolic subalgebra of \mathfrak{g} . Every simple ideal of \mathfrak{s} is isomorphic to A_r or X_r for some r. Furthermore, if \mathfrak{g} is not of type A_n , \mathfrak{s} has at most one simple ideal of type X_r . For \mathfrak{g} of type $X_n = B_n$, C_n , or D_n the parabolic subalgebras of \mathfrak{g} are split into two types depending on whether their reductive parts contain (Type II) or do not contain (Type I) a simple ideal of type X_r (including B_1 , C_1 , D_2 , or D_3).

In the description of the combinatorics of the simple classical Lie algebras below, the formulas for their parabolic subalgebras \mathfrak{p} containing a fixed reductive part \mathfrak{s} look very uniform (e.g. 11). In some instances this is misleading since the formulas do not explicitly indicate the subalgebra \mathfrak{s} which, however, is an integral part of the structure of \mathfrak{p} .

We now list the combinatorial descriptions of the parabolic subalgebras and related data in the classical cases.

2.3. $\mathfrak{g} = \mathfrak{gl}_n$.

- **1.** The roots of \mathfrak{g} are: $\Delta = \{\varepsilon_i \varepsilon_j \mid 1 \leq i \neq j \leq n\}$
- **2.** Parabolic subalgebras of g are in one-to-one correspondence with:

totally ordered partitions $\mathcal{P} = (I_1, \ldots, I_k)$ of $\{1, \ldots, n\}$.

Given a totally ordered partition \mathcal{P} ,

- **3.** The roots of $\mathfrak{p}_{\mathcal{P}}$ are $\{\varepsilon_i \varepsilon_j \mid i \neq j, \mathcal{P}(i) \preceq \mathcal{P}(j)\}$
- **4.** The roots of $\mathfrak{s}_{\mathcal{P}}$ are $\{\varepsilon_i \varepsilon_j \mid i \neq j, \mathcal{P}(i) = \mathcal{P}(j)\}$
- **5.** $\mathfrak{s}_{\mathcal{P}} = \bigoplus_i \mathfrak{s}_{\mathcal{P}}^i$, where $\mathfrak{s}_{\mathcal{P}}^i \cong \mathfrak{gl}_{|I_i|}$;
- **6.** The Cartan subalgebra of $\mathfrak{s}_{\mathcal{P}}^i$ is spanned by $\{h_j\}_{j \in I_i}$
- **7.** The roots of $\mathfrak{s}_{\mathcal{P}}^i$ are $\{\varepsilon_j \varepsilon_l \mid j \neq \overline{l} \in I_i\}$.
- 8. $\mathfrak{t}_{\mathcal{P}}$ has a basis $\{t_1, \ldots, t_k\}$ with $t_i = \frac{1}{|I_i|} \sum_{j \in I_i} h_j$
- If $\{\delta_1, \ldots, \delta_k\}$ is the basis of \mathfrak{t}^* dual to $\{t_1, \ldots, t_k\}$ then
 - **9.** $\mathcal{R} = \{\delta_i \delta_j \mid 1 \leq i \neq j \leq k\}.$
- **10.** For $\nu = \delta_i \delta_j \in \mathcal{R}$, $\mathfrak{g}^{\nu} \cong V_i \otimes V_j^*$, where V_i and V_j^* are the natural $\mathfrak{s}_{\mathcal{P}}^i$ -module and the dual of the natural $\mathfrak{s}_{\mathcal{P}}^j$ -module respectively, all other factors of $\mathfrak{s}_{\mathcal{P}}$ acting trivially.
- **11.** The parabolic subalgebras of \mathfrak{g} whose reductive part is $\mathfrak{s}_{\mathcal{P}}$ are in a bijection with the ordered partitions \mathcal{Q} of $\{1, \ldots, n\}$ whose parts are the same as the parts of \mathcal{P} or, equivalently, with total orders on the set $\{\delta_1, \ldots, \delta_k\}$.

2.4. $\mathfrak{g} = B_n$

- **1.** The roots of \mathfrak{g} are: $\Delta = \{\pm \varepsilon_i \pm \varepsilon_j, \pm \varepsilon_i \mid 1 \leq i \neq j \leq n\}.$
- **2.** Parabolic subalgebras of g are in one-to-one correspondence with:

Type I: pairs (\mathcal{P}, σ) , where $\mathcal{P} = (I_1, \ldots, I_k)$ is a totally ordered partition of $\{1, \ldots, n\}$ and $\sigma : \{1, \ldots, n\} \rightarrow \{\pm 1\}$ is a choice of signs.

Type II: pairs (\mathcal{P}, σ) , where $\mathcal{P} = (I_0, I_1, \dots, I_k)$ is a totally ordered partition of $\{1, \dots, n\}$ with largest element I_0 and $\sigma \colon \{1, \dots, n\} \setminus I_0 \to \{\pm 1\}$ is a choice of signs.

<u>In Type I:</u>

3. The roots of $\mathfrak{p}_{(\mathcal{P},\sigma)}$ are

$$\{\sigma(i)\varepsilon_i - \sigma(j)\varepsilon_j \mid i \neq j, \mathcal{P}(i) \preceq \mathcal{P}(j)\} \cup \{\sigma(i)\varepsilon_i + \sigma(j)\varepsilon_j, \sigma(i)\varepsilon_i \mid i \neq j\}$$

- **4.** The roots of $\mathfrak{s}_{(\mathcal{P},\sigma)}$ are $\{\sigma(i)\varepsilon_i \sigma(j)\varepsilon_j \mid i \neq j, \mathcal{P}(i) = \mathcal{P}(j)\}$.
- **5.** $\mathfrak{s}_{(\mathcal{P},\sigma)} = \bigoplus_i \mathfrak{s}^i_{(\mathcal{P},\sigma)}$, where $\mathfrak{s}^i_{(\mathcal{P},\sigma)} \cong \mathfrak{gl}_{|\mathcal{I}_i|}$.
- **6.** The Cartan subalgebra of $\mathfrak{s}_{\mathcal{P}}^i$ is spanned by $\{\sigma(j)h_j\}_{j\in I_i}$
- **7.** The roots of $\mathfrak{s}_{\mathcal{P}}^i$ are $\{\sigma(j)\varepsilon_j \sigma(l)\varepsilon_l \mid j \neq l \in \mathbf{I}_i\}$.
- 8. $\mathfrak{t}_{(\mathcal{P},\sigma)}$ has a basis $\{t_1,\ldots,t_k\}$ with $t_i = \frac{1}{|I_i|} \sum_{j \in I_i} \sigma(j) h_j$.

If $\{\delta_1, \ldots, \delta_k\}$ the basis of \mathfrak{t}^* dual to $\{t_1, \ldots, t_k\}$ then

9.
$$\mathcal{R} = \{\pm \delta_i \pm \delta_j, \pm \delta_i \mid 1 \leq i \neq j \leq k\} \cup \{\pm 2\delta_i \mid |I_i| > 1\}.$$

10. For $\nu \in \mathcal{R}$,
(a) $\mathfrak{g}^{\nu} \cong V_i^{\pm} \otimes V_j^{\pm}$ if $\nu = \pm \delta_i \pm \delta_j$,
(b) $\mathfrak{g}^{\nu} \cong V_i^{\pm}$ if $\nu = \pm \delta_i$, and
(c) $\mathfrak{g}^{\nu} \cong \Lambda^2 V_i^{\pm}$ if $\nu = \pm 2\delta_i$,

where V_i^+ and V_i^- respectively are the natural $\mathfrak{s}^i_{(\mathcal{P},\sigma)}$ -module and its dual, and all other factors of $\mathfrak{s}_{(\mathcal{P},\sigma)}$ act trivially.

11. The parabolic subalgebras of \mathfrak{g} whose reductive part is $\mathfrak{s}_{\mathcal{P},\sigma}$ are in a bijection with the pairs (\mathcal{Q},τ) such that the parts of \mathcal{Q} are the same as the parts of \mathcal{P} and $\sigma_{|I_i} = \pm \tau_{|I_i}$ for every part I_i or, equivalently, with total orders on the set $\{\pm \delta_1, \ldots, \pm \delta_k\}$ compatible with multiplication by -1.

