POSITIVE SYSTEMS OF KOSTANT ROOTS

IVAN DIMITROV AND MIKE ROTH

Abstract

Let \mathfrak{g} be a simple complex Lie algebra and let $\mathfrak{t} \subset \mathfrak{g}$ be a toral subalgebra of \mathfrak{g}. As a \mathfrak{t}-module \mathfrak{g} decomposes as $$
\mathfrak{g}=\mathfrak{s} \oplus\left(\oplus_{\nu \in \mathcal{R}} \mathfrak{g}^{\nu}\right)
$$ where $\mathfrak{s} \subset \mathfrak{g}$ is the reductive part of a parabolic subalgebra of \mathfrak{g} and \mathcal{R} is the Kostant root system associated to \mathfrak{t}. When \mathfrak{t} is a Cartan subalgebra of \mathfrak{g} the decomposition above is nothing but the root decomposition of \mathfrak{g} with respect to \mathfrak{t}; in general the properties of \mathcal{R} resemble the properties of usual root systems. In this note we study the following problem: "Given a subset $\mathcal{S} \subset \mathcal{R}$, is there a parabolic subalgebra \mathfrak{p} of \mathfrak{g} containing $\mathcal{M}=\oplus_{\nu \in \mathcal{S}} \mathfrak{g}^{\nu}$ and whose reductive part equals \mathfrak{s} ?". Our main results is that, for a classical simple Lie algebra \mathfrak{g} and a saturated $\mathcal{S} \subset \mathcal{R}$, the condition $\left(\operatorname{Sym}^{\cdot}(\mathcal{M})\right)^{\mathfrak{s}}=\mathbf{C}$ is necessary and sufficient for the existence of such a \mathfrak{p}. In contrast, we show that this statement is no longer true for the exceptional Lie algebras $\mathrm{F}_{4}, \mathrm{E}_{6}, \mathrm{E}_{7}$, and E_{8}. Finally, we discuss the problem in the case when \mathcal{S} is not saturated.

Keywords: Parabolic subalgebras, Kostant root systems, Positive roots.

1. Introduction

1.1. Let \mathfrak{g} be a simple complex Lie algebra and let $\mathfrak{h} \subset \mathfrak{g}$ be a Cartan subalgebra. The root decomposition of \mathfrak{g} with respect to \mathfrak{h} is

$$
\begin{equation*}
\mathfrak{g}=\mathfrak{h} \oplus\left(\oplus_{\alpha \in \Delta} \mathfrak{g}^{\alpha}\right) \tag{1.1}
\end{equation*}
$$

where, for any $\alpha \in \mathfrak{h}^{*}$,

$$
\mathfrak{g}^{\alpha}:=\{x \in \mathfrak{g} \mid[t, x]=\alpha(t) x \text { for every } t \in \mathfrak{h}\} \quad \text { and } \quad \Delta=\left\{\alpha \in \mathfrak{h}^{*} \backslash\{0\} \mid \mathfrak{g}^{\alpha} \neq 0\right\} .
$$

The Borel subalgebras of \mathfrak{g} containing \mathfrak{h} are in a bijection with the positive systems $\Delta^{+} \subset \Delta$, i.e., the subsets Δ^{+}satisfying the following properties: (i) $\Delta=\Delta^{+} \cup\left(-\Delta^{+}\right)$, (ii) $\Delta^{+} \cap$ $\left(-\Delta^{+}\right)=\emptyset$, and (iii) $\alpha, \beta \in \Delta^{+}, \alpha+\beta \in \Delta$ implies $\alpha+\beta \in \Delta^{+}$. Positive systems of roots represent a much studied and well-understood topic in the theory of semisimple Lie algebras. Here is a particular problem that arises in various situations: "Given a subset $\Phi \subset \Delta$, determine if there is a positive system Δ^{+}containing $\Phi^{\prime \prime}$. The answer is that such a positive system exists if and only if the semigroup generated by Φ does not contain 0 . The aim of this paper is to address the analogous problem in a more general situation.
1.2. Let $\mathfrak{t} \subset \mathfrak{g}$ be a toral subalgebra of \mathfrak{g}, that is, a commutative subalgebra of semisimple elements. As a \mathfrak{t}-module \mathfrak{g} decomposes as

$$
\begin{equation*}
\mathfrak{g}=\mathfrak{s} \oplus\left(\oplus_{\nu \in \mathcal{R}} \mathfrak{g}^{\nu}\right) \tag{1.2}
\end{equation*}
$$

where

$$
\mathfrak{g}^{\nu}:=\{x \in \mathfrak{g} \mid[t, x]=\nu(t) x \text { for every } t \in \mathfrak{t}\}, \quad \mathfrak{s}=\mathfrak{g}^{0}, \quad \text { and } \quad \mathcal{R}=\left\{\nu \in \mathfrak{t}^{*} \backslash\{0\} \mid \mathfrak{g}^{\nu} \neq 0\right\} .
$$

We refer to \mathcal{R} as the \mathfrak{t}-root system of \mathfrak{g}, to the elements of \mathcal{R} as the \mathfrak{t}-roots, and to the spaces \mathfrak{g}^{ν} as the \mathfrak{t}-root spaces. Often we will drop the reference to \mathfrak{t} when it is clear from the context.

To explain the relation between the decompositions (1.1) and (1.2), extend \mathfrak{t} to a Cartan subalgebra \mathfrak{h}. The inclusion $\mathfrak{t} \subset \mathfrak{h}$ then induces a surjection $\mathfrak{h}^{*} \rightarrow \mathfrak{t}^{*}$. The \mathfrak{t}-root system \mathcal{R} consists of the nonzero elements of the image of Δ under this map, and for any $\nu \in \mathcal{R}$ the \mathfrak{t}-root space \mathfrak{g}^{ν} is the sum of the \mathfrak{h}-root spaces \mathfrak{g}^{α} such that $\alpha \mapsto \nu$. Since \mathfrak{t} may be an arbitrary complex subspace of \mathfrak{h} we see that, in contrast to the case of an \mathfrak{h}-decomposition, \mathfrak{t}-root spaces may be more than one-dimensional, and \mathfrak{t}-roots may be complex multiples of one another. (For \mathfrak{h}-root systems, $\alpha, r \alpha \in \Delta$ implies that $r= \pm 1$.)
1.3. The subalgebra \mathfrak{s} is a reductive subalgebra of \mathfrak{g} and, moreover, \mathfrak{s} is a reductive part of a parabolic subalgebra of \mathfrak{g}. Note that \mathfrak{t} is contained in $\mathcal{Z}(\mathfrak{s})$, the centre of \mathfrak{s}. In the case when $\mathfrak{t}=\mathcal{Z}(\mathfrak{s})$ the properties of \mathcal{R} and the decomposition (1.2) were studied by Kostant, [K]. Kostant proved that, for every $\nu \in \mathcal{R}, \mathfrak{g}^{\nu}$ is an irreducible \mathfrak{s}-module and showed that \mathcal{R} inherits many of the properties of Δ. To recognize Kostant's contribution, we refer to the elements of \mathcal{R} as "Kostant roots" in the title, however we use the shorter " t-roots" in the text.
1.4. To describe and motivate the problem we address in this note, we assume in this subsection that $\mathfrak{t}=\mathcal{Z}(\mathfrak{s})$. We caution the reader that not all of equivalences in the following discussion hold when $\mathfrak{t} \neq \mathcal{Z}(\mathfrak{s})$.

One introduces the notion of a positive system $\mathcal{R}^{+} \subset \mathcal{R}$ exactly as above: (i) $\mathcal{R}=$ $\mathcal{R}^{+} \cup\left(-\mathcal{R}^{+}\right)$, (ii) $\mathcal{R}^{+} \cap\left(-\mathcal{R}^{+}\right)=\emptyset$, and (iii) $\mu, \nu \in \mathcal{R}^{+}, \mu+\nu \in \mathcal{R}$ implies $\mu+\nu \in \mathcal{R}^{+}$. Proposition VI.1.7.20 in [B] implies that positive systems in \mathcal{R} are in a bijection with parabolic subalgebras of \mathfrak{g} whose reductive part is \mathfrak{s}. The paper [DFG] contains a detailed discussion (in slightly different terms) of positive systems \mathcal{R}^{+}. In particular, a result of [DFG] implies that a subset $\mathcal{T} \subset \mathcal{R}$ is a positive system if and only if there exists a linear function $\varphi: \mathrm{V} \rightarrow \mathbf{R}$, V being the real vector space spanned by \mathcal{R}, such that $\operatorname{ker} \varphi \cap \mathcal{T}=\emptyset$ and $\nu \in \mathcal{T}$ if and only if $\varphi(\nu)>0$. Note that every positive system \mathcal{R}^{+}is saturated, i.e., $\nu \in \mathcal{R}^{+}, r \in \mathbf{Q}_{+}$and $r \nu \in \mathcal{R}$ imply $r \nu \in \mathcal{R}^{+}$.

In a previous paper [DR] we came across the analogue of the problem mentioned above: "Given a subset $\mathcal{S} \subset \mathcal{R}$ determine whether there is a positive system \mathcal{R}^{+}containing \mathcal{S}^{\prime}. An obvious necessary and sufficient condition (equivalent to the existence of the linear function φ above) for the existence of a positive system \mathcal{R}^{+}containing \mathcal{S} is the requirement that the semigroup generated by \mathcal{S} does not contain 0 . Unfortunately, this combinatorial condition is not easy to verify. On the other hand, in our intended application in [DR], the condition $\left(\operatorname{Sym}^{(}(\mathcal{M})\right)^{\mathfrak{s}}=\mathbf{C}$ where $\mathcal{M}=\oplus_{\nu \in \mathcal{S}} \mathfrak{g}^{\nu}$, arose naturally in the context of Geometric Invariant Theory. This latter condition is necessary for the existence of a positive system \mathcal{R}^{+}as above. To see this, note that $\left(\operatorname{Sym}^{(}(\mathcal{M})\right)^{5}$ always contains at least the constants \mathbf{C}, the inclusion $\mathfrak{t} \subset \mathfrak{s}$ implies $\left(\operatorname{Sym}^{(}(\mathcal{M})\right)^{\mathfrak{s}} \subset\left(\operatorname{Sym}^{\cdot}(\mathcal{M})\right)^{\mathfrak{t}}$, and the condition that the semigroup generated by \mathcal{S} does not contain 0 is equivalent to $\left(\operatorname{Sym}^{\prime}(\mathcal{M})\right)^{\mathfrak{t}}=\mathbf{C}$.

In fact, there is a stronger necessary condition for \mathcal{S} to be contained in a positive system. Since \mathcal{R}^{+}is saturated, if $\mathcal{S} \subset \mathcal{R}^{+}$then $\overline{\mathcal{S}} \subset \mathcal{R}^{+}$, where $\overline{\mathcal{S}}$ denotes the saturation of S, i.e., $\overline{\mathcal{S}}=\mathrm{Q}_{+} \mathcal{S} \cap \mathcal{R}$. Set $\overline{\mathcal{M}}:=\oplus_{\nu \in \overline{\mathcal{S}}} \mathfrak{g}^{\nu}$. It is easy to see that $\left(\operatorname{Sym}^{\cdot}(\mathcal{M})\right)^{\mathfrak{t}}=\mathbf{C}$ if and only if $\left(\operatorname{Sym}^{\cdot}(\overline{\mathcal{M}})\right)^{\mathfrak{t}}=\mathbf{C}$ and that we have the inclusions $\left(\operatorname{Sym}^{\cdot}(\mathcal{M})\right)^{\mathfrak{s}} \subset\left(\operatorname{Sym}^{\cdot}(\overline{\mathcal{M}})\right)^{\mathfrak{s}} \subset$ (Sym $(\overline{\mathcal{M}}))^{\mathbf{t}}$. In other words, if \mathcal{S} is contained in a positive system then $\left(\operatorname{Sym}^{\prime}(\overline{\mathcal{M}})\right)^{\mathfrak{s}}=\mathbf{C}$.

