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1. Introduction

Let C be a smooth projective curve of genus g over an algebraically closed
field of arbitrary characteristic, and E a vector bundle on C of rank r. The
main theme of this paper is the relationship between two different compact-
ifications of the space of vector bundle quotients of E of fixed rank and
degree. The first is Grothendieck’s Quot scheme Quotk,d(E) of coherent
quotients of rank k and degree d, while the second is a compactification
Mg(G(E, k), βd ) via stable maps into the relative Grassmannian G(E, k) of
k-dimensional quotient spaces of E. Quot schemes have played a central role
in the “classical” study of vector bundles on curves, in particular for con-
structing moduli spaces (see e.g. [23]) and for understanding their geometry
(see [11]). In some general sense, any construction or computation in this
area depends on geometric or dimensional properties of (subsets of) Quot
schemes. The main product of the study of the relationship with the corres-
ponding space of stable maps will be a surprisingly good understanding of
these properties, as we will explain below.
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Before the availability of stable maps, Quot schemes have also been
used in Gromov-Witten theory as a way to compactify the space of maps
into Grassmannians and thereby compute intersection numbers (most no-
tably in [3], [4], [5] and subsequent extensions [8], [9], [10], [15]). The
introduction by Kontsevich of the moduli space of stable maps now gives
an alternate setting for these calculations; however in this paper we follow
in some respect an orthogonal direction by showing how an understanding
of the stable map space leads to good results about Quot schemes. For in-
stance, we establish an essentially optimal upper bound on the dimension
of Mg(G(E, k), βd), which gives as an immediate consequence an identi-
cal upper bound on the dimension of Quotk,d(E). Based on this, we prove
what should be seen as the central result of the paper – apparently not even
conjectured before – namely that for every vector bundle E, Quotk,d(E)
is irreducible and generically smooth for d sufficiently large, and we pre-
cisely describe all the vector bundles for which the same thing holds for
Mg(G(E, k), βd ). (We also make these results effective in the case of stable
bundles.) We show that, despite their similar behaviour, there are in gen-
eral no natural morphisms between these two compactifications. Finally,
as a second application of the dimension bound, we obtain new cases of
a conjecture on the effective base point freeness of linear series on moduli
spaces of vector bundles on C.

We now turn to a more detailed discussion of the results of the paper.
In recent literature there has been some interest in finding practical

dimension bounds for families of sheaves or vector bundles on curves, most
notably for Quot schemes (see e.g. [7], [14], [21] or [25]). Our first goal in
this paper is to give a good answer to this question for an arbitrary vector
bundle E. We do this by considering the second compactification of the space
of quotient bundles of E of rank k and degree d, namely the Kontsevich
moduli space Mg(G(E, k), βd) of stable maps of arithmetic genus g to
the relative Grassmann bundle G(E, k) over C. Here βd ∈ H2(G(E, k),Z)
denotes the homology class of a section corresponding to such a quotient
of E. Set

dk = dk(E) := min
rk F=k

{deg F | F a quotient of E} ,

i.e. the minimal degree of a quotient bundle of rank k. Our first main result
is:

Theorem.

dim Mg(G(E, k), βd ) ≤ k(r − k) + (d − dk)r, for all d ≥ dk.

The advantage of using the stable map space comes from the possi-
bility of applying methods characteristic to the study of families of curves.
The idea is that once the space of maps is large enough, the Bend and
Break Lemma of Mori ensures the existence of degenerate curves related
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to quotient bundles of smaller degree, and this gives an inductive bound.
We expect that this approach might be useful in other situations involving
fibrations over curves.

Going back to Quot schemes, the theorem above implies almost imme-
diately the analogous statement:

Theorem.

dim Quotk,d(E) ≤ k(r − k) + (d − dk)r, for all d ≥ dk.

The case d = dk of this result was first proved by Mukai-Sakai [19] and
was generalized to the setting of G-bundles in [14]. The general statement
improves a similar result found in [21] by different methods. It is worth
emphasizing that while this is the statement which will be used in subsequent
results, it is also here that it is particularly important to first go through the
study of the space of stable maps: we don’t know how to prove the estimate
by looking only at the Quot scheme.