<u>In Type II:</u>

3. The roots of $\mathfrak{p}_{(\mathcal{P},\sigma)}$ are

$$\begin{aligned} \{\sigma(i)\varepsilon_{i} - \sigma(j)\varepsilon_{j} \mid i \neq j, \mathcal{P}(i) \leq \mathcal{P}(j) \prec \mathrm{I}_{0}\} \cup \{\pm\varepsilon_{i} \pm \varepsilon_{j}, \pm\varepsilon_{i} \mid i \neq j, i \in \mathrm{I}_{0}, j \in \mathrm{I}_{0}\} \\ \cup \{\sigma(i)\varepsilon_{i} + \sigma(j)\varepsilon_{j}, \sigma(i)\varepsilon_{i} \mid i \neq j, i \notin \mathrm{I}_{0}, j \notin \mathrm{I}_{0}\} \cup \{\sigma(i)\varepsilon_{i} \pm \varepsilon_{j} \mid i \notin \mathrm{I}_{0}, j \in \mathrm{I}_{0}\} \end{aligned}$$

4. The roots of $\mathfrak{s}_{(\mathcal{P},\sigma)}$ are

$$\{\sigma(i)\varepsilon_i - \sigma(j)\varepsilon_j \mid i \neq j, \mathcal{P}(i) = \mathcal{P}(j) \prec \mathrm{I}_0\} \cup \{\pm\varepsilon_i \pm \varepsilon_j, \pm\varepsilon_i \mid i \neq j \in \mathrm{I}_0\}.$$

- **5.** $\mathfrak{s}_{(\mathcal{P},\sigma)} = \bigoplus_i \mathfrak{s}^i_{(\mathcal{P},\sigma)}$, where $\mathfrak{s}^0_{(\mathcal{P},\sigma)} \cong B_{|I_0|}$ and $\mathfrak{s}^i_{(\mathcal{P},\sigma)} \cong \mathfrak{gl}_{|I_i|}$ for i > 0.
- 6. The Cartan subalgebra of $\mathfrak{s}_{\mathcal{P}}^{i}$ is spanned by $\{h_{j}\}_{j\in I_{0}}$ for i = 0 and $\{\sigma(j)h_{j}\}_{j\in I_{i}}$ for i > 0.
- **7.** The roots of $\mathfrak{s}_{\mathcal{P}}^{i}$ are $\{\pm \varepsilon_{j} \pm \varepsilon_{l}, \pm \varepsilon_{j} \mid j \neq l \in I_{0}\}$ for i = 0 and $\{\sigma(j)\varepsilon_{j} \sigma(l)\varepsilon_{l} \mid j \neq l \in I_{i}\}$ for i > 0.
- 8. $\mathfrak{t}_{(\mathcal{P},\sigma)}$ has a basis $\{t_1,\ldots,t_k\}$ with $t_i = \frac{1}{|I_i|} \sum_{j \in I_i} \sigma(j) h_j$.

If $\{\delta_1, \ldots, \delta_k\}$ is the basis of \mathfrak{t}^* dual to $\{t_1, \ldots, t_k\}$ then

9.
$$\mathcal{R} = \{\pm \delta_i \pm \delta_j, \pm \delta_i \mid 1 \leq i \neq j \leq k\} \cup \{\pm 2\delta_i \mid |I_i| > 1\}.$$

10. For $\nu \in \mathcal{R}$,
(a) $\mathfrak{g}^{\nu} \cong V_i^{\pm} \otimes V_j^{\pm}$ if $\nu = \pm \delta_i \pm \delta_j$,
(b) $\mathfrak{g}^{\nu} \cong V_i^{\pm} \otimes V_0$ if $\nu = \pm \delta_i$, and
(c) $\mathfrak{g}^{\nu} \cong \Lambda^2 V_i^{\pm}$ if $\nu = \pm 2\delta_i$

where V_i^+ and V_i^- denote the natural $\mathfrak{s}_{(\mathcal{P},\sigma)}^i$ -module and its dual respectively for i > 0, V_0 denotes the natural $\mathfrak{s}_{(\mathcal{P},\sigma)}^0$ -module, and all other factors of $\mathfrak{s}_{(\mathcal{P},\sigma)}$ act trivially. Note that, if $\mathfrak{s}_{(\mathcal{P},\sigma)} = B_1 \cong \mathfrak{sl}_2$, then V_0 is the three dimensional irreducible $\mathfrak{s}_{(\mathcal{P},\sigma)}$ -module.

11. The parabolic subalgebras of \mathfrak{g} whose reductive part is $\mathfrak{s}_{\mathcal{P},\sigma}$ are in a bijection with the pairs (\mathcal{Q},τ) such that the parts of \mathcal{Q} are the same as the parts of \mathcal{P} , I_0 is the largest element of \mathcal{Q} , and $\sigma_{|I_i} = \pm \tau_{|I_i}$ for every part $I_i \neq I_0$ or, equivalently, with total orders on the set $\{\pm \delta_1, \ldots, \pm \delta_k\}$ compatible with multiplication by -1.

2.5. $\mathfrak{g} = \mathbf{C}_n$

- **1.** The roots of \mathfrak{g} are: $\Delta = \{\pm \varepsilon_i \pm \varepsilon_j, \pm 2\varepsilon_i \mid 1 \leq i \neq j \leq n\}.$
- 2. Parabolic subalgebras of g are in one-to-one correspondence with:

Type I: pairs (\mathcal{P}, σ) , where $\mathcal{P} = (I_1, \ldots, I_k)$ is a totally ordered partition of $\{1, \ldots, n\}$ and $\sigma : \{1, \ldots, n\} \rightarrow \{\pm 1\}$ is a choice of signs.

Type II: pairs (\mathcal{P}, σ) , where $\mathcal{P} = (I_0, I_1, \dots, I_k)$ is a totally ordered partition of $\{1, \dots, n\}$ with largest element I_0 and $\sigma \colon \{1, \dots, n\} \setminus I_0 \to \{\pm 1\}$ is a choice of signs.

<u>In Type I:</u>

3. The roots of $\mathfrak{p}_{(\mathcal{P},\sigma)}$ are

$$\{\sigma(i)\varepsilon_i - \sigma(j)\varepsilon_j \mid i \neq j, \mathcal{P}(i) \preceq \mathcal{P}(j)\} \cup \{\sigma(i)\varepsilon_i + \sigma(j)\varepsilon_j, 2\sigma(i)\varepsilon_i \mid i \neq j\}$$

- **4.** The roots of $\mathfrak{s}_{(\mathcal{P},\sigma)}$ are $\{\sigma(i)\varepsilon_i \sigma(j)\varepsilon_j \mid i \neq j, \mathcal{P}(i) = \mathcal{P}(j)\}$.
- **5.** $\mathfrak{s}_{(\mathcal{P},\sigma)} = \bigoplus_i \mathfrak{s}^i_{(\mathcal{P},\sigma)}$, where $\mathfrak{s}^i_{(\mathcal{P},\sigma)} \cong \mathfrak{gl}_{|I_i|}$.
- **6.** The Cartan subalgebra of $\mathfrak{s}_{\mathcal{P}}^i$ is spanned by $\{\sigma(j)h_j\}_{j\in I_i}$.
- **7.** The roots of $\mathfrak{s}^{i}_{(\mathcal{P},\sigma)}$ are $\{\sigma(j)\varepsilon_{j} \sigma(l)\varepsilon_{l} \mid j \neq l \in I_{i}\}$.
- 8. $\mathfrak{t}_{(\mathcal{P},\sigma)}$ has a basis $\{t_1,\ldots,t_k\}$ with $t_i = \frac{1}{|I_i|} \sum_{j \in I_i} \sigma(j) h_j$.

If $\{\delta_1, \ldots, \delta_k\}$ is the basis of \mathfrak{t}^* dual to $\{t_1, \ldots, t_k\}$ then

- **9.** $\mathcal{R} = \{\pm \delta_i \pm \delta_j, \pm 2\delta_i \mid 1 \leq i \neq j \leq k\}.$ **10.** For $\nu \in \mathcal{R}$,
 - (a) $\mathfrak{g}^{\nu} \cong V_i^{\pm} \otimes V_j^{\pm}$ if $\nu = \pm \delta_i \pm \delta_j$.
 - (b) $\mathfrak{g}^{\nu} \cong \operatorname{Sym}^2 \operatorname{V}_i^{\pm}$ if for $\nu = \pm 2\delta_i$.

where V_i^+ and V_i^- are the natural $\mathfrak{s}^i_{(\mathcal{P},\sigma)}$ -module and its dual, and all other factors of $\mathfrak{s}_{(\mathcal{P},\sigma)}$ act trivially.