The goal of this note is to investigate whether either of the conditions $(\operatorname{Sym}(\mathcal{M}))^{s}=\mathbf{C}$ or $\left(\operatorname{Sym}^{\cdot}(\overline{\mathcal{M}})\right)^{\mathfrak{s}}=\mathbf{C}$ is sufficient for the existence of a positive system \mathcal{R}^{+}containing
 $\left(\operatorname{Sym}^{\prime}(\overline{\mathcal{M}})\right)^{\mathfrak{s}}=\mathbf{C}$ is sufficient if and only if \mathfrak{g} is classical or $\mathfrak{g}=\mathrm{G}_{2}$.

Using the connection between positive systems and linear functions φ (valid when $\mathfrak{t}=$ $\mathcal{Z}(\mathfrak{s})$), finding a positive system containing \mathcal{M} is the same as finding a parabolic subalgebra $\mathfrak{p}_{\mathcal{M}}$ containing \mathcal{M} with reductive part \mathfrak{s}, and we will state our main result in this form. We will also state whether \mathcal{S} is saturated or not, rather than using the notation $\overline{\mathcal{M}}$. In the general case when $\mathfrak{t} \neq \mathcal{Z}(\mathfrak{s})$, the existence of positive systems containing \mathcal{M} is not equivalent to the existence of such a parabolic $\mathfrak{p}_{\mathcal{M}}$. However, our result, as stated below in terms of $\mathfrak{p}_{\mathcal{M}}$, is still valid in this case.
1.5. Main Theorem: Let \mathfrak{g} be a simple Lie algebra, $\mathfrak{t} \subset \mathfrak{g}$ a toral subalgebra, \mathfrak{s} the centralizer of \mathfrak{t}, \mathcal{R} the set of \mathfrak{t}-roots, $\mathcal{S} \subset \mathcal{R}$, and set $\mathcal{M}=\oplus_{\nu \in \mathcal{S}} \mathfrak{g}^{\nu}$.
(a) Assume that $\left(\operatorname{Sym}^{(}(\mathcal{M})\right)^{\mathfrak{s}}=\mathbf{C}$. If \mathfrak{g} is of type A or D or if \mathcal{S} is saturated and \mathfrak{g} is of type B, C, or G_{2} then there exists a parabolic subalgebra $\mathfrak{p}_{\mathcal{M}}$ with reductive part \mathfrak{s} such that $\mathcal{M} \subset \mathfrak{p}_{\mathcal{M}}$.
(b) If \mathfrak{g} is not of type A or D , there exist \mathcal{S} satisfying the condition that $\left(\operatorname{Sym}^{(\mathcal{M}))^{\mathfrak{s}}=\mathbf{C}, ~}\right.$ such that no such parabolic $\mathfrak{p}_{\mathcal{M}}$ exists. Moreover, if \mathfrak{g} is $\mathrm{F}_{4}, \mathrm{E}_{6}, \mathrm{E}_{7}$, or E_{8}, then \mathcal{S} can be chosen to be saturated.
1.6. Reduction to $\mathfrak{t}=\mathcal{Z}(\mathfrak{s})$. In the main theorem we do not require that $\mathfrak{t}=\mathcal{Z}(\mathfrak{s})$. However, the general case reduces to this case as follows: Set $\mathfrak{t}^{\prime}:=\mathcal{Z}(\mathfrak{s})$ and let \mathcal{R}^{\prime} be the set of \mathfrak{t}^{\prime}-roots. The natural projection $\pi:\left(\mathfrak{t}^{\prime}\right)^{*} \rightarrow \mathfrak{t}^{*}$ induces a surjection of \mathcal{R}^{\prime} onto \mathcal{R}. Set $\mathcal{S}^{\prime}:=\pi^{-1}(\mathcal{S})$ and notice that

$$
\mathcal{M}=\oplus_{\nu \in \mathcal{S}} \mathfrak{g}^{\nu}=\oplus_{\nu^{\prime} \in \mathcal{S}^{\prime}} \mathfrak{g}^{\nu^{\prime}}
$$

and that if \mathcal{S} is saturated, so is \mathcal{S}^{\prime}. Moreover, the centralizer of \mathfrak{t}^{\prime} is again \mathfrak{s}. Thus in proving that $\left(\operatorname{Sym}^{(\mathcal{M}))^{\mathfrak{s}}}=\mathbf{C}\right.$ is a sufficient condition we may assume that $\mathfrak{t}=\mathcal{Z}(\mathfrak{s})$. In the cases
 which $\mathfrak{t}=\mathcal{Z}(\mathfrak{s})$.

For the rest of the paper we assume that $\mathfrak{t}=\mathcal{Z}(\mathfrak{s})$.
1.7. Organization and Conventions. In section 2 we describe explicitly all \mathfrak{t}-root systems and the respective t-root spaces for each of the classical simple Lie algebras. In section 3 we first prove the existence of $\mathfrak{p}_{\mathcal{M}}$ when \mathfrak{g} is classical and \mathcal{S} is saturated. We then handle the case of non-saturated \mathcal{S} in types A and D , and finish the section by giving examples in types B and C of non-saturated \mathcal{S} satisfying the condition $\left(\operatorname{Sym}^{\circ}(\mathcal{M})\right)^{\mathfrak{s}}=\mathbf{C}$ for which no parabolic subalgebra $\mathfrak{p}_{\mathcal{M}}$ exists. In section 4 we first treat the case when \mathfrak{g} is of type G_{2}, proving the result when \mathcal{S} is saturated and giving an example where \mathcal{S} is non-saturated. We then construct examples in types $\mathrm{F}_{4}, \mathrm{E}_{6}, \mathrm{E}_{7}$, and E_{8} of saturated \mathcal{S}
for which $\left(\operatorname{Sym}^{(}(\mathcal{M})\right)^{\mathfrak{s}}=\mathbf{C}$ and for which no parabolic subalgebra $\mathfrak{p}_{\mathcal{M}}$ exists. That is, in section 3 we establish all parts of the theorem dealing with classical Lie algebras, and in section 4 we establish all parts dealing with the exceptional Lie algebras.

Throughout the paper we work over the field of complex numbers C. All Lie algebras, modules, etc., are over \mathbf{C} unless explicitly stated otherwise. The notation \subset includes the possibility of equality.

2. \mathfrak{t}-ROOTS AND \mathfrak{t}-ROOT SPACES FOR CLASSICAL LIE ALGEBRAS \mathfrak{g}.

2.1. First we describe the parabolic subalgebras and the corresponding sets \mathcal{R} for the classical Lie algebras. For convenience of notation we will work with the reductive Lie algebra $\mathfrak{g l}_{n}$ instead of $\mathfrak{s l}_{n}$. For the rest of this section \mathfrak{g} is a classical simple Lie algebra of type B, C, or D or $\mathfrak{g}=\mathfrak{g l}_{n}$. Moreover, we fix a Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$. For a comprehensive source on simple complex Lie algebras we refer the reader to [B]. For a treatment of parabolic subalgebras of \mathfrak{g} containing a fixed Cartan subalgebra \mathfrak{h}, the reader may also consult [DP].
2.2. Let $\mathcal{P}=\left\{\mathrm{I}_{1}, \ldots, \mathrm{I}_{k}\right\}$ be a partition of $\{1, \ldots, n\}$. We say that \mathcal{P} is totally ordered if we have given a total order on the set $\left\{\mathrm{I}_{1}, \ldots, \mathrm{I}_{k}\right\}$. We write $\mathcal{P}(i)$ for the part of \mathcal{P} which contains i. The inequalities $\mathcal{P}(i) \prec \mathcal{P}(j)$ and $\mathcal{P}(i) \preceq \mathcal{P}(j)$ are taken in the total order of the parts of \mathcal{P}. For the standard basis $\left\{\varepsilon_{1}, \ldots, \varepsilon_{n}\right\}$ of \mathfrak{h}^{*} we denote the dual basis of \mathfrak{h} by $\left\{h_{1}, \ldots, h_{n}\right\}$. A total order on the set $\left\{ \pm \delta_{1}, \ldots, \pm \delta_{k}\right\}$ is compatible with multiplication by -1 if, for $x, y \in\left\{ \pm \delta_{1}, \ldots, \pm \delta_{k}\right\}, x \prec y$ implies $-y \prec-x$. To simplify notation we adopt the convention that B_{1}, respectively C_{1}, is a subalgebra of $\mathfrak{g}=\mathrm{B}_{n}$, respectively $\mathfrak{g}=\mathrm{C}_{n}$, isomorphic to A_{1} and whose roots are short, respectively long roots, of \mathfrak{g}. The subalgebras $\mathrm{D}_{2}=\mathrm{A}_{1} \oplus \mathrm{~A}_{1}$ and $\mathrm{D}_{3}=\mathrm{A}_{3}$ of D_{n} have similar meaning.

Let \mathfrak{g} be of type $\mathrm{X}_{n}=\mathrm{A}_{n}, \mathrm{~B}_{n}, \mathrm{C}_{n}$, or D_{n} and let \mathfrak{s} be a subalgebra of \mathfrak{g} which is the reductive part of a parabolic subalgebra of \mathfrak{g}. Every simple ideal of \mathfrak{s} is isomorphic to A_{r} or X_{r} for some r. Furthermore, if \mathfrak{g} is not of type $\mathrm{A}_{n}, \mathfrak{s}$ has at most one simple ideal of type X_{r}. For \mathfrak{g} of type $\mathrm{X}_{n}=\mathrm{B}_{n}, \mathrm{C}_{n}$, or D_{n} the parabolic subalgebras of \mathfrak{g} are split into two types depending on whether their reductive parts contain (Type II) or do not contain (Type I) a simple ideal of type X_{r} (including $\mathrm{B}_{1}, \mathrm{C}_{1}, \mathrm{D}_{2}$, or D_{3}).

In the description of the combinatorics of the simple classical Lie algebras below, the formulas for their parabolic subalgebras \mathfrak{p} containing a fixed reductive part \mathfrak{s} look very uniform (e.g. 11). In some instances this is misleading since the formulas do not explicitly indicate the subalgebra \mathfrak{s} which, however, is an integral part of the structure of \mathfrak{p}.

We now list the combinatorial descriptions of the parabolic subalgebras and related data in the classical cases.
2.3. $\mathfrak{g}=\mathfrak{g l}_{n}$.