We next look at some examples showing certain aspects of the behaviour
of Mg(G(E, k), βd) and Quotk,d(E). These show that the bounds above are
essentially optimal if we are not willing to impose extra conditions on the
bundle E (and close to optimal even if we are). An illustration of this is the
fact that the difference between our upper bound and the usual deformation
theoretic lower bound rd − ke − k(r − k)(g − 1) gives:

rdk − ke ≤ k(r − k)g,

which is precisely a theorem of Lange and Mukai-Sakai generalizing a well
known result of Segre and Nagata on minimal sections of ruled surfaces
(see Sect. 5).

The dimension estimates also allow us to understand the compon-
ent structure of Mg(G(E, k), βd) and Quotk,d(E). For an arbitrary vector
bundle, the picture turns out to be as nice as one could possibly hope for.

Theorem. For all large d there is a unique component of Mg(G(E, k), βd )
whose generic point corresponds to a smooth section (i.e. a vector bundle
quotient); this component is of dimension rd − ke − k(r − k)(g − 1).

Our main result gives an even stronger statement in the case of Quot
schemes. Note that it is easy to (and we will) construct examples where the
Quot scheme is reducible for low degree.

Theorem. For any vector bundle E on C, there is an integer dQ = dQ(E, k)
such that for all d ≥ dQ, Quotk,d(E) is irreducible. For any such d,
Quotk,d(E) is generically smooth, has dimension rd − ke− k(r − k)(g −1),
and its generic point corresponds to a vector bundle quotient.
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In the case when E is the trivial bundle (and over the complex num-
bers), this result was proved by Bertram-Daskalopoulos-Wentworth (in [5]
Theorem 4.28), and it was used to produce an effective way of computing
Gromov-Witten invariants on the space of holomorphic maps into Grass-
mannians.

The proofs of the two theorems rely on the estimates above and on
some vanishing results of independent interest, involving stable quotients
of arbitrary vector bundles. These are quite elementary, but seem to have
been overlooked in the literature. Note also that an immediate consequence
of the theorem is that every vector bundle can be written as an extension of
generic stable bundles (see Corollary 6.3).

The next natural question to ask is if it is possible to give a precise
description of all the bundles for which the spaces Mg(G(E, k), βd ) are
irreducible for all k and all large d. It turns out that, in contrast with the
Quot scheme situation, they are all stable bundles of a very special kind.
It is shown in [25] that there exists a nonempty open subset of the moduli
space Us

C(r, e) of stable bundles of rank r and degree e whose elements E
satisfy the properties that dk(E) is the smallest value making the expression
dkr − ke − k(r − k)(g − 1) nonnegative, and that dim Quotk,d(E) = rd −
ke − k(r − k)(g − 1) (this also applies to Mg(G(E, k), βd)). This subset is
contained in the better known open subset of Lange generic stable bundles
(for precise details see Example 5.4). Our result is:

Theorem. For any vector bundle E the spaces Mg(G(E, k), βd ) are con-
nected for all large d. They are irreducible for all k and all large d if and
only if E is stable bundle, generic in the above sense.

For stable bundles the invariants involved in the proof can be controlled,
and in fact a d which guarantees irreducibility can be expressed effectively.
This is the content of Theorem 6.8. A number of other effective statements
are given at the end of Sect. 6.

Our methods show that in most situations it is more convenient to work
with stable maps with reducible domain rather than quotients with torsion.
In the hope for a best possible picture, we can ask whether there is always
a morphism Mg(G(E, k), βd ) → Quotk,d(E) extending the identification
on the locus corresponding to vector bundle quotients (or, equivalently,
smooth sections). We prove that in general this question has a negative
answer, and so a relationship between the two compactifications, if any, has
to be more indirect. More precisely:

Theorem.
(a) If k = (r−1) then there is a surjective morphism from Mg(G(E, k), βd )

to Quotk,d(E) which extends the map on the locus where the domain
curve is smooth. Such a morphism also exists for any k if d = dk or
d = dk + 1.