11. The parabolic subalgebras of \mathfrak{g} whose reductive part is $\mathfrak{s}_{\mathcal{P},\sigma}$ are in a bijection with the pairs (\mathcal{Q},τ) such that the parts of \mathcal{Q} are the same as the parts of \mathcal{P} and $\sigma_{|I_i} = \pm \tau_{|I_i}$ for every part I_i or, equivalently, with total orders on the set $\{\pm \delta_1, \ldots, \pm \delta_k\}$ compatible with multiplication by -1.

<u>In Type II:</u>

3. The roots of $\mathfrak{p}_{(\mathcal{P},\sigma)}$ are

$$\{ \sigma(i)\varepsilon_i - \sigma(j)\varepsilon_j \mid i \neq j, \mathcal{P}(i) \preceq \mathcal{P}(j) \prec \mathrm{I}_0 \} \cup \{ \pm \varepsilon_i \pm \varepsilon_j, \pm 2\varepsilon_i \mid i \neq j, i \in \mathrm{I}_0, j \in \mathrm{I}_0 \} \cup \\ \{ \sigma(i)\varepsilon_i + \sigma(j)\varepsilon_j, \sigma(i)2\varepsilon_i \mid i \neq j, i \notin \mathrm{I}_0, j \notin \mathrm{I}_0 \} \cup \{ \sigma(i)\varepsilon_i \pm \varepsilon_j \mid i \notin \mathrm{I}_0, j \in \mathrm{I}_0 \}$$

4. The roots of $\mathfrak{s}_{(\mathcal{P},\sigma)}$ are

$$\{\sigma(i)\varepsilon_i - \sigma(j)\varepsilon_j \mid i \neq j, \mathcal{P}(i) = \mathcal{P}(j) \prec \mathrm{I}_0\} \cup \{\pm\varepsilon_i \pm \varepsilon_j, \pm 2\varepsilon_i \mid i \neq j \in \mathrm{I}_0\}.$$

- **5.** $\mathfrak{s}_{(\mathcal{P},\sigma)} = \bigoplus_{i=0}^k \mathfrak{s}_{(\mathcal{P},\sigma)}^i$, where $\mathfrak{s}_{(\mathcal{P},\sigma)}^0 \cong C_{|I_0|}$ and $\mathfrak{s}_{(\mathcal{P},\sigma)}^i \cong \mathfrak{gl}_{|I_i|}$ for i > 0.
- 6. The Cartan subalgebra of $\mathfrak{s}^{i}_{(\mathcal{P},\sigma)}$ is spanned by $\{h_j\}_{j\in I_0}$ for i=0 and $\{\sigma(j)h_j\}_{j\in I_i}$ for i>0.
- **7.** The roots of $\mathfrak{s}^{i}_{(\mathcal{P},\sigma)}$ are $\{\pm \varepsilon_{j} \pm \varepsilon_{l}, \pm 2\varepsilon_{j} \mid j \neq l \in I_{0}\}$ for i = 0 and $\{\sigma(j)\varepsilon_{j} \sigma(l)\varepsilon_{l} \mid j \neq l \in I_{i}\}$ for i > 0.
- 8. $\mathfrak{t}_{(\mathcal{P},\sigma)}$ has a basis $\{t_1,\ldots,t_k\}$ with $t_i = \frac{1}{|I_i|} \sum_{j \in I_i} \sigma(j) h_j$

If $\{\delta_1, \ldots, \delta_k\}$ is the basis of \mathfrak{t}^* dual to $\{t_1, \ldots, t_k\}$ then

- **9.** $\mathcal{R} = \{\pm \delta_i \pm \delta_j, \pm \delta_i, \pm 2\delta_i \mid 1 \leq i \neq j \leq k\}.$ **10.** For $\nu \in \mathcal{R}$,
 - (a) $\mathfrak{g}^{\nu} \cong \mathrm{V}_{i}^{\pm} \otimes \mathrm{V}_{j}^{\pm}$ if $\nu = \pm \delta_{i} \pm \delta_{j}$,
 - (b) $\mathfrak{g}^{\nu} \cong \mathrm{V}_{i}^{\pm} \otimes \mathrm{V}_{0}^{i}$ if $\nu = \pm \delta_{i}$,

(c) \mathfrak{g}^{ν} is isomorphic to $\operatorname{Sym}^2 \operatorname{V}_i^{\pm}$ if $\nu = \pm 2\delta_i$,

where V_i^+ and V_i^- denote the natural $\mathfrak{s}_{(\mathcal{P},\sigma)}^i$ -module and its dual for i > 0, V_0 is the natural $\mathfrak{s}_{(\mathcal{P},\sigma)}^0$ -module, and where all other factors of $\mathfrak{s}_{(\mathcal{P},\sigma)}$ act trivially. Note that, if $\mathfrak{s}_{(\mathcal{P},\sigma)} = C_1 \cong \mathfrak{sl}_2$, then V_0 is the two dimensional irreducible $\mathfrak{s}_{(\mathcal{P},\sigma)}$ -module.

11. The parabolic subalgebras of \mathfrak{g} whose reductive part is $\mathfrak{s}_{\mathcal{P},\sigma}$ are in a bijection with the pairs (\mathcal{Q},τ) such that the parts of \mathcal{Q} are the same as the parts of \mathcal{P} , I_0 is the largest element of \mathcal{Q} , and $\sigma_{|I_i} = \pm \tau_{|I_i}$ for every part $I_i \neq I_0$ or, equivalently, with total orders on the set $\{\pm \delta_1, \ldots, \pm \delta_k\}$ compatible with multiplication by -1.

2.6. $\mathfrak{g} = D_n$.

- **1.** The roots of \mathfrak{g} are: $\Delta = \{\pm \varepsilon_i \pm \varepsilon_j, |1 \leq i \neq j \leq n\}.$
- **2.** Parabolic subalgebras of g are determined by:

Type I: pairs (\mathcal{P}, σ) , where $\mathcal{P} = (I_0, I_1, \dots, I_k)$ is a totally ordered partition of $\{1, \dots, n\}$ and $\sigma : \{1, \dots, n\} \rightarrow \{\pm 1\}$ is a choice of signs.

Two pairs (\mathcal{P}', σ') and $(\mathcal{P}'', \sigma'')$ determine the same parabolic subalgebra if and only if \mathcal{P}' and \mathcal{P}'' are the same ordered partitions whose maximal part I_0 contains one element and σ' and σ'' coincide on $\{1, \ldots, n\} \setminus I_0$.

Type II: pairs (\mathcal{P}, σ) , where $\mathcal{P} = (I_0, I_1, \dots, I_k)$ is a totally ordered partition of $\{1, \dots, n\}$ with largest element I_0 such that $|I_0| \ge 2$ and $\sigma : \{1, \dots, n\} \setminus I_0 \to \{\pm 1\}$ is a choice of signs.

<u>In Type I:</u>

- **3.** The roots of $\mathfrak{p}_{(\mathcal{P},\sigma)}$ are $\{\sigma(i)\varepsilon_i \sigma(j)\varepsilon_j \mid i \neq j, \mathcal{P}(i) \preceq \mathcal{P}(j)\} \cup \{\sigma(i)\varepsilon_i + \sigma(j)\varepsilon_j \mid i \neq j\}$
- **4.** The roots of $\mathfrak{s}_{(\mathcal{P},\sigma)}$ are $\{\sigma(i)\varepsilon_i \sigma(j)\varepsilon_j \mid i \neq j, \mathcal{P}(i) = \mathcal{P}(j)\}$.
- **5.** $\mathfrak{s}_{(\mathcal{P},\sigma)} = \bigoplus_i \mathfrak{s}^i_{(\mathcal{P},\sigma)}$, where $\mathfrak{s}^i_{(\mathcal{P},\sigma)} \cong \mathfrak{gl}_{|I_i|}$.
- **6.** The Cartan subalgebra of $\mathfrak{s}_{\mathcal{P}}^i$ is spanned by $\{\sigma(j)h_j\}_{j\in I_i}$
- **7.** The roots of $\mathfrak{s}^{i}_{(\mathcal{P},\sigma)}$ are $\{\sigma(j)\varepsilon_{j} \sigma(l)\varepsilon_{l} \mid j \neq l \in I_{i}\}$.
- 8. $\mathfrak{t}_{(\mathcal{P},\sigma)}$ has a basis $\{t_1,\ldots,t_k\}$ with $t_i = \frac{1}{|I_i|} \sum_{j \in I_i} \sigma(j) h_j$.