1. The roots of \mathfrak{g} are: $\Delta=\left\{\varepsilon_{i}-\varepsilon_{j} \mid 1 \leqslant i \neq j \leqslant n\right\}$
2. Parabolic subalgebras of \mathfrak{g} are in one-to-one correspondence with:

$$
\text { totally ordered partitions } \mathcal{P}=\left(\mathrm{I}_{1}, \ldots, \mathrm{I}_{k}\right) \text { of }\{1, \ldots, n\} .
$$

Given a totally ordered partition \mathcal{P},
3. The roots of $\mathfrak{p}_{\mathcal{P}}$ are $\left\{\varepsilon_{i}-\varepsilon_{j} \mid i \neq j, \mathcal{P}(i) \preceq \mathcal{P}(j)\right\}$
4. The roots of $\mathfrak{s P}$ are $\left\{\varepsilon_{i}-\varepsilon_{j} \mid i \neq j, \mathcal{P}(i)=\mathcal{P}(j)\right\}$
5. $\mathfrak{s}_{\mathcal{P}}=\oplus_{i} \mathfrak{s}_{\mathcal{P}}^{i}$, where $\mathfrak{s}_{\mathcal{P}}^{i} \cong \mathfrak{g l}_{\mid I_{i}} ;$
6. The Cartan subalgebra of $\mathfrak{s}_{\mathcal{P}}^{i}$ is spanned by $\left\{h_{j}\right\}_{j \in \mathrm{I}_{i}}$
7. The roots of $\mathfrak{s}_{\mathcal{P}}^{i}$ are $\left\{\varepsilon_{j}-\varepsilon_{l} \mid j \neq l \in \mathrm{I}_{i}\right\}$.
8. $\mathfrak{t}_{\mathcal{P}}$ has a basis $\left\{t_{1}, \ldots, t_{k}\right\}$ with $t_{i}=\frac{1}{\left|\mathrm{I}_{i}\right|} \sum_{j \in \mathrm{I}_{i}} h_{j}$

If $\left\{\delta_{1}, \ldots, \delta_{k}\right\}$ is the basis of \mathfrak{t}^{*} dual to $\left\{t_{1}, \ldots, t_{k}\right\}$ then
9. $\mathcal{R}=\left\{\delta_{i}-\delta_{j} \mid 1 \leqslant i \neq j \leqslant k\right\}$.
10. For $\nu=\delta_{i}-\delta_{j} \in \mathcal{R}, \mathfrak{g}^{\nu} \cong \mathrm{V}_{i} \otimes \mathrm{~V}_{j}^{*}$, where V_{i} and V_{j}^{*} are the natural $\mathfrak{s}_{\mathcal{P}}^{i}$-module and the dual of the natural $\mathfrak{s}_{\mathcal{P}}^{j}$-module respectively, all other factors of $\mathfrak{s}_{\mathcal{P}}$ acting trivially.
11. The parabolic subalgebras of \mathfrak{g} whose reductive part is $\mathfrak{s P}_{\mathcal{P}}$ are in a bijection with the ordered partitions \mathcal{Q} of $\{1, \ldots, n\}$ whose parts are the same as the parts of \mathcal{P} or, equivalently, with total orders on the set $\left\{\delta_{1}, \ldots, \delta_{k}\right\}$.
2.4. $\mathfrak{g}=\mathrm{B}_{n}$

1. The roots of \mathfrak{g} are: $\Delta=\left\{ \pm \varepsilon_{i} \pm \varepsilon_{j}, \pm \varepsilon_{i} \mid 1 \leqslant i \neq j \leqslant n\right\}$.
2. Parabolic subalgebras of \mathfrak{g} are in one-to-one correspondence with:

Type I: pairs (\mathcal{P}, σ), where $\mathcal{P}=\left(\mathrm{I}_{1}, \ldots, \mathrm{I}_{k}\right)$ is a totally ordered partition of $\{1, \ldots, n\}$ and $\sigma:\{1, \ldots, n\} \rightarrow\{ \pm 1\}$ is a choice of signs.

Type II: pairs (\mathcal{P}, σ), where $\mathcal{P}=\left(\mathrm{I}_{0}, \mathrm{I}_{1}, \ldots, \mathrm{I}_{k}\right)$ is a totally ordered partition of $\{1, \ldots, n\}$ with largest element I_{0} and $\sigma:\{1, \ldots, n\} \backslash \mathrm{I}_{0} \rightarrow\{ \pm 1\}$ is a choice of signs.

In Type I:

3. The roots of $\mathfrak{p}_{(\mathcal{P}, \sigma)}$ are

$$
\left\{\sigma(i) \varepsilon_{i}-\sigma(j) \varepsilon_{j} \mid i \neq j, \mathcal{P}(i) \preceq \mathcal{P}(j)\right\} \cup\left\{\sigma(i) \varepsilon_{i}+\sigma(j) \varepsilon_{j}, \sigma(i) \varepsilon_{i} \mid i \neq j\right\}
$$

4. The roots of $\mathfrak{s}_{(\mathcal{P}, \sigma)}$ are $\left\{\sigma(i) \varepsilon_{i}-\sigma(j) \varepsilon_{j} \mid i \neq j, \mathcal{P}(i)=\mathcal{P}(j)\right\}$.
5. $\mathfrak{s}_{(\mathcal{P}, \sigma)}=\oplus_{i} \mathfrak{s}_{(\mathcal{P}, \sigma)}^{i}$, where $\mathfrak{s}_{(\mathcal{P}, \sigma)}^{i} \cong \mathfrak{g l}_{\left|I_{i}\right|}$.
6. The Cartan subalgebra of $\mathfrak{s}_{\mathcal{P}}^{i}$ is spanned by $\left\{\sigma(j) h_{j}\right\}_{j \in \mathrm{I}_{i}}$
7. The roots of $\mathfrak{s}_{\mathcal{P}}^{i}$ are $\left\{\sigma(j) \varepsilon_{j}-\sigma(l) \varepsilon_{l} \mid j \neq l \in \mathrm{I}_{i}\right\}$.
8. $\mathfrak{t}_{(\mathcal{P}, \sigma)}$ has a basis $\left\{t_{1}, \ldots, t_{k}\right\}$ with $t_{i}=\frac{1}{\left|I_{i}\right|} \sum_{j \in \mathrm{I}_{i}} \sigma(j) h_{j}$.

If $\left\{\delta_{1}, \ldots, \delta_{k}\right\}$ the basis of \mathfrak{t}^{*} dual to $\left\{t_{1}, \ldots, t_{k}\right\}$ then
9. $\mathcal{R}=\left\{ \pm \delta_{i} \pm \delta_{j}, \pm \delta_{i} \mid 1 \leqslant i \neq j \leqslant k\right\} \cup\left\{ \pm 2 \delta_{i}| | I_{i} \mid>1\right\}$.
10. For $\nu \in \mathcal{R}$,
(a) $\mathfrak{g}^{\nu} \cong \mathrm{V}_{i}^{ \pm} \otimes \mathrm{V}_{j}^{ \pm}$if $\nu= \pm \delta_{i} \pm \delta_{j}$,
(b) $\mathfrak{g}^{\nu} \cong \mathrm{V}_{i}^{ \pm}$if $\nu= \pm \delta_{i}$, and
(c) $\mathfrak{g}^{\nu} \cong \Lambda^{2} \mathrm{~V}_{i}^{ \pm}$if $\nu= \pm 2 \delta_{i}$,
where V_{i}^{+}and V_{i}^{-}respectively are the natural $\mathfrak{s}_{(\mathcal{P}, \sigma)}^{i}$-module and its dual, and all other factors of $\mathfrak{s}_{(\mathcal{P}, \sigma)}$ act trivially.
11. The parabolic subalgebras of \mathfrak{g} whose reductive part is $\mathfrak{s}_{\mathcal{P}, \sigma}$ are in a bijection with the pairs (\mathcal{Q}, τ) such that the parts of \mathcal{Q} are the same as the parts of \mathcal{P} and $\sigma_{\mid I_{i}}=$ $\pm \tau_{I_{i}}$ for every part I_{i} or, equivalently, with total orders on the set $\left\{ \pm \delta_{1}, \ldots, \pm \delta_{k}\right\}$ compatible with multiplication by -1 .

In Type II:

3. The roots of $\mathfrak{p}_{(\mathcal{P}, \sigma)}$ are

$$
\begin{aligned}
\left\{\sigma(i) \varepsilon_{i}-\sigma(j) \varepsilon_{j} \mid i \neq j, \mathcal{P}(i) \preceq \mathcal{P}(j) \prec \mathrm{I}_{0}\right\} \cup\left\{ \pm \varepsilon_{i} \pm \varepsilon_{j}, \pm \varepsilon_{i} \mid i \neq j, i \in \mathrm{I}_{0}, j \in \mathrm{I}_{0}\right\} \\
\cup\left\{\sigma(i) \varepsilon_{i}+\sigma(j) \varepsilon_{j}, \sigma(i) \varepsilon_{i} \mid i \neq j, i \notin \mathrm{I}_{0}, j \notin \mathrm{I}_{0}\right\} \cup\left\{\sigma(i) \varepsilon_{i} \pm \varepsilon_{j} \mid i \notin \mathrm{I}_{0}, j \in \mathrm{I}_{0}\right\}
\end{aligned}
$$

4. The roots of $\mathfrak{s}_{(\mathcal{P}, \sigma)}$ are

$$
\left\{\sigma(i) \varepsilon_{i}-\sigma(j) \varepsilon_{j} \mid i \neq j, \mathcal{P}(i)=\mathcal{P}(j) \prec \mathrm{I}_{0}\right\} \cup\left\{ \pm \varepsilon_{i} \pm \varepsilon_{j}, \pm \varepsilon_{i} \mid i \neq j \in \mathrm{I}_{0}\right\} .
$$

5. $\mathfrak{s}_{(\mathcal{P}, \sigma)}=\oplus_{i} \mathfrak{s}_{(\mathcal{P}, \sigma)}^{i}$, where $\mathfrak{s}_{(\mathcal{P}, \sigma)}^{0} \cong \mathrm{~B}_{\left|\mathrm{I}_{0}\right|}$ and $\mathfrak{s}_{(\mathcal{P}, \sigma)}^{i} \cong \mathfrak{g l}_{\left|\mathrm{I}_{i}\right|}$ for $i>0$.
6. The Cartan subalgebra of $\mathfrak{s}_{\mathcal{P}}^{i}$ is spanned by $\left\{h_{j}\right\}_{j \in \mathrm{I}_{0}}$ for $i=0$ and $\left\{\sigma(j) h_{j}\right\}_{j \in \mathrm{I}_{i}}$ for $i>0$.
7. The roots of $\mathfrak{s}_{\mathcal{P}}^{i}$ are $\left\{ \pm \varepsilon_{j} \pm \varepsilon_{l}, \pm \varepsilon_{j} \mid j \neq l \in \mathrm{I}_{0}\right\}$ for $i=0$ and $\left\{\sigma(j) \varepsilon_{j}-\sigma(l) \varepsilon_{l} \mid j \neq l \in\right.$ $\left.\mathrm{I}_{i}\right\}$ for $i>0$.
8. $\mathfrak{t}_{(\mathcal{P}, \sigma)}$ has a basis $\left\{t_{1}, \ldots, t_{k}\right\}$ with $t_{i}=\frac{1}{\left|I_{i}\right|} \sum_{j \in \mathrm{I}_{i}} \sigma(j) h_{j}$.

If $\left\{\delta_{1}, \ldots, \delta_{k}\right\}$ is the basis of \mathfrak{t}^{*} dual to $\left\{t_{1}, \ldots, t_{k}\right\}$ then
9. $\mathcal{R}=\left\{ \pm \delta_{i} \pm \delta_{j}, \pm \delta_{i} \mid 1 \leqslant i \neq j \leqslant k\right\} \cup\left\{ \pm 2 \delta_{i}| | I_{i} \mid>1\right\}$.
10. For $\nu \in \mathcal{R}$,
(a) $\mathfrak{g}^{\nu} \cong \mathrm{V}_{i}^{ \pm} \otimes \mathrm{V}_{j}^{ \pm}$if $\nu= \pm \delta_{i} \pm \delta_{j}$,
(b) $\mathfrak{g}^{\nu} \cong \mathrm{V}_{i}^{ \pm} \otimes \mathrm{V}_{0}$ if $\nu= \pm \delta_{i}$, and
(c) $\mathfrak{g}^{\nu} \cong \Lambda^{2} V_{i}^{ \pm}$if $\nu= \pm 2 \delta_{i}$
where V_{i}^{+}and V_{i}^{-}denote the natural $\mathfrak{s}_{(\mathcal{P}, \sigma)}^{i}$-module and its dual respectively for $i>$ $0, \mathrm{~V}_{0}$ denotes the natural $\mathfrak{s}_{(\mathcal{P}, \sigma)}^{0}$-module, and all other factors of $\mathfrak{s}_{(\mathcal{P}, \sigma)}$ act trivially. Note that, if $\mathfrak{s}_{(\mathcal{P}, \sigma)}=\mathrm{B}_{1} \cong \mathfrak{s l}_{2}$, then V_{0} is the three dimensional irreducible $\mathfrak{s}_{(\mathcal{P}, \sigma)}{ }^{-}$ module.
11. The parabolic subalgebras of \mathfrak{g} whose reductive part is $\mathfrak{s}_{\mathcal{P}, \sigma}$ are in a bijection with the pairs (\mathcal{Q}, τ) such that the parts of \mathcal{Q} are the same as the parts of $\mathcal{P}, \mathrm{I}_{0}$ is the largest element of \mathcal{Q}, and $\sigma_{\mid I_{i}}= \pm \tau_{\mid I_{i}}$ for every part $\mathrm{I}_{i} \neq \mathrm{I}_{0}$ or, equivalently, with total orders on the set $\left\{ \pm \delta_{1}, \ldots, \pm \delta_{k}\right\}$ compatible with multiplication by -1 .