(b) If k �= (r−1) then in general there is no morphism from Mg(G(E, k), βd )
to Quotk,d(E) extending the map on smooth curves.
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Our final application of the dimension bound discussed above is to derive
bounds on base point freeness for linear series on the moduli spaces of
vector bundles on curves. The fact that uniform (i.e., independent of special
conditions on E) estimates of this type produce base point freeness bounds
is explained in [21] Sect. 4. If SUC(r) is the moduli space of semistable
bundles of rank r with trivial determinant, and L is the determinant line
bundle, then (cf. Sect. 8):

Theorem. The linear series |Lp| is base point free on SUC(r) for p ≥ [ r2

4 ].
This can then be used to show a few new cases of the Conjecture 5.5

in [21] on optimal effective base point freeness on the moduli space UC(r, 0)
of semistable bundles of rank r and degree 0, generalizing the classical case
of Jacobians. Namely, if ΘN is the generalized theta divisor on UC(r, 0)
associated to a line bundle N ∈ Picg−1(X), then we have:

Corollary. The linear series |kΘN | is base point free on UC(r, 0) for
k ≥ r + 1 if r ≤ 5.

The paper is organized as follows. In Sect. 2 we describe the basic setup
for moduli spaces of stable maps in the case of relative Grassmannians. The
dimension estimate for Mg(G(E, k), βd) is proved in Sect. 3. In Sect. 4 we
show the analogous bound for Quot schemes. In Sect. 5 we give a series of
examples leading to a discussion of the optimality of the bound. The study
of the irreducibility of Mg(G(E, k), βd ) and Quotk,d(E) appears in Sect. 6,
and in Sect. 7 we show that there are in general no natural morphisms
between the two compactifications, except in the case k = (r − 1). We
conclude in Sect. 8 by using the dimension estimate to prove the result on
base point freeness on moduli spaces.

Acknowledgements. We would especially like to thank W. Fulton and R. Lazarsfeld for
valuable suggestions and encouragement; W. Fulton pointed out a number of references
which allowed us to improve the results in Sect. 6 and to avoid an error. We also thank
M.S. Narasimhan and M. Teixidor i Bigas for some very useful conversations. The second
author would also like to express his gratitude to the Max-Plank institute for a wonderful
working environment. Finally, we are grateful to the referee for some very useful suggestions
which led to an improvement of the exposition.

2. Basic setup

Let C be a smooth projective curve of genus g. Suppose that E is a vector
bundle of rank r and degree e on C. For any k, 1 ≤ k < r, letG(E, k) be the
relative Grassmannian of k-dimensional quotient spaces of E; the fibre of
G(E, k) over a point p of C is the Grassmannian G(E p, k) of k-dimensional
quotient spaces of E p. Let π be the projection

π : G(E, k) −→ C.



630 M. Popa, M. Roth

The quotient bundles F of E of rank k are in one to one correspondence
with sections σF of π. We want to compactify the space of quotient bundles
by compactifying the space of sections. One thing we will do to begin with
is see how the data of the section σF determines the only other piece of
numerical data about F, its degree.

Let TV be the vertical tangent bundle relative to the map π. Also, for any
quotient bundle F, let SF be the induced subbundle of E:

0 −→ SF −→ E −→ F −→ 0.

The pullback σ∗
F TV is the bundle Hom(SF, F) on C. If F has degree d,

then σ∗
F TV

∼= S∗
F ⊗ F has degree (rd − ke). This shows that:

d = deg(F) = deg(σ∗
F TV) + ke

r
.

Alternatively, if βF is the homology class σF∗[C] ∈ H2(G(E, k),Z) of
the section, then we can also write this as:

d = deg(F) = c1(TV) · βF + ke

r
.

The second cohomology group H2(G(E, k),Q) is generated (over Q)
by c1(TV) and the class of a fibre of π. The class of any curve β in
H2(G(E, k),Q) is therefore determined by the intersection of β with these
two classes. Any section of π will have intersection number one with the
class of a fibre, and we have seen above that the degree of the quotient
bundle F determines the intersection with c1(TV) for the corresponding
section class βF . The conclusion is that if we fix the degree of the quotient
bundle d, then there is a unique class βd such that βd = σF∗[C] for all
sections σF corresponding to quotient bundles F of degree d.