If $\{\delta_1, \ldots, \delta_k\}$ is the basis of \mathfrak{t}^* dual to $\{t_1, \ldots, t_k\}$ then

9. $\mathcal{R} = \{\pm \delta_i \pm \delta_j | 1 \leq i \neq j \leq k\} \cup \{\pm 2\delta_i | |I_i| > 1\}.$ **10.** For $\nu \in \mathcal{R}$, (a) $\mathfrak{g}^{\nu} \cong V_i^{\pm} \otimes V_j^{\pm}$ if $\nu = \pm \delta_i \pm \delta_j$. (b) $\mathfrak{g}^{\nu} \cong \Lambda^2 V_i^{\pm}$ if $\nu = \pm 2\delta_i$.

where V_i^+ and V_i^- are the natural $\mathfrak{s}^i_{(\mathcal{P},\sigma)}$ -module and its dual, and all other factors of $\mathfrak{s}_{(\mathcal{P},\sigma)}$ act trivially.

11. Every parabolic subalgebra of \mathfrak{g} whose reductive part is $\mathfrak{s}_{\mathcal{P},\sigma}$ corresponds to a pair (\mathcal{Q},τ) such that the parts of \mathcal{Q} are the same as the parts of \mathcal{P} and $\sigma_{|I_i} = \pm \tau_{|I_i}$ for every part I_i or, equivalently, to a total order on the set $\{\pm \delta_1, \ldots, \pm \delta_k\}$ compatible with multiplication by -1. Note that this correspondence is not bijective since two different total orders may determine the same parabolic subalgebra.

In Type II:

- **3.** Roots of $\mathfrak{p}_{(\mathcal{P},\sigma)} =$ $\{\sigma(i)\varepsilon_i - \sigma(j)\varepsilon_i \mid i \neq j, \mathcal{P}(i) \prec \mathcal{P}(j) \prec I_0\} \cup \{\pm\varepsilon_i \pm \varepsilon_i \mid i \neq j, i \in I_0, j \in I_0\}$ $\cup \{\sigma(i)\varepsilon_i + \sigma(j)\varepsilon_i \mid i \neq j, i \notin I_0, j \notin I_0\} \cup \{\sigma(i)\varepsilon_i \pm \varepsilon_i \mid i \notin I_0, j \in I_0\}$
- **4.** Roots of $\mathfrak{s}_{(\mathcal{P},\sigma)} = \{\sigma(i)\varepsilon_i \sigma(j)\varepsilon_i \mid i \neq j, \mathcal{P}(i) = \mathcal{P}(j) \prec I_0\} \cup \{\pm\varepsilon_i \pm \varepsilon_i \mid i \neq j \in I_0\}.$
- **5.** $\mathfrak{s}_{(\mathcal{P},\sigma)} = \oplus_{i=0}^k \mathfrak{s}^i_{(\mathcal{P},\sigma)}$, where $\mathfrak{s}^0_{(\mathcal{P},\sigma)} \cong \mathrm{D}_{|\mathrm{I}_0|}$ and $\mathfrak{s}^i_{(\mathcal{P},\sigma)} \cong \mathfrak{gl}_{|\mathrm{I}_i|}$ for i > 0.
- **6.** Cartan subalgebra of $\mathfrak{s}^{i}_{(\mathcal{P},\sigma)}$ is spanned by $\{h_j\}_{j\in I_0}$ for i=0 and by $\{\sigma(j)h_j\}_{j\in I_i}$ for i > 0;
- **7.** roots of $\mathfrak{s}^{i}_{(\mathcal{P},\sigma)}$ are $\{\pm \varepsilon_{j} \pm \varepsilon_{l} \mid j \neq l \in I_{0}\}$ for i = 0 and $\{\sigma(j)\varepsilon_{j} \sigma(l)\varepsilon_{l} \mid j \neq l \in I_{i}\}$ for i > 0.
- 8. $\mathfrak{t}_{(\mathcal{P},\sigma)}$ has a basis $\{t_1,\ldots,t_k\}$ with $t_i = \frac{1}{|I_i|} \sum_{j \in I_i} \sigma(j) h_j$.

If $\{\delta_1, \ldots, \delta_k\}$ is the basis of \mathfrak{t}^* dual to $\{t_1, \ldots, t_k\}$ then

- **9.** $\mathcal{R} = \{\pm \delta_i \pm \delta_j, \pm \delta_i \mid 1 \leq i \neq j \leq k\} \cup \{\pm 2\delta_i \mid |\mathbf{I}_i| > 1\}.$
- **10.** For $\nu \in \mathcal{R}$,
 - (a) $\mathfrak{g}^{\nu} \cong \operatorname{V}_{i}^{\pm} \otimes \operatorname{V}_{j}^{\pm}$ if $\nu = \pm \delta_{i} \pm \delta_{j}$,
 - (b) $\mathfrak{g}^{\nu} \cong V_i^{\pm} \otimes V_0$ if $\nu = \pm \delta_i$, (c) $\mathfrak{g}^{\nu} \cong \Lambda^2 V_i^{\pm}$ if $\nu = \pm 2\delta_i$,

where V_i^+ and V_i^- denote the natural $\mathfrak{s}_{(\mathcal{P},\sigma)}^i$ -module and its dual for i > 0, V_0 is the natural $\mathfrak{s}^{0}_{(\mathcal{P},\sigma)}$ -module, and where all other factors of $\mathfrak{s}_{(\mathcal{P},\sigma)}$ act trivially. Note that, if $\mathfrak{s}_{(\mathcal{P},\sigma)} = D_2 \cong \mathfrak{sl}_2 \oplus \mathfrak{sl}_2$, then V_0 is the (external) tensor product of two twodimensional irreducible \mathfrak{sl}_2 -modules; if $\mathfrak{s}_{(\mathcal{P},\sigma)} = D_3 \cong \mathfrak{sl}_4$, then V_0 the six dimensional irreducible $\mathfrak{s}_{(\mathcal{P},\sigma)}$ -module which is the second exterior power of the natural representation of \mathfrak{sl}_4 .

- **11.** The parabolic subalgebras of \mathfrak{g} whose reductive part is $\mathfrak{s}_{(\mathcal{P},\sigma)}$ are in a bijection with the pairs (Q, τ) such that the parts of Q are the same as the parts of P, I_0 is the largest element of Q_i , and $\sigma_{|I_i|} = \pm \tau_{|I_i|}$ for every part I_i or, equivalently, with total orders on the set $\{\pm \delta_1, \ldots, \pm \delta_k\}$.
 - 3. PROOF OF THE MAIN THEOREM WHEN \mathfrak{g} is classical.

3.1. Existence of $\mathfrak{p}_{\mathcal{M}}$ when S is saturated. The idea is simple: using S we define a binary relation \prec on the set $\{\delta_1, \ldots, \delta_k\}$ (respectively on $\{\pm \delta_1, \ldots, \pm \delta_k\}$) and using the fact that $(\text{Sym}^{(\mathcal{M})})^{\mathfrak{s}} = \mathbf{C}$ we prove that \prec can be extended to a total order (respectively, to a total order compatible with multiplication by -1). The proof follows the same logic in all cases but is least technical in the case when $\mathfrak{g} = \mathfrak{gl}_n$. For clarity of exposition we present the proof for $\mathfrak{g} = \mathfrak{gl}_n$ first. Throughout the proof the partition \mathcal{P} (and the choice of signs σ) are fixed and instead of $\mathfrak{s}_{\mathcal{P}}$ (or $\mathfrak{s}_{(\mathcal{P},\sigma)}$) and $\mathfrak{s}_{\mathcal{P}}^i$ (or $\mathfrak{s}_{(\mathcal{P},\sigma)}^i$) we write \mathfrak{s} and \mathfrak{s}^i respectively.