2.5. $\mathfrak{g}=\mathrm{C}_{\boldsymbol{n}}$

1. The roots of \mathfrak{g} are: $\Delta=\left\{ \pm \varepsilon_{i} \pm \varepsilon_{j}, \pm 2 \varepsilon_{i} \mid 1 \leqslant i \neq j \leqslant n\right\}$.
2. Parabolic subalgebras of \mathfrak{g} are in one-to-one correspondence with:

Type I: pairs (\mathcal{P}, σ), where $\mathcal{P}=\left(\mathrm{I}_{1}, \ldots, \mathrm{I}_{k}\right)$ is a totally ordered partition of $\{1, \ldots, n\}$ and $\sigma:\{1, \ldots, n\} \rightarrow\{ \pm 1\}$ is a choice of signs.

Type II: pairs (\mathcal{P}, σ), where $\mathcal{P}=\left(\mathrm{I}_{0}, \mathrm{I}_{1}, \ldots, \mathrm{I}_{k}\right)$ is a totally ordered partition of $\{1, \ldots, n\}$ with largest element I_{0} and $\sigma:\{1, \ldots, n\} \backslash \mathrm{I}_{0} \rightarrow\{ \pm 1\}$ is a choice of signs.

In Type I:

3. The roots of $\mathfrak{p}_{(\mathcal{P}, \sigma)}$ are

$$
\left\{\sigma(i) \varepsilon_{i}-\sigma(j) \varepsilon_{j} \mid i \neq j, \mathcal{P}(i) \preceq \mathcal{P}(j)\right\} \cup\left\{\sigma(i) \varepsilon_{i}+\sigma(j) \varepsilon_{j}, 2 \sigma(i) \varepsilon_{i} \mid i \neq j\right\}
$$

4. The roots of $\mathfrak{s}_{(\mathcal{P}, \sigma)}$ are $\left\{\sigma(i) \varepsilon_{i}-\sigma(j) \varepsilon_{j} \mid i \neq j, \mathcal{P}(i)=\mathcal{P}(j)\right\}$.
5. $\mathfrak{s}_{(\mathcal{P}, \sigma)}=\oplus_{i} \mathfrak{s}_{(\mathcal{P}, \sigma)}^{i}$, where $\mathfrak{s}_{(\mathcal{P}, \sigma)}^{i} \cong \mathfrak{g l}_{\left|I_{i}\right|}$.
6. The Cartan subalgebra of $\mathfrak{s}_{\mathcal{P}}^{i}$ is spanned by $\left\{\sigma(j) h_{j}\right\}_{j \in \mathrm{I}_{i}}$.
7. The roots of $\mathfrak{s}_{(\mathcal{P}, \sigma)}^{i}$ are $\left\{\sigma(j) \varepsilon_{j}-\sigma(l) \varepsilon_{l} \mid j \neq l \in \mathrm{I}_{i}\right\}$.
8. $\mathfrak{t}_{(\mathcal{P}, \sigma)}$ has a basis $\left\{t_{1}, \ldots, t_{k}\right\}$ with $t_{i}=\frac{1}{\left|\mathrm{I}_{i}\right|} \sum_{j \in \mathrm{I}_{i}} \sigma(j) h_{j}$.

If $\left\{\delta_{1}, \ldots, \delta_{k}\right\}$ is the basis of \mathfrak{t}^{*} dual to $\left\{t_{1}, \ldots, t_{k}\right\}$ then
9. $\mathcal{R}=\left\{ \pm \delta_{i} \pm \delta_{j}, \pm 2 \delta_{i} \mid 1 \leqslant i \neq j \leqslant k\right\}$.
10. For $\nu \in \mathcal{R}$,
(a) $\mathfrak{g}^{\nu} \cong \mathrm{V}_{i}^{ \pm} \otimes \mathrm{V}_{j}^{ \pm}$if $\nu= \pm \delta_{i} \pm \delta_{j}$.
(b) $\mathfrak{g}^{\nu} \cong \operatorname{Sym}^{2} V_{i}^{ \pm}$if for $\nu= \pm 2 \delta_{i}$.
where V_{i}^{+}and V_{i}^{-}are the natural $\mathfrak{s}_{(\mathcal{P}, \sigma)}^{i}-$ module and its dual, and all other factors of $\mathfrak{s}_{(\mathcal{P}, \sigma)}$ act trivially.
11. The parabolic subalgebras of \mathfrak{g} whose reductive part is $\mathfrak{s}_{\mathcal{P}, \sigma}$ are in a bijection with the pairs (\mathcal{Q}, τ) such that the parts of \mathcal{Q} are the same as the parts of \mathcal{P} and $\sigma_{\mid I_{i}}=$ $\pm \tau_{\mathrm{I}_{i}}$ for every part I_{i} or, equivalently, with total orders on the set $\left\{ \pm \delta_{1}, \ldots, \pm \delta_{k}\right\}$ compatible with multiplication by -1 .

In Type II:

3. The roots of $\mathfrak{p}_{(\mathcal{P}, \sigma)}$ are

$$
\begin{array}{r}
\left\{\sigma(i) \varepsilon_{i}-\sigma(j) \varepsilon_{j} \mid i \neq j, \mathcal{P}(i) \preceq \mathcal{P}(j) \prec \mathrm{I}_{0}\right\} \cup\left\{ \pm \varepsilon_{i} \pm \varepsilon_{j}, \pm 2 \varepsilon_{i} \mid i \neq j, i \in \mathrm{I}_{0}, j \in \mathrm{I}_{0}\right\} \cup \\
\left\{\sigma(i) \varepsilon_{i}+\sigma(j) \varepsilon_{j}, \sigma(i) 2 \varepsilon_{i} \mid i \neq j, i \notin \mathrm{I}_{0}, j \notin \mathrm{I}_{0}\right\} \cup\left\{\sigma(i) \varepsilon_{i} \pm \varepsilon_{j} \mid i \notin \mathrm{I}_{0}, j \in \mathrm{I}_{0}\right\}
\end{array}
$$

4. The roots of $\mathfrak{s}_{(\mathcal{P}, \sigma)}$ are

$$
\left\{\sigma(i) \varepsilon_{i}-\sigma(j) \varepsilon_{j} \mid i \neq j, \mathcal{P}(i)=\mathcal{P}(j) \prec \mathrm{I}_{0}\right\} \cup\left\{ \pm \varepsilon_{i} \pm \varepsilon_{j}, \pm 2 \varepsilon_{i} \mid i \neq j \in \mathrm{I}_{0}\right\}
$$

5. $\mathfrak{s}_{(\mathcal{P}, \sigma)}=\oplus_{i=0}^{k} \mathfrak{s}_{(\mathcal{P}, \sigma)}^{i}$, where $\mathfrak{s}_{(\mathcal{P}, \sigma)}^{0} \cong \mathrm{C}_{\left|\mathrm{I}_{0}\right|}$ and $\mathfrak{s}_{(\mathcal{P}, \sigma)}^{i} \cong \mathfrak{g l}_{\left|\mathrm{I}_{i}\right|}$ for $i>0$.
6. The Cartan subalgebra of $\mathfrak{s}_{(\mathcal{P}, \sigma)}^{i}$ is spanned by $\left\{h_{j}\right\}_{j \in \mathrm{I}_{0}}$ for $i=0$ and $\left\{\sigma(j) h_{j}\right\}_{j \in \mathrm{I}_{i}}$ for $i>0$.
7. The roots of $\mathfrak{s}_{(\mathcal{P}, \sigma)}^{i}$ are $\left\{ \pm \varepsilon_{j} \pm \varepsilon_{l}, \pm 2 \varepsilon_{j} \mid j \neq l \in \mathrm{I}_{0}\right\}$ for $i=0$ and $\left\{\sigma(j) \varepsilon_{j}-\sigma(l) \varepsilon_{l} \mid j \neq\right.$ $\left.l \in \mathrm{I}_{i}\right\}$ for $i>0$.
8. $\mathfrak{t}_{(\mathcal{P}, \sigma)}$ has a basis $\left\{t_{1}, \ldots, t_{k}\right\}$ with $t_{i}=\frac{1}{\left|I_{i}\right|} \sum_{j \in I_{i}} \sigma(j) h_{j}$

If $\left\{\delta_{1}, \ldots, \delta_{k}\right\}$ is the basis of \mathfrak{t}^{*} dual to $\left\{t_{1}, \ldots, t_{k}\right\}$ then
9. $\mathcal{R}=\left\{ \pm \delta_{i} \pm \delta_{j}, \pm \delta_{i}, \pm 2 \delta_{i} \mid 1 \leqslant i \neq j \leqslant k\right\}$.
10. For $\nu \in \mathcal{R}$,
(a) $\mathfrak{g}^{\nu} \cong \mathrm{V}_{i}^{ \pm} \otimes \mathrm{V}_{j}^{ \pm}$if $\nu= \pm \delta_{i} \pm \delta_{j}$,
(b) $\mathfrak{g}^{\nu} \cong \mathrm{V}_{i}^{ \pm} \otimes \mathrm{V}_{0}$ if $\nu= \pm \delta_{i}$,
(c) \mathfrak{g}^{ν} is isomorphic to $\operatorname{Sym}^{2} V_{i}^{ \pm}$if $\nu= \pm 2 \delta_{i}$, where V_{i}^{+}and V_{i}^{-}denote the natural $\mathfrak{s}_{(\mathcal{P}, \sigma)}^{i}$-module and its dual for $i>0, \mathrm{~V}_{0}$ is the natural $\mathfrak{s}_{(\mathcal{P}, \sigma)}^{0}$-module, and where all other factors of $\mathfrak{s}_{(\mathcal{P}, \sigma)}$ act trivially. Note that, if $\mathfrak{s}_{(\mathcal{P}, \sigma)}=\mathrm{C}_{1} \cong \mathfrak{s l}_{2}$, then V_{0} is the two dimensional irreducible $\mathfrak{s}_{(\mathcal{P}, \sigma)}$-module.
11. The parabolic subalgebras of \mathfrak{g} whose reductive part is $\mathfrak{s}_{\mathcal{P}, \sigma}$ are in a bijection with the pairs (\mathcal{Q}, τ) such that the parts of \mathcal{Q} are the same as the parts of $\mathcal{P}, \mathrm{I}_{0}$ is the largest element of \mathcal{Q}, and $\sigma_{\mid \mathrm{I}_{i}}= \pm \tau_{\mathrm{I}_{i}}$ for every part $\mathrm{I}_{i} \neq \mathrm{I}_{0}$ or, equivalently, with total orders on the set $\left\{ \pm \delta_{1}, \ldots, \pm \delta_{k}\right\}$ compatible with multiplication by -1 .

2.6. $\mathfrak{g}=\mathrm{D}_{n}$.

1. The roots of \mathfrak{g} are: $\Delta=\left\{ \pm \varepsilon_{i} \pm \varepsilon_{j}, \mid 1 \leqslant i \neq j \leqslant n\right\}$.
2. Parabolic subalgebras of \mathfrak{g} are determined by:

Type I: pairs (\mathcal{P}, σ), where $\mathcal{P}=\left(\mathrm{I}_{0}, \mathrm{I}_{1}, \ldots, \mathrm{I}_{k}\right)$ is a totally ordered partition of $\{1, \ldots, n\}$ and $\sigma:\{1, \ldots, n\} \rightarrow\{ \pm 1\}$ is a choice of signs.
Two pairs $\left(\mathcal{P}^{\prime}, \sigma^{\prime}\right)$ and $\left(\mathcal{P}^{\prime \prime}, \sigma^{\prime \prime}\right)$ determine the same parabolic subalgebra if and only if \mathcal{P}^{\prime} and $\mathcal{P}^{\prime \prime}$ are the same ordered partitions whose maximal part I_{0} contains one element and σ^{\prime} and $\sigma^{\prime \prime}$ coincide on $\{1, \ldots, n\} \backslash \mathrm{I}_{0}$.