From the point of view of sections of the relative Grassmannian, one
natural way to compactify the space of quotient bundles of degree d is to
look at the Kontsevich space of stable maps Mg(G(E, k), βd).

A point of Mg(G(E, k), βd ) corresponds to the data of an isomorphism
class of a stable map (C ′, f ), where C ′ is a complete connected curve of
arithmetic genus g, with at most nodes as singularities, and f : C ′ →
G(E, k) is a map with f∗[C ′] = βd . The map is stable in the following
sense (see e.g. [12] 1.1):

– if a rational component of C ′ is contracted by f , then it must contain at
least three points of intersection with other components

– if a component of arithmetic genus 1 is contracted by f , then it must
contain at least one point of intersection with other components (this will
not occur in our situation).

For more details about spaces of stable maps, see [12] or [13] 2.E, and for
a construction in arbitrary characteristic see [1]. In the case of characteristic
p > 0, the homology group H2(G(E, k),Q) should be replaced by the
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étale cohomology group H2m
ét

(G(E, k),Q�) for some prime � �= p (with
m = k(r − k) = dimG(E, k) − 1), and βd by the corresponding cycle class
in that cohomology group.

The fact that βd is the class of a section, and that C ′ is of the same
arithmetic genus as C puts strong conditions on C ′ and on the map f . First
of all there must be one component, C ′

0, of C ′ mapping isomorphically to C
under the composition π ◦ f . The condition on the genus now means that
the other components of C ′ can only have genus 0, forming trees of rational
curves hanging off of this distinguished component. The map f must send
C ′

0 to a section over C, and map the rational tails into the Grassmannians
G(E pi , k) over various points pi of C. Also, it cannot completely collapse
any tree of rational curves (by the stability condition) but it can map a ra-
tional component multiply onto its image. A basic picture of one of these
maps is shown below.

π

C

f
C′

G(E, k)

The previous description is slightly more confusing than it needs to be.
Nodes connecting two rational curves can always be smoothed, owing
to the fact that the tangent bundle to the Grassmannian is generated by
global sections. This means that the general point of any component of
Mg(G(E, k), βd ) consists of a section C ′

0 mapping isomorphically to C,
along with a certain number of rational tails, each one hanging off of C ′

0.
None of these tails are collapsed under the map to the relative Grassmannian,
and if the fibres of the relative Grassmannian have dimension greater than
two the map will be an immersion at the general point of the component.

On each G(E pi , k) above a point pi of C, the vertical tangent bundle TV

restricts to the tangent bundle of this Grassmannian. The determinant line
bundle of this tangent bundle on the fibre is ample (more precisely, it is
r times the line bundle corresponding to the Plücker embedding). If C ′

j is
any rational component of C ′, this shows that f∗[C ′

j ] · c1(TV) is a positive
multiple of r. Since f∗[C ′] · c1(TV) = (rd − ke), this means that

f∗[C ′
0] · c1(TV) ≤ (r(d − 1) − ke),

and so the quotient bundle F0 represented by the section C ′
0 is of degree less

than d.
As a conclusion, from the discussion above we get the following useful

Observation: The boundary points of Mg(G(E, k), βd) are constructed
from sections σF0 corresponding to quotient bundles of degree strictly
smaller than d, along with attached rational tails which function to increase
the total degree of intersection with c1(TV).
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Remark. The terminology that a stable map with reducible domain is
a boundary point is standard but potentially slightly misleading. It is pos-
sible (and common) that there are components of Mg(G(E, k), βd) such
that every point of the component is a boundary point. We will also use the
name reducible map for such a point.

For later reference, we end this section by recalling the existence of the
more general moduli space Mg,n(G(E, k), βd) of stable maps with n marked
points (see [12] Sect. 1). This comes with a natural forgetful morphism to
Mg(G(E, k), βd ).