First we consider the case when $\mathfrak{g} = \mathfrak{gl}_n$. Define a binary relation \prec on $\{\delta_1, \delta_2, \ldots, \delta_k\}$ by setting

(3.1)
$$\delta_i \prec \delta_j \quad \text{if} \quad \nu = \delta_i - \delta_j \in \mathcal{S}.$$

The existence of a parabolic subalgebra $\mathfrak{p}_{\mathcal{M}}$ with reductive part \mathfrak{s} and containing \mathcal{M} is equivalent to the existence of a total order on $\{\delta_1, \delta_2, \ldots, \delta_k\}$ which extends \prec .

Note that \prec can be extended to a total order on $\{\delta_1, \delta_2, \dots, \delta_k\}$ if and only if there is no cycle

$$(3.2) \qquad \qquad \delta_{i_1} \prec \delta_{i_2} \prec \cdots \prec \delta_{i_l} \prec \delta_{i_1}.$$

Assume that \prec cannot be extended to a total order on $\{\delta_1, \dots, \delta_k\}$ and consider a cycle (3.2) of minimal length. Then $\nu_1 = \delta_{i_1} - \delta_{i_2}, \nu_2 = \delta_{i_2} - \delta_{i_3}, \dots, \nu_l = \delta_{i_l} - \delta_{i_1}$ is a sequence of distinct elements of S. Hence $\mathfrak{g}^{\nu_1} \oplus \mathfrak{g}^{\nu_2} \oplus \dots \oplus \mathfrak{g}^{\nu_l}$ is a submodule of \mathcal{M} and $\operatorname{Sym}^l(\mathfrak{g}^{\nu_1} \oplus \mathfrak{g}^{\nu_2} \oplus \dots \oplus \mathfrak{g}^{\nu_l})$ is a submodule of $\operatorname{Sym}^l(\mathfrak{g}^{\nu_1} \oplus \mathfrak{g}^{\nu_2} \oplus \dots \oplus \mathfrak{g}^{\nu_l})$ is a submodule of $\operatorname{Sym}^l(\mathfrak{g}^{\nu_1} \oplus \mathfrak{g}^{\nu_2} \oplus \dots \oplus \mathfrak{g}^{\nu_l})$ is a submodule of $\operatorname{Sym}^l(\mathcal{M})$ containing $\mathfrak{g}^{\nu_1} \otimes \mathfrak{g}^{\nu_2} \otimes \dots \otimes \mathfrak{g}^{\nu_l}$. On the other hand,

$$(3.3) \qquad \begin{array}{ccc} \mathfrak{g}^{\nu_1} \otimes \mathfrak{g}^{\nu_2} \otimes \cdots \otimes \mathfrak{g}^{\nu_l} &\cong & (\mathrm{V}_{i_1} \otimes \mathrm{V}_{i_2}^*) \otimes (\mathrm{V}_{i_2} \otimes \mathrm{V}_{i_3}^*) \otimes \cdots \otimes (\mathrm{V}_{i_l} \otimes \mathrm{V}_{i_1}^*) \\ &\cong & (\mathrm{V}_{i_1} \otimes \mathrm{V}_{i_1}^*) \otimes (\mathrm{V}_{i_2} \otimes \mathrm{V}_{i_2}^*) \otimes \cdots \otimes (\mathrm{V}_{i_l} \otimes \mathrm{V}_{i_l}^*), \end{array}$$

where the lower index of a module shows which component of \mathfrak{s} acts non-trivially on it. Since, for every $1 \leq j \leq l$, $V_{i_j} \otimes V_{i_j}^*$ contains the trivial \mathfrak{s}^{i_j} -module, (3.3) shows that $\mathfrak{g}^{\nu_1} \otimes \mathfrak{g}^{\nu_2} \otimes \cdots \otimes \mathfrak{g}^{\nu_l}$ contains the trivial \mathfrak{s} -module which contradicts the assumption that $(\text{Sym}^*(\mathcal{M}))^{\mathfrak{s}} = \mathbb{C}$. This contradiction shows that \prec can be extended to a total order on the set $\{\delta_1, \cdots, \delta_k\}$, which completes the proof when $\mathfrak{g} = \mathfrak{gl}_n$.

Next we consider the case when $\mathfrak{g} \neq \mathfrak{gl}_n$, i.e., we assume that \mathfrak{g} is a simple classical Lie algebra not of type A. Define a binary relation \prec on $\{\pm, \delta_1, \pm \delta_2, \cdots, \pm \delta_k\}$ by setting

(3.4)
$$\begin{array}{ll} s_i\delta_i \prec s_j\delta_j, \ i \neq j & \text{if} \quad \nu = s_i\delta_i - s_j\delta_j \in \mathcal{S} \\ s_i\delta_i \prec -s_i\delta_i & \text{if} \quad \nu = \begin{cases} s_i\delta_i & \text{when} \quad \mathfrak{g} = \mathrm{B}_n \text{ or } \mathfrak{g} = \mathrm{D}_n, \text{ Type II} \\ 2s_i\delta_i & \text{when} \quad \mathfrak{g} = \mathrm{C}_n \text{ or } \mathfrak{g} = \mathrm{D}_n, \text{ Type I} \end{cases} \in \mathcal{S},$$

where $s_i, s_j = \pm$. Note that \prec is compatible with multiplication by -1.

The existence of a parabolic subalgebra $\mathfrak{p}_{\mathcal{M}}$ with reductive part \mathfrak{s} and containing \mathcal{M} is equivalent the existence of a total order on $\{\pm \delta_1, \pm \delta_2, \cdots, \pm \delta_k\}$ compatible with multiplication by -1 which extends \prec .

Note that \prec can be extended to a total order on $\{\pm \delta_1, \pm \delta_2, \cdots, \pm \delta_k\}$ compatible with multiplication by -1 if and only if there is no cycle

$$(3.5) s_1\delta_{i_1} \prec s_2\delta_{i_2} \prec \cdots \prec s_l\delta_{i_l} \prec s_1\delta_{i_1}$$

Assume that \prec cannot be extended to a total order on $\{\pm \delta_1, \dots, \pm \delta_k\}$ compatible with multiplication by -1 and consider a cycle (3.5) of minimal length. It gives rise to a sequence $\nu_1, \dots, \nu_l \in S$ induced from (3.4). More precisely,

$$\nu_{j} = \begin{cases} s_{j}\delta_{i_{j}} - s_{j+1}\delta_{i_{j+1}} & \text{if} \quad \delta_{i_{j}} \neq \delta_{i_{j+1}} \\ s_{j}\delta_{i_{j}} & \text{if} \quad \delta_{i_{j}} = \delta_{i_{j+1}}, \mathfrak{g} = B_{n} \text{ or } \mathfrak{g} = D_{n}, \text{ Type II} \\ 2s_{j}\delta_{i_{j}} & \text{if} \quad \delta_{i_{j}} = \delta_{i_{j+1}}, \mathfrak{g} = C_{n} \text{ or } \mathfrak{g} = D_{n}, \text{ Type II}, \end{cases}$$

where $s_{l+1} = s_1$ and $\delta_{i_{l+1}} = \delta_{i_1}$.

The minimality of (3.5) implies that every element ν of \mathcal{R} appears at most twice in the sequence $\nu_1, \nu_2, \ldots, n_l$. Moreover, if $\nu = \pm \delta_i$ or $\nu = \pm 2\delta_i$, then ν appears at most once in this sequence.