Type II: pairs (\mathcal{P}, σ), where $\mathcal{P}=\left(\mathrm{I}_{0}, \mathrm{I}_{1}, \ldots, \mathrm{I}_{k}\right)$ is a totally ordered partition of $\{1, \ldots, n\}$ with largest element I_{0} such that $\left|\mathrm{I}_{0}\right| \geqslant 2$ and $\sigma:\{1, \ldots, n\} \backslash \mathrm{I}_{0} \rightarrow\{ \pm 1\}$ is a choice of signs.
In Type I:
3. The roots of $\mathfrak{p}_{(\mathcal{P}, \sigma)}$ are $\left\{\sigma(i) \varepsilon_{i}-\sigma(j) \varepsilon_{j} \mid i \neq j, \mathcal{P}(i) \preceq \mathcal{P}(j)\right\} \cup\left\{\sigma(i) \varepsilon_{i}+\sigma(j) \varepsilon_{j} \mid i \neq j\right\}$
4. The roots of $\mathfrak{s}_{(\mathcal{P}, \sigma)}$ are $\left\{\sigma(i) \varepsilon_{i}-\sigma(j) \varepsilon_{j} \mid i \neq j, \mathcal{P}(i)=\mathcal{P}(j)\right\}$.
5. $\mathfrak{s}_{(\mathcal{P}, \sigma)}=\oplus_{i} \mathfrak{s}_{(\mathcal{P}, \sigma)}^{i}$, where $\mathfrak{s}_{(\mathcal{P}, \sigma)}^{i} \cong \mathfrak{g l}_{\left|I_{i}\right|}$.
6. The Cartan subalgebra of $\mathfrak{s}_{\mathcal{P}}^{i}$ is spanned by $\left\{\sigma(j) h_{j}\right\}_{j \in \mathrm{I}_{i}}$
7. The roots of $\mathfrak{s}_{(\mathcal{P}, \sigma)}^{i}$ are $\left\{\sigma(j) \varepsilon_{j}-\sigma(l) \varepsilon_{l} \mid j \neq l \in \mathrm{I}_{i}\right\}$.
8. $\mathfrak{t}_{(\mathcal{P}, \sigma)}$ has a basis $\left\{t_{1}, \ldots, t_{k}\right\}$ with $t_{i}=\frac{1}{\left|\bar{I}_{i}\right|} \sum_{j \in \mathrm{I}_{i}} \sigma(j) h_{j}$.

If $\left\{\delta_{1}, \ldots, \delta_{k}\right\}$ is the basis of \mathfrak{t}^{*} dual to $\left\{t_{1}, \ldots, t_{k}\right\}$ then
9. $\mathcal{R}=\left\{ \pm \delta_{i} \pm \delta_{j} \mid 1 \leqslant i \neq j \leqslant k\right\} \cup\left\{ \pm 2 \delta_{i}| | I_{i} \mid>1\right\}$.
10. For $\nu \in \mathcal{R}$,
(a) $\mathfrak{g}^{\nu} \cong \mathrm{V}_{i}^{ \pm} \otimes \mathrm{V}_{j}^{ \pm}$if $\nu= \pm \delta_{i} \pm \delta_{j}$.
(b) $\mathfrak{g}^{\nu} \cong \Lambda^{2} \mathrm{~V}_{i}^{ \pm}$if $\nu= \pm 2 \delta_{i}$.
where V_{i}^{+}and V_{i}^{-}are the natural $\mathfrak{s}_{(\mathcal{P}, \sigma)}^{i}$-module and its dual, and all other factors of $\mathfrak{s}_{\left(\mathcal{P}_{, \sigma)}\right.}$ act trivially.
11. Every parabolic subalgebra of \mathfrak{g} whose reductive part is $\mathfrak{s}_{\mathcal{P}, \sigma}$ corresponds to a pair (\mathcal{Q}, τ) such that the parts of \mathcal{Q} are the same as the parts of \mathcal{P} and $\sigma_{\mid I_{i}}= \pm \tau_{\mid I_{i}}$ for every part I_{i} or, equivalently, to a total order on the set $\left\{ \pm \delta_{1}, \ldots, \pm \delta_{k}\right\}$ compatible with multiplication by -1 . Note that this correspondence is not bijective since two different total orders may determine the same parabolic subalgebra.

In Type II:

3. Roots of $\mathfrak{p}_{(\mathcal{P}, \sigma)}=$

$$
\begin{aligned}
\left\{\sigma(i) \varepsilon_{i}-\sigma(j) \varepsilon_{j}\right. & \left.\mid i \neq j, \mathcal{P}(i) \preceq \mathcal{P}(j) \prec \mathrm{I}_{0}\right\} \cup\left\{ \pm \varepsilon_{i} \pm \varepsilon_{j} \mid i \neq j, i \in \mathrm{I}_{0}, j \in \mathrm{I}_{0}\right\} \\
& \cup\left\{\sigma(i) \varepsilon_{i}+\sigma(j) \varepsilon_{j} \mid i \neq j, i \notin \mathrm{I}_{0}, j \notin \mathrm{I}_{0}\right\} \cup\left\{\sigma(i) \varepsilon_{i} \pm \varepsilon_{j} \mid i \notin \mathrm{I}_{0}, j \in \mathrm{I}_{0}\right\}
\end{aligned}
$$

4. Roots of $\mathfrak{s}_{(\mathcal{P}, \sigma)}=\left\{\sigma(i) \varepsilon_{i}-\sigma(j) \varepsilon_{j} \mid i \neq j, \mathcal{P}(i)=\mathcal{P}(j) \prec \mathrm{I}_{0}\right\} \cup\left\{ \pm \varepsilon_{i} \pm \varepsilon_{j} \mid i \neq j \in \mathrm{I}_{0}\right\}$.
5. $\mathfrak{s}_{(\mathcal{P}, \sigma)}=\oplus_{i=0}^{k} \mathfrak{s}_{(\mathcal{P}, \sigma)}^{i}$, where $\mathfrak{s}_{(\mathcal{P}, \sigma)}^{0} \cong \mathrm{D}_{\left|\mathrm{I}_{\mathrm{o}}\right|}$ and $\mathfrak{s}_{(\mathcal{P}, \sigma)}^{i} \cong \mathfrak{g l}_{\left|\mathrm{I}_{i}\right|}$ for $i>0$.
6. Cartan subalgebra of $\mathfrak{s}_{(\mathcal{P}, \sigma)}^{i}$ is spanned by $\left\{h_{j}\right\}_{j \in \mathrm{I}_{0}}$ for $i=0$ and by $\left\{\sigma(j) h_{j}\right\}_{j \in \mathrm{I}_{i}}$ for $i>0$;
7. roots of $\mathfrak{s}_{(\mathcal{P}, \sigma)}^{i}$ are $\left\{ \pm \varepsilon_{j} \pm \varepsilon_{l} \mid j \neq l \in \mathrm{I}_{0}\right\}$ for $i=0$ and $\left\{\sigma(j) \varepsilon_{j}-\sigma(l) \varepsilon_{l} \mid j \neq l \in \mathrm{I}_{i}\right\}$ for $i>0$.
8. $\mathfrak{t}_{(\mathcal{P}, \sigma)}$ has a basis $\left\{t_{1}, \ldots, t_{k}\right\}$ with $t_{i}=\frac{1}{\left|\bar{I}_{i}\right|} \sum_{j \in \mathrm{I}_{i}} \sigma(j) h_{j}$.

If $\left\{\delta_{1}, \ldots, \delta_{k}\right\}$ is the basis of \mathfrak{t}^{*} dual to $\left\{t_{1}, \ldots, t_{k}\right\}$ then
9. $\mathcal{R}=\left\{ \pm \delta_{i} \pm \delta_{j}, \pm \delta_{i} \mid 1 \leqslant i \neq j \leqslant k\right\} \cup\left\{ \pm 2 \delta_{i}| | I_{i} \mid>1\right\}$.
10. For $\nu \in \mathcal{R}$,
(a) $\mathfrak{g}^{\nu} \cong \mathrm{V}_{i}^{ \pm} \otimes \mathrm{V}_{j}^{ \pm}$if $\nu= \pm \delta_{i} \pm \delta_{j}$,
(b) $\mathfrak{g}^{\nu} \cong \mathrm{V}_{i}^{ \pm} \otimes \mathrm{V}_{0}$ if $\nu= \pm \delta_{i}$,
(c) $\mathfrak{g}^{\nu} \cong \Lambda^{2} V_{i}^{ \pm}$if $\nu= \pm 2 \delta_{i}$,
where V_{i}^{+}and V_{i}^{-}denote the natural $\mathfrak{s}_{(\mathcal{P}, \sigma)}^{i}$-module and its dual for $i>0, \mathrm{~V}_{0}$ is the natural $\mathfrak{s}_{(\mathcal{P}, \sigma)}^{0}$-module, and where all other factors of $\mathfrak{s}_{(\mathcal{P}, \sigma)}$ act trivially. Note that, if $\mathfrak{s}_{(\mathcal{P}, \sigma)}=\mathrm{D}_{2} \cong \mathfrak{s l}_{2} \oplus \mathfrak{s l}_{2}$, then V_{0} is the (external) tensor product of two twodimensional irreducible $\mathfrak{s l}_{2}$-modules; if $\mathfrak{s}_{(\mathcal{P}, \sigma)}=\mathrm{D}_{3} \cong \mathfrak{s l}_{4}$, then V_{0} the six dimensional irreducible $\mathfrak{s}_{(\mathcal{P}, \sigma)}$-module which is the second exterior power of the natural representation of $\mathfrak{s l}_{4}$.
11. The parabolic subalgebras of \mathfrak{g} whose reductive part is $\mathfrak{s}_{(\mathcal{P}, \sigma)}$ are in a bijection with the pairs (\mathcal{Q}, τ) such that the parts of \mathcal{Q} are the same as the parts of $\mathcal{P}, \mathrm{I}_{0}$ is the largest element of \mathcal{Q}, and $\sigma_{\mid I_{i}}= \pm \tau_{\mid I_{i}}$ for every part I_{i} or, equivalently, with total orders on the set $\left\{ \pm \delta_{1}, \ldots, \pm \delta_{k}\right\}$.

3. Proof of the Main Theorem when \mathfrak{g} is Classical.

3.1. Existence of $\mathfrak{p}_{\mathcal{M}}$ when \mathcal{S} is saturated. The idea is simple: using \mathcal{S} we define a binary relation \prec on the set $\left\{\delta_{1}, \ldots, \delta_{k}\right\}$ (respectively on $\left\{ \pm \delta_{1}, \ldots, \pm \delta_{k}\right\}$) and using the fact that $\left(\operatorname{Sym}^{\cdot}(\mathcal{M})\right)^{s}=\mathbf{C}$ we prove that \prec can be extended to a total order (respectively, to a total order compatible with multiplication by -1). The proof follows the same logic in all cases but is least technical in the case when $\mathfrak{g}=\mathfrak{g l}_{n}$. For clarity of exposition we present the proof for $\mathfrak{g}=\mathfrak{g l}_{n}$ first. Throughout the proof the partition \mathcal{P} (and the choice of signs σ) are fixed and instead of $\mathfrak{s}_{\mathcal{P}}\left(\operatorname{or} \mathfrak{s}_{(\mathcal{P}, \sigma)}\right)$ and $\mathfrak{s}_{\mathcal{P}}^{i}\left(\operatorname{or} \mathfrak{s}_{(\mathcal{P}, \sigma)}^{i}\right)$ we write \mathfrak{s} and \mathfrak{s}^{i} respectively.