First we consider the case when $\delta_{i_j} \neq \delta_{i_{j+1}}$ for every *j*. In this case $\nu_j = s_j \delta_{i_j} - s_{j+1} \delta_{i_{j+1}}$ for every *j*. Let $\lambda_1, \ldots, \lambda_s$ be the elements of \mathcal{R} that appear once in the sequence $\nu_1, \nu_2, \ldots, \nu_l$ and let μ_1, \ldots, μ_t be those that appear twice. Clearly, l = s + 2t. Moreover $\mathfrak{g}^{\lambda_1} \oplus \cdots \oplus \mathfrak{g}^{\lambda_s} \oplus \mathfrak{g}^{\mu_1} \oplus \cdots \oplus \mathfrak{g}^{\mu_s}$ is a submodule of \mathcal{M} and $\operatorname{Sym}^l(\mathfrak{g}^{\lambda_1} \oplus \cdots \oplus \mathfrak{g}^{\lambda_s} \oplus \mathfrak{g}^{\mu_1} \oplus \cdots \oplus \mathfrak{g}^{\mu_t})$ is a submodule of $\operatorname{Sym}^{(\mathcal{M})}$ containing

(3.6)
$$\mathfrak{g}^{\lambda_1}\otimes\cdots\otimes\mathfrak{g}^{\lambda_s}\otimes\operatorname{Sym}^2\mathfrak{g}^{\mu_1}\otimes\cdots\otimes\operatorname{Sym}^2\mathfrak{g}^{\mu_t}.$$

We will prove that the \mathfrak{s} -module (3.6) contains the trivial \mathfrak{s} -module which, as in the case when $\mathfrak{g} = \mathfrak{gl}_n$, will complete the proof.

Indeed, if $\mu_{j'} = \nu_j$ then

(3.7)
$$\begin{aligned} \operatorname{Sym}^{2} \mathfrak{g}^{\mu_{j'}} &= \operatorname{Sym}^{2} \mathfrak{g}^{\nu_{j}} = \operatorname{Sym}^{2} (V_{i_{j}}^{s_{j}} \otimes \operatorname{V}_{i_{j+1}}^{-s_{j+1}}) = \\ \operatorname{Sym}^{2} \operatorname{V}_{i_{j}}^{s_{j}} \otimes \operatorname{Sym}^{2} \operatorname{V}_{i_{j+1}}^{-s_{j+1}} \oplus \Lambda^{2} \operatorname{V}_{i_{j}}^{s_{j}} \otimes \Lambda^{2} \operatorname{V}_{i_{j+1}}^{-s_{j+1}} \supset \operatorname{Sym}^{2} \operatorname{V}_{i_{j}}^{s_{j}} \otimes \operatorname{Sym}^{2} \operatorname{V}_{i_{j+1}}^{-s_{j+1}} \end{aligned}$$

Replacing in (3.6) each term of the form $\operatorname{Sym}^2 \mathfrak{g}^{\mu_{j'}}$ with the corresponding term $\operatorname{Sym}^2 \operatorname{V}_{i_j}^{s_j} \otimes \operatorname{Sym}^2 \operatorname{V}_{i_{j+1}}^{s_{j+1}}$ from (3.7), we obtain another submodule of (3.6). This latest submodule is a tensor product of factors of the form $\operatorname{V}_{i_j}^{\pm}$ and $\operatorname{Sym}^2 \operatorname{V}_{i_j}^{\pm}$. Moreover, the component V_i appears in one of the following groups:

$$\mathbf{V}_i^+ \otimes \mathbf{V}_i^+ \otimes \mathbf{V}_i^- \otimes \mathbf{V}_i^-, \, \mathbf{V}_i^+ \otimes \mathbf{V}_i^+ \otimes \operatorname{Sym}^2 \mathbf{V}_i^-, \, \mathbf{V}_i^- \otimes \mathbf{V}_i^- \otimes \operatorname{Sym}^2 \mathbf{V}_i^+, \, \operatorname{Sym}^2 \mathbf{V}_i^+ \otimes \operatorname{Sym}^2 \mathbf{V}_i^-.$$

Since each of them contains the trivial s^i -module, we conclude that (3.6) contains the trivial s-module.

Finally, we consider the case when $\delta_{i_j} = \delta_{i_{j+1}}$ for some $1 \leq j \leq l$. (The minimality of the cycle (3.5) implies that there are at most two such indices but we will not use this observation.) We split the roots $\nu_1, \nu_2, \ldots, \nu_l$ into two groups $\lambda_1, \lambda_2, \ldots, \lambda_s$ and $\mu_1, \mu_2, \ldots, \mu_t$ in the following way: If $\nu_j = s_j \delta_{i_j} - s_{j+1} \delta_{i_{j+1}}$, then we put ν_j in the first or second group depending on whether it appears once or twice in $\nu_1, \nu_2, \ldots, \nu_l$, if $\nu_j = s_j \delta_{i_j}$, we put ν_j in the first group. Set l' := s + 2t; note that $l' \neq l$.

From this point on the argument repeats the argument above with the following modifications:

- (i) We consider $\operatorname{Sym}^{l'}(\mathfrak{g}^{\lambda_1} \oplus \cdots \oplus \mathfrak{g}^{\lambda_s} \oplus \mathfrak{g}^{\mu_1} \oplus \cdots \oplus \mathfrak{g}^{\mu_t})$ in place of $\operatorname{Sym}^{l}(\mathfrak{g}^{\lambda_1} \oplus \cdots \oplus \mathfrak{g}^{\lambda_s} \oplus \mathfrak{g}^{\mu_1} \oplus \cdots \oplus \mathfrak{g}^{\mu_t})$.
- (ii) In the case when $\mathfrak{g} = D_n$ and (\mathcal{P}, σ) is of Type I, we replace $\operatorname{Sym}^2 \operatorname{V}_{i_j}^{s_j} \otimes \operatorname{Sym}^2 \operatorname{V}_{i_{j+1}}^{-s_{j+1}}$ by $\Lambda^2 \operatorname{V}_{i_j}^{s_j} \otimes \Lambda^2 \operatorname{V}_{i_{j+1}}^{-s_{j+1}}$ in (3.7). Correspondingly, V_i appears in one of the following groups

 $\mathbf{V}_i^+ \otimes \mathbf{V}_i^+ \otimes \mathbf{V}_i^- \otimes \mathbf{V}_i^-, \, \mathbf{V}_i^+ \otimes \mathbf{V}_i^+ \otimes \Lambda^2 \mathbf{V}_i^-, \, \mathbf{V}_i^- \otimes \mathbf{V}_i^- \otimes \Lambda^2 \mathbf{V}_i^+, \, \Lambda^2 \mathbf{V}_i^+ \otimes \Lambda^2 \mathbf{V}_i^-.$

Exactly as above, for i > 0, each of the groups above contains the trivial module \mathfrak{s}^i -module. Finally, if $\mathfrak{g} = B_n$ or $\mathfrak{g} = D_n$ and (\mathcal{P}, σ) is of Type II, V_0 appears in groups

Sym² V₀ (one for each $\nu_j = s_j \delta_{i_j}$). Since in these cases $\mathfrak{s}^0 = B_{|I_0|}$ or $\mathfrak{s}^0 = D_{|I_0|}$, Sym² V₀ contains the trivial \mathfrak{s}^0 -module. This completes the proof.

We now turn to the case that S is not saturated.

3.2. Existence of $\mathfrak{p}_{\mathcal{M}}$ in types A and D. If \mathfrak{g} is of type A there is nothing to prove since every subset \mathcal{R} is saturated and the statement is equivalent to the first part of this section. The situation is the same when $\mathfrak{g} = D_n$ and (\mathcal{P}, σ) is of type I.

Let $\mathfrak{g} = D_n$ and let (\mathcal{P}, σ) be of type II. We will extend the proof of part (*a*) to this case.

First we note that $-2\delta_i \in S$ and $\delta_i \in S$ imply that $(\text{Sym}^{-}(\mathcal{M}))^{\mathfrak{s}} \neq \mathbb{C}$. Indeed, $\Lambda^2 V_i^- \oplus V_i^+ \otimes V_0$ is a submodule of \mathcal{M} and hence we have the following inclusions of modules:

$$(3.8) \qquad \begin{array}{rcl} \operatorname{Sym}^{6}(\Lambda^{2}\mathrm{V}_{i}^{-}\oplus\mathrm{V}_{i}^{+}\otimes\mathrm{V}_{0}) &\subset & \operatorname{Sym}^{\cdot}(\mathcal{M}) \\ \operatorname{Sym}^{2}(\Lambda^{2}\mathrm{V}_{i}^{-})\otimes\operatorname{Sym}^{4}(\mathrm{V}_{i}^{+}\otimes\mathrm{V}_{0}) &\subset & \operatorname{Sym}^{6}(\Lambda^{2}\mathrm{V}_{i}^{-}\oplus\mathrm{V}_{i}^{+}\otimes\mathrm{V}_{0}) \\ \operatorname{S}^{(2,2)}\mathrm{V}_{i}^{+}\otimes\operatorname{S}^{(2,2)}\mathrm{V}_{0}\subset\operatorname{Sym}^{4}(\mathrm{V}_{i}^{+}\otimes\mathrm{V}_{0}) &, & \operatorname{S}^{(2,2)}\mathrm{V}_{i}^{-}\subset\operatorname{Sym}^{2}(\Lambda^{2}\mathrm{V}_{i}^{-}), \end{array}$$

where $S^{(2,2)}W$ denotes the result of applying the Schur functor $S^{(2,2)}$ to W. The above inclusions along the fact that $S^{(2,2)}V_0$ contains the trivial \mathfrak{s}^0 -module imply that $(Sym^6(\mathcal{M}))^{\mathfrak{s}} \neq 0$. A symmetric argument shows that $2\delta_i \in S$ and $-\delta_i \in S$ imply that $(Sym^{\mathfrak{s}}(\mathcal{M}))^{\mathfrak{s}} \neq C$.

From this point on the proof follows the proof of part (*a*) with the following modifications:

- (i) In the definition of \prec we use $s_i \delta_i \prec -s_i \delta_i$ if $s_i \delta_i \in S$ or $2s_i \delta_i \in S$.
- (ii) If $s_i\delta_i \prec -s_i\delta_i$, ν_i denotes the corresponding element of S above; if there are two such elements, we set $\nu_i := s_i\delta_i$.
- (iii) In splitting $\nu_1, \nu_2, ..., \nu_l$ into two groups $\lambda_1, \lambda_2, ..., \lambda_s$ and $\mu_1, \mu_2, ..., \mu_t$, we put a root ν_i from (ii) into the first group if $\nu_i = 2s_i\delta_i$ and in the second group otherwise.
- (iv) We consider $\operatorname{Sym}^{2l'}(\mathfrak{g}^{\lambda_1} \oplus \cdots \oplus \mathfrak{g}^{\lambda_s} \oplus \mathfrak{g}^{\mu_1} \oplus \cdots \oplus \mathfrak{g}^{\mu_t})$ in place of $\operatorname{Sym}^{\overline{l}}(\mathfrak{g}^{\lambda_1} \oplus \cdots \oplus \mathfrak{g}^{\lambda_s} \oplus \mathfrak{g}^{\mu_1} \oplus \cdots \oplus \mathfrak{g}^{\mu_t})$.
- (v) We replace the module in (3.6) by $\operatorname{Sym}^2 \mathfrak{g}^{\lambda_1} \otimes \cdots \otimes \operatorname{Sym}^2 \mathfrak{g}^{\lambda_s} \otimes \operatorname{Sym}^4 \mathfrak{g}^{\mu_1} \otimes \cdots \otimes \operatorname{Sym}^4 \mathfrak{g}^{\mu_t}$.

Using the inclusions (3.8) we conclude that $(\text{Sym}^{\cdot}(\mathcal{M}))^{\mathfrak{s}} \neq \mathbb{C}$. This completes the proof when $\mathfrak{g} = D_n$.

3.3. Examples in types B and C when \mathcal{M} is not saturated. We will now construct examples in types B and C of \mathfrak{s} and \mathcal{S} such that $(\text{Sym}^{\cdot}(\mathcal{M}))^{\mathfrak{s}} = \mathbf{C}$ and for which there does not exist a parabolic subalgebra $\mathfrak{p}_{\mathcal{M}}$ of \mathfrak{g} with reductive part \mathfrak{s} and $\mathcal{M} \subset \mathfrak{p}_{\mathcal{M}}$.

If $\mathfrak{g} = B_n$, consider $\mathfrak{s} = \mathfrak{s}_{(\mathcal{P},\sigma)}$, where \mathcal{P} is the partition of type I

$$\{1,2\} \prec \{3\} \prec \{4\} \prec \cdots \prec \{n\}$$

and $\sigma(i) = 1$ is constant. Then $\mathfrak{s}^1 = \mathfrak{gl}_2$. Moreover, $U := \mathfrak{g}^{-\delta_1}$ is the \mathfrak{gl}_2 -module which is the natural representation of \mathfrak{sl}_2 and on which the identity matrix of \mathfrak{gl}_2 acts as multiplication by -1 and $W := \mathfrak{g}^{2\delta_1}$ is the one dimensional \mathfrak{gl}_2 -module on which the identity matrix acts as multiplication by 2. Let $S := \{-\delta_1, 2\delta_1\}$. Then $\mathcal{M} = U \oplus W$ and

$$\operatorname{Sym}^k \mathcal{M} = \bigoplus_j \operatorname{Sym}^j \operatorname{U} \otimes \operatorname{Sym}^{k-j} \operatorname{W}.$$

Note that $\operatorname{Sym}^{j} U \otimes \operatorname{Sym}^{k-j} W$ is the irreducible \mathfrak{sl}_{2} -module of dimension j+1 on which the identity matrix of \mathfrak{gl}_{2} acts as multiplication by 2k - 3j. This proves that $(\operatorname{Sym}^{\cdot}(\mathcal{M}))^{\mathfrak{s}} = \mathbb{C}$ but there is no parabolic subalgebra $\mathfrak{p}_{\mathcal{M}}$ of \mathfrak{g} with reductive part \mathfrak{s} such that $\mathcal{M} \subset \mathfrak{p}_{\mathcal{M}}$.

If $\mathfrak{g} = C_n$, consider $\mathfrak{s} = \mathfrak{s}_{(\mathcal{P},\sigma)}$, where \mathcal{P} is the partition of type II

$$\{1\} \prec \{2\} \prec \{3\} \prec \cdots \prec \{n\}$$

and $\sigma(i) = 1$ is constant. Then $\mathfrak{s}^0 = C_1 \cong \mathfrak{sl}_2$ and $\mathfrak{s}^1 = \mathfrak{gl}_1$, i.e. $\mathfrak{s}^0 \oplus \mathfrak{s}^1 \cong \mathfrak{gl}_2$. Moreover, setting $U := \mathfrak{g}^{-\delta_1}$ and $W := \mathfrak{g}^{2\delta_1}$, we arrive at exactly the same situation as in the case $\mathfrak{g} = B_n$ above.

4. Proof of the Main Theorem when \mathfrak{g} is exceptional.

4.1. First we recall some standard notation following the conventions in [B]. If \mathfrak{g} is a simple Lie algebra of rank *n* we label the simple roots of \mathfrak{g} as $\alpha_1, \ldots, \alpha_n$ as in [B]. The fundamental dominant weight of \mathfrak{g} are denoted by $\omega_1, \ldots, \omega_n$. If $-\alpha_0$ is the highest root, then $\alpha_0, \alpha_1, \ldots, \alpha_n$ label the extended Dynkin diagram of \mathfrak{g} .

4.2. Existence of $\mathfrak{p}_{\mathcal{M}}$ in type G_2 when \mathcal{S} is saturated. Let $\mathfrak{g} = G_2$. Let \mathcal{S} be a saturated subset of \mathcal{R} and let $\mathcal{M} = \bigoplus_{\nu \in \mathcal{S}} \mathfrak{g}^{\nu}$. If $(\text{Sym}^{\cdot}(\mathcal{M}))^{\mathfrak{s}} = \mathbb{C}$, then there exists a parabolic subalgebra $\mathfrak{p}_{\mathcal{M}}$ of \mathfrak{g} with reductive part \mathfrak{s} such that $\mathcal{M} \subset \mathfrak{p}_{\mathcal{M}}$. Indeed, if \mathfrak{s} is a proper subalgebra of \mathfrak{g} which is not equal to \mathfrak{h} , then all elements of \mathcal{R} are proportional and there is nothing to prove. If $\mathfrak{s} = \mathfrak{h}$, then the spaces \mathfrak{g}^{ν} are just the root spaces of \mathfrak{g} which are one dimensional and again the statement is clear.