First we consider the case when $\mathfrak{g}=\mathfrak{g l}_{n}$. Define a binary relation \prec on $\left\{\delta_{1}, \delta_{2}, \ldots, \delta_{k}\right\}$ by setting

$$
\begin{equation*}
\delta_{i} \prec \delta_{j} \quad \text { if } \quad \nu=\delta_{i}-\delta_{j} \in \mathcal{S} . \tag{3.1}
\end{equation*}
$$

The existence of a parabolic subalgebra $\mathfrak{p}_{\mathcal{M}}$ with reductive part \mathfrak{s} and containing \mathcal{M} is equivalent to the existence of a total order on $\left\{\delta_{1}, \delta_{2}, \ldots, \delta_{k}\right\}$ which extends \prec.

Note that \prec can be extended to a total order on $\left\{\delta_{1}, \delta_{2}, \ldots, \delta_{k}\right\}$ if and only if there is no cycle

$$
\begin{equation*}
\delta_{i_{1}} \prec \delta_{i_{2}} \prec \cdots \prec \delta_{i_{l}} \prec \delta_{i_{1}} . \tag{3.2}
\end{equation*}
$$

Assume that \prec cannot be extended to a total order on $\left\{\delta_{1}, \cdots, \delta_{k}\right\}$ and consider a cycle (3.2) of minimal length. Then $\nu_{1}=\delta_{i_{1}}-\delta_{i_{2}}, \nu_{2}=\delta_{i_{2}}-\delta_{i_{3}}, \cdots, \nu_{l}=\delta_{i_{l}}-\delta_{i_{1}}$ is a sequence of distinct elements of \mathcal{S}. Hence $\mathfrak{g}^{\nu_{1}} \oplus \mathfrak{g}^{\nu_{2}} \oplus \cdots \oplus \mathfrak{g}^{\nu_{l}}$ is a submodule of \mathcal{M} and $\operatorname{Sym}^{l}\left(\mathfrak{g}^{\nu_{1}} \oplus\right.$
 hand,

$$
\begin{align*}
\mathfrak{g}^{\nu_{1}} \otimes \mathfrak{g}^{\nu_{2}} \otimes \cdots \otimes \mathfrak{g}^{\nu_{l}} & \cong\left(\mathrm{~V}_{i_{1}} \otimes \mathrm{~V}_{i_{2}}^{*}\right) \otimes\left(\mathrm{V}_{i_{2}} \otimes \mathrm{~V}_{i_{3}}^{*}\right) \otimes \cdots \otimes\left(\mathrm{V}_{i_{l}} \otimes \mathrm{~V}_{i_{1}}^{*}\right) \\
& \cong\left(\mathrm{V}_{i_{1}} \otimes \mathrm{~V}_{i_{1}}^{*}\right) \otimes\left(\mathrm{V}_{i_{2}} \otimes \mathrm{~V}_{i_{2}}^{*}\right) \otimes \cdots \otimes\left(\mathrm{V}_{i_{l}} \otimes \mathrm{~V}_{i_{l}}^{*}\right), \tag{3.3}
\end{align*}
$$

where the lower index of a module shows which component of \mathfrak{s} acts non-trivially on it. Since, for every $1 \leqslant j \leqslant l, \mathrm{~V}_{i_{j}} \otimes \mathrm{~V}_{i_{j}}^{*}$ contains the trivial $\mathfrak{s}^{i_{j}}$-module, (3.3) shows that $\mathfrak{g}^{\nu_{1}} \otimes \mathfrak{g}^{\nu_{2}} \otimes \cdots \otimes \mathfrak{g}^{\nu_{l}}$ contains the trivial \mathfrak{s}-module which contradicts the assumption that $\left(\operatorname{Sym}^{(}(\mathcal{M})\right)^{\mathfrak{s}}=\mathbf{C}$. This contradiction shows that \prec can be extended to a total order on the set $\left\{\delta_{1}, \cdots, \delta_{k}\right\}$, which completes the proof when $\mathfrak{g}=\mathfrak{g l}_{n}$.

Next we consider the case when $\mathfrak{g} \neq \mathfrak{g l}_{n}$, i.e., we assume that \mathfrak{g} is a simple classical Lie algebra not of type A. Define a binary relation \prec on $\left\{ \pm, \delta_{1}, \pm \delta_{2}, \cdots, \pm \delta_{k}\right\}$ by setting

$$
\begin{array}{ll}
s_{i} \delta_{i} \prec s_{j} \delta_{j}, i \neq j & \text { if } \quad \nu=s_{i} \delta_{i}-s_{j} \delta_{j} \in \mathcal{S} \\
s_{i} \delta_{i} \prec-s_{i} \delta_{i} & \text { if } \quad \nu=\left\{\begin{array}{rl}
s_{i} \delta_{i} & \text { when } \mathfrak{g}=\mathrm{B}_{n} \text { or } \mathfrak{g}=\mathrm{D}_{n}, \text { Type II } \\
2 s_{i} \delta_{i} & \text { when } \mathfrak{g}=\mathrm{C}_{n} \text { or } \mathfrak{g}=\mathrm{D}_{n}, \text { Type I }
\end{array} \in \mathcal{S},\right. \tag{3.4}
\end{array}
$$

where $s_{i}, s_{j}= \pm$. Note that \prec is compatible with multiplication by -1 .
The existence of a parabolic subalgebra $\mathfrak{p}_{\mathcal{M}}$ with reductive part \mathfrak{s} and containing \mathcal{M} is equivalent the existence of a total order on $\left\{ \pm \delta_{1}, \pm \delta_{2}, \cdots, \pm \delta_{k}\right\}$ compatible with multiplication by -1 which extends \prec.

Note that \prec can be extended to a total order on $\left\{ \pm \delta_{1}, \pm \delta_{2}, \cdots, \pm \delta_{k}\right\}$ compatible with multiplication by -1 if and only if there is no cycle

$$
\begin{equation*}
s_{1} \delta_{i_{1}} \prec s_{2} \delta_{i_{2}} \prec \cdots \prec s_{l} \delta_{i_{l}} \prec s_{1} \delta_{i_{1}} \tag{3.5}
\end{equation*}
$$

Assume that \prec cannot be extended to a total order on $\left\{ \pm \delta_{1}, \cdots, \pm \delta_{k}\right\}$ compatible with multiplication by -1 and consider a cycle (3.5) of minimal length. It gives rise to a sequence $\nu_{1}, \cdots, \nu_{l} \in \mathcal{S}$ induced from (3.4). More precisely,

$$
\nu_{j}=\left\{\begin{array}{ccc}
s_{j} \delta_{i_{j}}-s_{j+1} \delta_{i_{j+1}} & \text { if } \quad \delta_{i_{j}} \neq \delta_{i_{j+1}} \\
s_{j} \delta_{i_{j}} & \text { if } \quad \delta_{i_{j}}=\delta_{i_{j+1}}, \mathfrak{g}=\mathrm{B}_{n} \text { or } \mathfrak{g}=\mathrm{D}_{n}, \text { Type II } \\
2 s_{j} \delta_{i_{j}} & \text { if } \quad \delta_{i_{j}}=\delta_{i_{j+1}}, \mathfrak{g}=\mathrm{C}_{n} \text { or } \mathfrak{g}=\mathrm{D}_{n}, \text { Type I, }
\end{array}\right.
$$

where $s_{l+1}=s_{1}$ and $\delta_{i_{l+1}}=\delta_{i_{1}}$.

The minimality of (3.5) implies that every element ν of \mathcal{R} appears at most twice in the sequence $\nu_{1}, \nu_{2}, \ldots, n_{l}$. Moreover, if $\nu= \pm \delta_{i}$ or $\nu= \pm 2 \delta_{i}$, then ν appears at most once in this sequence.

First we consider the case when $\delta_{i_{j}} \neq \delta_{i_{j+1}}$ for every j. In this case $\nu_{j}=s_{j} \delta_{i_{j}}-s_{j+1} \delta_{i_{j+1}}$ for every j. Let $\lambda_{1}, \ldots, \lambda_{s}$ be the elements of \mathcal{R} that appear once in the sequence $\nu_{1}, \nu_{2}, \ldots, \nu_{l}$ and let μ_{1}, \ldots, μ_{t} be those that appear twice. Clearly, $l=s+2 t$. Moreover $\mathfrak{g}^{\lambda_{1}} \oplus \cdots \oplus$ $\mathfrak{g}^{\lambda_{s}} \oplus \mathfrak{g}^{\mu_{1}} \oplus \cdots \oplus \mathfrak{g}^{\mu_{t}}$ is a submodule of \mathcal{M} and $\operatorname{Sym}^{l}\left(\mathfrak{g}^{\lambda_{1}} \oplus \cdots \oplus \mathfrak{g}^{\lambda_{s}} \oplus \mathfrak{g}^{\mu_{1}} \oplus \cdots \oplus \mathfrak{g}^{\mu_{t}}\right)$ is a submodule of $\operatorname{Sym}(\mathcal{M})$ containing

$$
\begin{equation*}
\mathfrak{g}^{\lambda_{1}} \otimes \cdots \otimes \mathfrak{g}^{\lambda_{s}} \otimes \operatorname{Sym}^{2} \mathfrak{g}^{\mu_{1}} \otimes \cdots \otimes \operatorname{Sym}^{2} \mathfrak{g}^{\mu_{t}} \tag{3.6}
\end{equation*}
$$

We will prove that the \mathfrak{s}-module (3.6) contains the trivial \mathfrak{s}-module which, as in the case when $\mathfrak{g}=\mathfrak{g l}_{n}$, will complete the proof.

Indeed, if $\mu_{j^{\prime}}=\nu_{j}$ then

$$
\begin{align*}
& \operatorname{Sym}^{2} \mathfrak{g}^{\mu_{j}}=\operatorname{Sym}^{2} \mathfrak{g}^{\nu_{j}}=\operatorname{Sym}^{2}\left(V_{i_{j}}^{s_{j}} \otimes \mathrm{~V}_{i_{j+1}}^{-s_{j+1}}\right)= \tag{3.7}\\
& \operatorname{Sym}^{2} \mathrm{~V}_{i_{j}}^{s_{j}} \otimes \operatorname{Sym}^{2} \mathrm{~V}_{i_{j+1}}^{-s_{j+1}} \oplus \Lambda^{2} \mathrm{~V}_{i_{j}}^{s_{j}} \otimes \Lambda^{2} \mathrm{~V}_{i_{j+1}}^{-s_{j+1}} \supset \operatorname{Sym}^{2} V_{i_{j}}^{s_{j}} \otimes \operatorname{Sym}^{2} V_{i_{j+1}}^{-s_{j+1}}
\end{align*}
$$

Replacing in (3.6) each term of the form $\operatorname{Sym}^{2} \mathfrak{g}^{\mu_{j^{\prime}}}$ with the corresponding term $\operatorname{Sym}^{2} V_{i_{j}}^{s_{j}} \otimes$ $\mathrm{Sym}^{2} \mathrm{~V}_{i_{j+1}}^{-s_{j+1}}$ from (3.7), we obtain another submodule of (3.6). This latest submodule is a tensor product of factors of the form $\mathrm{V}_{i_{j}}^{ \pm}$and $\operatorname{Sym}^{2} \mathrm{~V}_{i_{j}}^{ \pm}$. Moreover, the component V_{i} appears in one of the following groups:

$$
\mathrm{V}_{i}^{+} \otimes \mathrm{V}_{i}^{+} \otimes \mathrm{V}_{i}^{-} \otimes \mathrm{V}_{i}^{-}, \mathrm{V}_{i}^{+} \otimes \mathrm{V}_{i}^{+} \otimes \operatorname{Sym}^{2} \mathrm{~V}_{i}^{-}, \mathrm{V}_{i}^{-} \otimes \mathrm{V}_{i}^{-} \otimes \operatorname{Sym}^{2} \mathrm{~V}_{i}^{+}, \operatorname{Sym}^{2} \mathrm{~V}_{i}^{+} \otimes \operatorname{Sym}^{2} \mathrm{~V}_{i}^{-}
$$

Since each of them contains the trivial \mathfrak{s}^{i}-module, we conclude that (3.6) contains the trivial \mathfrak{s}-module.

Finally, we consider the case when $\delta_{i_{j}}=\delta_{i_{j+1}}$ for some $1 \leqslant j \leqslant l$. (The minimality of the cycle (3.5) implies that there are at most two such indices but we will not use this observation.) We split the roots $\nu_{1}, \nu_{2}, \ldots, \nu_{l}$ into two groups $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}$ and $\mu_{1}, \mu_{2}, \ldots, \mu_{t}$ in the following way: If $\nu_{j}=s_{j} \delta_{i_{j}}-s_{j+1} \delta_{i_{j+1}}$, then we put ν_{j} in the first or second group depending on whether it appears once or twice in $\nu_{1}, \nu_{2}, \ldots, \nu_{l}$, if $\nu_{j}=s_{j} \delta_{i_{j}}$, we put ν_{j} in the second group, and if $\nu_{j}=2 s_{j} \delta_{i_{j}}$, we put ν_{j} in the first group. Set $l^{\prime}:=s+2 t$; note that $l^{\prime} \neq l$.

From this point on the argument repeats the argument above with the following modifications:
(i) We consider $\operatorname{Sym}^{l^{\prime}}\left(\mathfrak{g}^{\lambda_{1}} \oplus \cdots \oplus \mathfrak{g}^{\lambda_{s}} \oplus \mathfrak{g}^{\mu_{1}} \oplus \cdots \oplus \mathfrak{g}^{\mu_{t}}\right)$ in place of $\operatorname{Sym}^{l}\left(\mathfrak{g}^{\lambda_{1}} \oplus \cdots \oplus \mathfrak{g}^{\lambda_{s}} \oplus\right.$ $\left.\mathfrak{g}^{\mu_{1}} \oplus \cdots \oplus \mathfrak{g}^{\mu_{t}}\right)$.
(ii) In the case when $\mathfrak{g}=D_{n}$ and (\mathcal{P}, σ) is of Type I, we replace $\operatorname{Sym}^{2} V_{i_{j}}^{s_{j}} \otimes \operatorname{Sym}^{2} V_{i_{j+1}}^{-s_{j+1}}$ by $\Lambda^{2} \mathrm{~V}_{i_{j}}^{s_{j}} \otimes \Lambda^{2} \mathrm{~V}_{i_{j+1}}^{-s_{j+1}}$ in (3.7). Correspondingly, V_{i} appears in one of the following groups

$$
\mathrm{V}_{i}^{+} \otimes \mathrm{V}_{i}^{+} \otimes \mathrm{V}_{i}^{-} \otimes \mathrm{V}_{i}^{-}, \mathrm{V}_{i}^{+} \otimes \mathrm{V}_{i}^{+} \otimes \Lambda^{2} \mathrm{~V}_{i}^{-}, \mathrm{V}_{i}^{-} \otimes \mathrm{V}_{i}^{-} \otimes \Lambda^{2} \mathrm{~V}_{i}^{+}, \Lambda^{2} \mathrm{~V}_{i}^{+} \otimes \Lambda^{2} \mathrm{~V}_{i}^{-}
$$

Exactly as above, for $i>0$, each of the groups above contains the trivial module \mathfrak{s}^{i} module. Finally, if $\mathfrak{g}=\mathrm{B}_{n}$ or $\mathfrak{g}=\mathrm{D}_{n}$ and (\mathcal{P}, σ) is of Type II, V_{0} appears in groups
$\operatorname{Sym}^{2} \mathrm{~V}_{0}$ (one for each $\nu_{j}=s_{j} \delta_{i_{j}}$). Since in these cases $\mathfrak{s}^{0}=\mathrm{B}_{\left|\mathrm{I}_{0}\right|}$ or $\mathfrak{s}^{0}=\mathrm{D}_{\left|\mathrm{I}_{0}\right|}, \operatorname{Sym}^{2} \mathrm{~V}_{0}$ contains the trivial \mathfrak{s}^{0}-module. This completes the proof.

We now turn to the case that \mathcal{S} is not saturated.
3.2. Existence of $\mathfrak{p}_{\mathcal{M}}$ in types A and D. If \mathfrak{g} is of type A there is nothing to prove since every subset \mathcal{R} is saturated and the statement is equivalent to the first part of this section. The situation is the same when $\mathfrak{g}=\mathrm{D}_{n}$ and (\mathcal{P}, σ) is of type I.

Let $\mathfrak{g}=\mathrm{D}_{n}$ and let (\mathcal{P}, σ) be of type II. We will extend the proof of part (a) to this case.
First we note that $-2 \delta_{i} \in \mathcal{S}$ and $\delta_{i} \in \mathcal{S}$ imply that $(\operatorname{Sym}(\mathcal{M}))^{\mathfrak{s}} \neq \mathbf{C}$. Indeed, $\Lambda^{2} \mathrm{~V}_{i}^{-} \oplus \mathrm{V}_{i}^{+} \otimes \mathrm{V}_{0}$ is a submodule of \mathcal{M} and hence we have the following inclusions of modules:

$$
\begin{align*}
\operatorname{Sym}^{6}\left(\Lambda^{2} \mathrm{~V}_{i}^{-} \oplus \mathrm{V}_{i}^{+} \otimes \mathrm{V}_{0}\right) & \subset \operatorname{Sym}^{(\mathcal{M})} \\
\operatorname{Sym}^{2}\left(\Lambda^{2} \mathrm{~V}_{i}^{-}\right) \otimes \operatorname{Sym}^{4}\left(\mathrm{~V}_{i}^{+} \otimes \mathrm{V}_{0}\right) & \subset \operatorname{Sym}^{6}\left(\Lambda^{2} \mathrm{~V}_{i}^{-} \oplus \mathrm{V}_{i}^{+} \otimes \mathrm{V}_{0}\right) \tag{3.8}\\
\mathrm{S}^{(2,2)} \mathrm{V}_{i}^{+} \otimes \mathrm{S}^{(2,2)} \mathrm{V}_{0} \subset \operatorname{Sym}^{4}\left(\mathrm{~V}_{i}^{+} \otimes \mathrm{V}_{0}\right) & , \quad \mathrm{S}^{(2,2)} \mathrm{V}_{i}^{-} \subset \operatorname{Sym}^{2}\left(\Lambda^{2} \mathrm{~V}_{i}^{-}\right),
\end{align*}
$$

where $S^{(2,2)} \mathrm{W}$ denotes the result of applying the Schur functor $S^{(2,2)}$ to W . The above inclusions along the fact that $\mathrm{S}^{(2,2)} \mathrm{V}_{0}$ contains the trivial \mathfrak{s}^{0}-module imply that $\left(\operatorname{Sym}^{6}(\mathcal{M})\right)^{\mathfrak{s}} \neq$ 0 . A symmetric argument shows that $2 \delta_{i} \in \mathcal{S}$ and $-\delta_{i} \in \mathcal{S}$ imply that $\left(\operatorname{Sym}^{(\mathcal{M}))^{5}} \neq \mathbf{C}\right.$.

From this point on the proof follows the proof of part (a) with the following modifications:
(i) In the definition of \prec we use $s_{i} \delta_{i} \prec-s_{i} \delta_{i}$ if $s_{i} \delta_{i} \in \mathcal{S}$ or $2 s_{i} \delta_{i} \in \mathcal{S}$.
(ii) If $s_{i} \delta_{i} \prec-s_{i} \delta_{i}, \nu_{i}$ denotes the corresponding element of \mathcal{S} above; if there are two such elements, we set $\nu_{i}:=s_{i} \delta_{i}$.
(iii) In splitting $\nu_{1}, \nu_{2}, \ldots, \nu_{l}$ into two groups $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}$ and $\mu_{1}, \mu_{2}, \ldots, \mu_{t}$, we put a root ν_{i} from (ii) into the first group if $\nu_{i}=2 s_{i} \delta_{i}$ and in the second group otherwise.
(iv) We consider $\operatorname{Sym}^{2 l^{\prime}}\left(\mathfrak{g}^{\lambda_{1}} \oplus \cdots \oplus \mathfrak{g}^{\lambda_{s}} \oplus \mathfrak{g}^{\mu_{1}} \oplus \cdots \oplus \mathfrak{g}^{\mu_{t}}\right)$ in place of $\operatorname{Sym}^{l}\left(\mathfrak{g}^{\lambda_{1}} \oplus \cdots \oplus \mathfrak{g}^{\lambda_{s}} \oplus\right.$ $\left.\mathfrak{g}^{\mu_{1}} \oplus \cdots \oplus \mathfrak{g}^{\mu_{t}}\right)$.
(v) We replace the module in (3.6) by $\operatorname{Sym}^{2} \mathfrak{g}^{\lambda_{1}} \otimes \cdots \otimes \operatorname{Sym}^{2} \mathfrak{g}^{\lambda_{s}} \otimes \operatorname{Sym}^{4} \mathfrak{g}^{\mu_{1}} \otimes \cdots \otimes \operatorname{Sym}^{4} \mathfrak{g}^{\mu_{t}}$.

Using the inclusions (3.8) we conclude that $\left(\operatorname{Sym}^{(}(\mathcal{M})\right)^{\mathfrak{s}} \neq \mathrm{C}$. This completes the proof when $\mathfrak{g}=\mathrm{D}_{n}$.
3.3. Examples in types B and C when \mathcal{M} is not saturated. We will now construct examples in types B and C of \mathfrak{s} and \mathcal{S} such that $\left(\operatorname{Sym}^{(\mathcal{M}))^{\mathfrak{s}}}=\mathrm{C}\right.$ and for which there does not exist a parabolic subalgebra $\mathfrak{p}_{\mathcal{M}}$ of \mathfrak{g} with reductive part \mathfrak{s} and $\mathcal{M} \subset \mathfrak{p}_{\mathcal{M}}$.

If $\mathfrak{g}=\mathrm{B}_{n}$, consider $\mathfrak{s}=\mathfrak{s}_{(\mathcal{P}, \sigma)}$, where \mathcal{P} is the partition of type I

$$
\{1,2\} \prec\{3\} \prec\{4\} \prec \cdots \prec\{n\}
$$

and $\sigma(i)=1$ is constant. Then $\mathfrak{s}^{1}=\mathfrak{g l}_{2}$. Moreover, $\mathrm{U}:=\mathfrak{g}^{-\delta_{1}}$ is the $\mathfrak{g l}_{2}$-module which is the natural representation of $\mathfrak{s l}_{2}$ and on which the identity matrix of $\mathfrak{g l}_{2}$ acts as multiplication by -1 and $\mathrm{W}:=\mathfrak{g}^{2 \delta_{1}}$ is the one dimensional $\mathfrak{g l}_{2}$-module on which the identity matrix acts as multiplication by 2 . Let $\mathcal{S}:=\left\{-\delta_{1}, 2 \delta_{1}\right\}$. Then $\mathcal{M}=\mathrm{U} \oplus \mathrm{W}$ and

$$
\operatorname{Sym}^{k} \mathcal{M}=\oplus_{j} \operatorname{Sym}^{j} \mathrm{U} \otimes \operatorname{Sym}^{k-j} \mathrm{~W}
$$

Note that $\operatorname{Sym}^{j} \mathrm{U} \otimes \operatorname{Sym}^{k-j} \mathrm{~W}$ is the irreducible $\mathfrak{s l}_{2}$-module of dimension $j+1$ on which the identity matrix of $\mathfrak{g l}_{2}$ acts as multiplication by $2 k-3 j$. This proves that $\left(\operatorname{Sym}^{\prime}(\mathcal{M})\right)^{\mathfrak{s}}=\mathbf{C}$ but there is no parabolic subalgebra $\mathfrak{p}_{\mathcal{M}}$ of \mathfrak{g} with reductive part \mathfrak{s} such that $\mathcal{M} \subset \mathfrak{p}_{\mathcal{M}}$.