4.3. Example in type G_2 when S is not saturated. On the other hand, let $\mathfrak{s} \cong \mathfrak{gl}_2 \subset \mathfrak{g}$ be the parabolic subalgebra of \mathfrak{g} with roots $\pm \alpha_2$. Then $\mathcal{R} = \{\pm \delta, \pm 2\delta, \pm 3\delta\}$. Moreover, $\mathfrak{g}^{\pm k\delta}$ is the irreducible \mathfrak{s} -module of dimension 2, 1, or 2 (corresponding to k = 1, 2, or 3) on which a fixed element in the centre of \mathfrak{s} acts as multiplication by $\pm k$. Then, for $S = \{-\delta, 2\delta\}$, setting $U := \mathfrak{g}^{-\delta}$ and $W := \mathfrak{g}^{2\delta}$, we arrive at exactly the same situation as at the end of Section 2 above. In particular, $(\text{Sym}^+(\mathcal{M}))^{\mathfrak{s}} = \mathbb{C}$ but there is no parabolic subalgebra $\mathfrak{p}_{\mathcal{M}}$ of \mathfrak{g} with reductive part \mathfrak{s} such that $\mathcal{M} \subset \mathfrak{p}_{\mathcal{M}}$.

4.4. Examples in types F_4 , E_6 , E_7 , and E_8 with S saturated. Let $\mathfrak{g} = F_4$, E_6 , E_7 , or E_8 . We will construct a saturated set S such that $(\text{Sym}^{-}(\mathcal{M}))^{\mathfrak{s}} = \mathbb{C}$ but there is no parabolic subalgebra $\mathfrak{p}_{\mathcal{M}}$ of \mathfrak{g} with reductive part \mathfrak{s} such that $\mathcal{M} \subset \mathfrak{p}_{\mathcal{M}}$.

Denote the rank of \mathfrak{g} by n. Consider the extended Dynkin diagram of \mathfrak{g} . Removing the node connected to the root α_0 we obtain the Dynkin diagram of a semisimple subalgebra $\mathfrak{m} \oplus \mathfrak{c}$ of \mathfrak{g} of rank n where $\mathfrak{m} \cong A_1$ is the subalgebra of \mathfrak{g} with roots $\{\pm \alpha_0\}$ and \mathfrak{c} is the subalgebra if \mathfrak{g} with simple roots obtained from the simple roots of \mathfrak{g} after removing the one adjacent to α_0 . More precisely, we remove the roots $\alpha_1, \alpha_2, \alpha_1, \alpha_8$ when $\mathfrak{g} = F_4, E_6, E_7, E_8$ respectively. The respective subalgebras $\mathfrak{c} \subset \mathfrak{g}$ are isomorphic to $\mathfrak{c} \cong C_3, A_5, D_6$, or E_7 respectively. As an \mathfrak{m} -module \mathfrak{g} decomposes as

$$\mathfrak{g} = (\mathrm{Ad}_\mathfrak{m} \otimes \mathrm{tr}_\mathfrak{c}) \oplus (\mathrm{tr}_\mathfrak{m} \otimes \mathrm{Ad}_\mathfrak{c}) \oplus (\mathrm{V} \otimes \mathrm{U}),$$

where Ad_m and Ad_c are the adjoint modules of \mathfrak{m} and \mathfrak{c} respectively; $tr_{\mathfrak{m}}$ and $tr_{\mathfrak{c}}$ —the respective trivial modules; V is the natural $\mathfrak{m} \cong A_1$ –module; and U is the c-module whose highest weight is the fundamental weight of \mathfrak{c} corresponding to the simple root of \mathfrak{c} linked to the removed node of the extended Dynkin diagram of \mathfrak{g} . In fact, for $\mathfrak{g} = F_4, E_6, E_7, E_8$, the highest weight of \mathfrak{c} is $\omega_3, \omega_3, \omega_6, \omega_7$ respectively. Here the weights of U are given according to the labeling conventions of \mathfrak{c} . For example, if $\beta_1, \beta_2, \beta_3$ are the simple roots of $\mathfrak{c} = C_3$ in the case when $\mathfrak{g} = F_4$, we have $\beta_1 = \alpha_4, \beta_2 = \alpha_3$, and $\beta_3 = \alpha_2$.

Set $\mathfrak{s} = \mathfrak{m} + \mathfrak{h}$. From the construction of \mathfrak{s} we conclude that $\mathfrak{t} = \mathfrak{h}_{\mathfrak{c}}$, the Cartan subalgebra of \mathfrak{c} . Furthermore, (4.1) implies $\mathcal{R} = \Delta_{\mathfrak{c}} \cup \operatorname{supp} U$, where $\operatorname{supp} U$ denotes the set of weights of U and, for $\nu \in \mathcal{R}$ the $\mathfrak{s} = \mathfrak{m} \oplus \mathfrak{h}_{\mathfrak{c}}$ -module \mathfrak{g}^{ν} is given by

$$\mathfrak{g}^{\nu} \cong \begin{cases} \operatorname{tr}_{\mathfrak{m}} \otimes \nu & \text{ if } \nu \in \Delta_{\mathfrak{c}} \\ \mathrm{V} \otimes \nu & \text{ if } \nu \in \operatorname{supp} \mathrm{U}. \end{cases}$$

Let ω be the highest weight of U and write $\omega = q_1\beta_1 + \cdots + q_{n-1}\beta_{n-1}$ where $\beta_1, \ldots, \beta_{n-1}$ are the simple roots of \mathfrak{c} and $q_i \in \mathbf{Q}_+$. Set $\mathcal{S} = \{-\omega, \beta_1, \ldots, \beta_{n-1}\}$. Then $\mathcal{M} = \mathfrak{g}^{\omega} \oplus (\bigoplus_{i=1}^{n-1} \mathfrak{g}^{\beta_i})$ and

$$\operatorname{Sym}^{k} \mathcal{M} = \bigoplus_{j+i_{1}+\dots+i_{n-1}=k} \operatorname{Sym}^{j} \mathfrak{g}^{-\omega} \otimes \operatorname{Sym}^{i_{1}} \mathfrak{g}^{\beta_{1}} \otimes \dots \otimes \operatorname{Sym}^{i_{n-1}} \mathfrak{g}^{\beta_{n-1}}.$$

Moreover, $\operatorname{Sym}^{j} \mathfrak{g}^{-\omega} \otimes \operatorname{Sym}^{i_{1}} \mathfrak{g}^{\beta_{1}} \otimes \cdots \otimes \operatorname{Sym}^{i_{n-1}} \mathfrak{g}^{\beta_{n-1}}$ is an irreducible \mathfrak{m} -module which is not trivial unless j = 0 and on which $\mathfrak{h}_{\mathfrak{c}}$ acts via $-j\omega + i_{1}\beta_{1} + \cdots + i_{n-1}\beta_{n_{1}}$. This implies that, for k > 0, $(\operatorname{Sym}^{k} \mathcal{M})^{\mathfrak{s}} = 0$ and hence $(\operatorname{Sym}^{\cdot} \mathcal{M})^{\mathfrak{s}} = \mathbb{C}$. On the other hand, the equation $\omega = q_{1}\beta_{1} + \cdots + q_{n-1}\beta_{n-1}$ implies that there is no parabolic subalgebra $\mathfrak{p}_{\mathcal{M}}$ of \mathfrak{g} with reductive part \mathfrak{s} such that $\mathcal{M} \subset \mathfrak{p}_{\mathcal{M}}$.

REFERENCES

- [B] N. Bourbaki, Éléments de mathématique. Groupes et algèbres de Lie, Ch. IV VI, Herman, Paris 1968, 288 pp.
- [DFG] I. Dimitrov, V. Futorny, and D. Grantcharov, Parabolic sets of roots, Contemp. Math. 499 (2009), 61–74.
- [DP] I. Dimitrov and I. Penkov, *Weight modules of direct limit Lie algebras*, IMRN 1999, No. 5, 223–249.
- [DR] I. Dimitrov, M. Roth, *Cup products of line bundles on homogeneous varieties and generalized PRV components of multiplicity one*, to appear in Algebra & Number Theory.
- [K] B. Kostant, *Root systems for Levi factors and Borel–de Siebenthal theory, Symmetry and Spaces*, 129–152, Progr. Math., 278, Birkhäuser Boston, Inc., Boston, MA, 2010.

DEPARTMENT OF MATHEMATICS AND STATISTICS, QUEEN'S UNIVERSITY, KINGSTON, ONTARIO, K7L 3N6, CANADA

E-mail address: dimitrov@mast.queensu.ca

E-mail address: mikeroth@mast.queensu.ca