If $\mathfrak{g}=\mathrm{C}_{n}$, consider $\mathfrak{s}=\mathfrak{s}_{(\mathcal{P}, \sigma)}$, where \mathcal{P} is the partition of type II

$$
\{1\} \prec\{2\} \prec\{3\} \prec \cdots \prec\{n\}
$$

and $\sigma(i)=1$ is constant. Then $\mathfrak{s}^{0}=\mathrm{C}_{1} \cong \mathfrak{s l}_{2}$ and $\mathfrak{s}^{1}=\mathfrak{g l}_{1}$, i.e. $\mathfrak{s}^{0} \oplus \mathfrak{s}^{1} \cong \mathfrak{g l}_{2}$. Moreover, setting $\mathrm{U}:=\mathfrak{g}^{-\delta_{1}}$ and $\mathrm{W}:=\mathfrak{g}^{2 \delta_{1}}$, we arrive at exactly the same situation as in the case $\mathfrak{g}=\mathrm{B}_{n}$ above.

4. Proof of the Main Theorem when \mathfrak{g} Is exceptional.

4.1. First we recall some standard notation following the conventions in [B]. If \mathfrak{g} is a simple Lie algebra of rank n we label the simple roots of \mathfrak{g} as $\alpha_{1}, \ldots, \alpha_{n}$ as in [B]. The fundamental dominant weight of \mathfrak{g} are denoted by $\omega_{1}, \ldots, \omega_{n}$. If $-\alpha_{0}$ is the highest root, then $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}$ label the extended Dynkin diagram of \mathfrak{g}.
4.2. Existence of $\mathfrak{p}_{\mathcal{M}}$ in type G_{2} when \mathcal{S} is saturated. Let $\mathfrak{g}=\mathrm{G}_{2}$. Let \mathcal{S} be a saturated subset of \mathcal{R} and let $\mathcal{M}=\oplus_{\nu \in \mathcal{S}} \mathfrak{g}^{\nu}$. If $\left(\operatorname{Sym}^{\cdot}(\mathcal{M})\right)^{\mathfrak{s}}=\mathbf{C}$, then there exists a parabolic subalgebra $\mathfrak{p}_{\mathcal{M}}$ of \mathfrak{g} with reductive part \mathfrak{s} such that $\mathcal{M} \subset \mathfrak{p}_{\mathcal{M}}$. Indeed, if \mathfrak{s} is a proper subalgebra of \mathfrak{g} which is not equal to \mathfrak{h}, then all elements of \mathcal{R} are proportional and there is nothing to prove. If $\mathfrak{s}=\mathfrak{h}$, then the spaces \mathfrak{g}^{ν} are just the root spaces of \mathfrak{g} which are one dimensional and again the statement is clear.
4.3. Example in type G_{2} when \mathcal{S} is not saturated. On the other hand, let $\mathfrak{s} \cong \mathfrak{g l}_{2} \subset \mathfrak{g}$ be the parabolic subalgebra of \mathfrak{g} with roots $\pm \alpha_{2}$. Then $\mathcal{R}=\{ \pm \delta, \pm 2 \delta, \pm 3 \delta\}$. Moreover, $\mathfrak{g}^{ \pm k \delta}$ is the irreducible \mathfrak{s}-module of dimension 2,1 , or 2 (corresponding to $k=1,2$, or 3) on which a fixed element in the centre of \mathfrak{s} acts as multiplication by $\pm k$. Then, for $\mathcal{S}=\{-\delta, 2 \delta\}$, setting $\mathrm{U}:=\mathfrak{g}^{-\delta}$ and $\mathrm{W}:=\mathfrak{g}^{2 \delta}$, we arrive at exactly the same situation as at the end of
 of \mathfrak{g} with reductive part \mathfrak{s} such that $\mathcal{M} \subset \mathfrak{p}_{\mathcal{M}}$.
4.4. Examples in types $\mathrm{F}_{4}, \mathrm{E}_{6}, \mathrm{E}_{7}$, and E_{8} with \mathcal{S} saturated. Let $\mathfrak{g}=\mathrm{F}_{4}, \mathrm{E}_{6}, \mathrm{E}_{7}$, or E_{8}. We will construct a saturated set \mathcal{S} such that $\left(\operatorname{Sym}^{(\mathcal{M}))^{\mathfrak{s}}}=\mathrm{C}\right.$ but there is no parabolic subalgebra $\mathfrak{p}_{\mathcal{M}}$ of \mathfrak{g} with reductive part \mathfrak{s} such that $\mathcal{M} \subset \mathfrak{p}_{\mathcal{M}}$.

Denote the rank of \mathfrak{g} by n. Consider the extended Dynkin diagram of \mathfrak{g}. Removing the node connected to the root α_{0} we obtain the Dynkin diagram of a semisimple subalgebra $\mathfrak{m} \oplus \mathfrak{c}$ of \mathfrak{g} of rank n where $\mathfrak{m} \cong \mathrm{A}_{1}$ is the subalgebra of \mathfrak{g} with roots $\left\{ \pm \alpha_{0}\right\}$ and \mathfrak{c} is the subalgebra if \mathfrak{g} with simple roots obtained from the simple roots of \mathfrak{g} after removing the one adjacent to α_{0}. More precisely, we remove the roots $\alpha_{1}, \alpha_{2}, \alpha_{1}, \alpha_{8}$ when $\mathfrak{g}=\mathrm{F}_{4}, \mathrm{E}_{6}, \mathrm{E}_{7}, \mathrm{E}_{8}$ respectively. The respective subalgebras $\mathfrak{c} \subset \mathfrak{g}$ are isomorphic to $\mathfrak{c} \cong \mathrm{C}_{3}, \mathrm{~A}_{5}, \mathrm{D}_{6}$, or E_{7} respectively. As an \mathfrak{m}-module \mathfrak{g} decomposes as

$$
\begin{equation*}
\mathfrak{g}=\left(\mathrm{Ad}_{\mathfrak{m}} \otimes \operatorname{tr}_{\mathfrak{c}}\right) \oplus\left(\operatorname{tr}_{\mathfrak{m}} \otimes \mathrm{Ad}_{\mathfrak{c}}\right) \oplus(\mathrm{V} \otimes \mathrm{U}) \tag{4.1}
\end{equation*}
$$

where $A d_{\mathfrak{m}}$ and $A d_{\mathfrak{c}}$ are the adjoint modules of \mathfrak{m} and \mathfrak{c} respectively; $\operatorname{tr}_{\mathfrak{m}}$ and $\operatorname{tr}_{\mathfrak{c}}$-the respective trivial modules; V is the natural $\mathfrak{m} \cong \mathrm{A}_{1}$-module; and U is the \mathfrak{c}-module whose highest weight is the fundamental weight of \mathfrak{c} corresponding to the simple root of \mathfrak{c} linked to the removed node of the extended Dynkin diagram of \mathfrak{g}. In fact, for $\mathfrak{g}=\mathrm{F}_{4}, \mathrm{E}_{6}, \mathrm{E}_{7}, \mathrm{E}_{8}$, the highest weight of \mathfrak{c} is $\omega_{3}, \omega_{3}, \omega_{6}, \omega_{7}$ respectively. Here the weights of U are given according to the labeling conventions of \mathfrak{c}. For example, if $\beta_{1}, \beta_{2}, \beta_{3}$ are the simple roots of $\mathfrak{c}=\mathrm{C}_{3}$ in the case when $\mathfrak{g}=\mathrm{F}_{4}$, we have $\beta_{1}=\alpha_{4}, \beta_{2}=\alpha_{3}$, and $\beta_{3}=\alpha_{2}$.

Set $\mathfrak{s}=\mathfrak{m}+\mathfrak{h}$. From the construction of \mathfrak{s} we conclude that $\mathfrak{t}=\mathfrak{h}_{\mathfrak{c}}$, the Cartan subalgebra of \mathfrak{c}. Furthermore, (4.1) implies $\mathcal{R}=\Delta_{\mathfrak{c}} \cup \operatorname{supp} U$, where supp U denotes the set of weights of U and, for $\nu \in \mathcal{R}$ the $\mathfrak{s}=\mathfrak{m} \oplus \mathfrak{h}_{\mathfrak{c}}$-module \mathfrak{g}^{ν} is given by

$$
\mathfrak{g}^{\nu} \cong \begin{cases}\operatorname{tr}_{\mathfrak{m}} \otimes \nu & \text { if } \nu \in \Delta_{\mathfrak{c}} \\ \mathrm{V} \otimes \nu & \text { if } \nu \in \operatorname{supp} \mathrm{U}\end{cases}
$$

Let ω be the highest weight of U and write $\omega=q_{1} \beta_{1}+\cdots+q_{n-1} \beta_{n-1}$ where $\beta_{1}, \ldots, \beta_{n-1}$ are the simple roots of \mathfrak{c} and $q_{i} \in \mathbf{Q}_{+}$. Set $\mathcal{S}=\left\{-\omega, \beta_{1}, \ldots, \beta_{n-1}\right\}$. Then $\mathcal{M}=\mathfrak{g}^{\omega} \oplus\left(\oplus_{i=1}^{n-1} \mathfrak{g}^{\beta_{i}}\right)$ and

$$
\operatorname{Sym}^{k} \mathcal{M}=\bigoplus_{j+i_{1}+\cdots+i_{n-1}=k} \operatorname{Sym}^{j} \mathfrak{g}^{-\omega} \otimes \operatorname{Sym}^{i_{1}} \mathfrak{g}^{\beta_{1}} \otimes \cdots \otimes \operatorname{Sym}^{i_{n-1}} \mathfrak{g}^{\beta_{n-1}}
$$

Moreover, $\operatorname{Sym}^{j} \mathfrak{g}^{-\omega} \otimes \operatorname{Sym}^{i_{1}} \mathfrak{g}^{\beta_{1}} \otimes \cdots \otimes \operatorname{Sym}^{i_{n-1}} \mathfrak{g}^{\beta_{n-1}}$ is an irreducible \mathfrak{m}-module which is not trivial unless $j=0$ and on which $\mathfrak{h}_{\mathfrak{c}}$ acts via $-j \omega+i_{1} \beta_{1}+\cdots+i_{n-1} \beta_{n_{1}}$. This implies that, for $k>0,\left(\operatorname{Sym}^{k} \mathcal{M}\right)^{\mathfrak{s}}=0$ and hence $(\operatorname{Sym} \mathcal{M})^{\mathfrak{s}}=\mathbf{C}$. On the other hand, the equation $\omega=q_{1} \beta_{1}+\cdots+q_{n-1} \beta_{n-1}$ implies that there is no parabolic subalgebra $\mathfrak{p}_{\mathcal{M}}$ of \mathfrak{g} with reductive part \mathfrak{s} such that $\mathcal{M} \subset \mathfrak{p}_{\mathcal{M}}$.

REFERENCES

[B] N. Bourbaki, Éléments de mathématique. Groupes et algèbres de Lie, Ch. IV - VI, Herman, Paris 1968, 288 pp.
[DFG] I. Dimitrov, V. Futorny, and D. Grantcharov, Parabolic sets of roots, Contemp. Math. 499 (2009), 61-74.
[DP] I. Dimitrov and I. Penkov, Weight modules of direct limit Lie algebras, IMRN 1999, No. 5, 223-249.
[DR] I. Dimitrov, M. Roth, Cup products of line bundles on homogeneous varieties and generalized PRV components of multiplicity one, to appear in Algebra \& Number Theory.
[K] B. Kostant, Root systems for Levi factors and Borel-de Siebenthal theory, Symmetry and Spaces, 129-152, Progr. Math., 278, Birkhäuser Boston, Inc., Boston, MA, 2010.

Department of Mathematics and Statistics, Queen's University, Kingston, Ontario, K7L 3N6, CANADA

E-mail address: dimitrov@mast.queensu.ca
E-mail address: mikeroth@mast.queensu.ca