3. Dimension estimates for spaces of stable maps

For each fixed rank k, there is a lower bound on the degrees d of possible
quotient bundles F of that rank. For instance, it is a simple consequence
of Riemann-Roch that d ≥ (e + (r − k)(1 − g) − h0(C, E)); if F were
a quotient bundle of smaller degree, then the kernel SF of the map to F
would have at least a

h0(C, SF) ≥ (e − d) + (r − k)(g − 1) > h0(C, E)

dimensional space of sections, which is a contradiction.
For each rank k, let

dk = dk(E) := min
rkF=k

{
degF | F a quotient of E

}
.

This number will depend on the vector bundle E, and is lower semi-
continuous in families of vector bundles.

The purpose of this section is to prove the dimension estimate:

Theorem 3.1.

dim Mg(G(E, k), βd ) ≤ k(r − k) + (d − dk)r, for all d ≥ dk.

This estimate includes those components of Mg(G(E, k), βd ) whose
general points do not correspond to quotient bundles. For these the inequality
is actually strict, as the proof will show.

The method of obtaining the bound is very simple. We will show how
the bend and break lemma of Mori guarantees that once any component
of Mg(G(E, k), βd) has dimension strictly greater than k(r − k), there is
a divisor in that component corresponding to reducible maps (i.e., stable
maps with reducible domain curves). From the previous analysis, these
correspond to quotients of lower degree, and this will inductively give us
the dimension bound. This application of bend and break is the content of
the following lemma.
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Lemma 3.1. If X is a component of Mg(G(E, k), βd) whose generic point
corresponds to a map with irreducible domain, and dim X > k(r − k), then
there is a (nonempty) divisor Y ⊂ X consisting of reducible maps.

Before proving the lemma, let us use it to prove the dimension bound.

Proof of Theorem 3.1 (using lemma). First of all, suppose that d = dk .
Every point of Mg(G(E, k), βdk) corresponds to an irreducible map – since
a reducible map would give a quotient bundle of strictly smaller degree.
The lemma then shows that no component of Mg(G(E, k), βdk) can have
dimension greater than k(r − k) (the key is that Y is nonempty). This gives
the base case for the induction.

For d > dk, suppose that X is a component of M g(G(E, k), βd) satisfying
the conditions of the lemma. The divisor Y produced by the lemma consists
of reducible maps. Let Y ′ be a component of Y of the same dimension. By
the discussion in the previous section, we can assume that the generic point
of Y ′ consists of a reducible map where the component C ′

0 corresponds
to a quotient bundle of degree (d − δ), along with a rational component
which makes up the difference when intersected with c1(TV ); i.e., if C ′

1 is
the rational tail, then f∗[C ′

1] · c1(TV ) = rδ.
This set of reducible maps can be built up in the usual way by using

smaller spaces of stable maps, and this will give us the inductive dimension
bound.

Let αδ be the homology class in H2(G(E, k),Z) corresponding to curves
of the same type as these rational tails – these are curves contained in a fibre
of the map π : G(E, k) −→ C, and which have intersection rδ with the
vertical tangent bundle. The space of maps M0,1(G(E, k), αδ) of rational
tails with a marked point is of dimension rδ + k(r − k) − 1.

The component Y ′ of Y is in the image of

Mg,1(G(E, k), βd−δ) ×G(E,k) M0,1(G(E, k), αδ) −→ Mg(G(E, k), βd)

where we glue together the maps whose marked points are sent to the same
point of G(E, k). This fibre product has dimension

dim Mg(G(E, k), βd−δ) + 1 + dim M0,1(G(E, k), αδ) − dim G(E, k)

= dim Mg(G(E, k), βd−δ) + 1 + rδ + k(r − k) − 1 − k(r − k) − 1

= dim Mg(G(E, k), βd−δ) + rδ − 1.

Since Y ′ is in the image of this map, the dimension of Y ′ is less than or
equal to the dimension above. Hence:

dim X = dim Y ′ + 1 ≤ dim Mg(G(E, k), βd−δ) + rδ.

Using the inductive dimension bound for the dimension of Mg(G(E, k),
βd−δ) this gives us
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dim X ≤ k(r − k) + (d − δ − dk)r + rδ = k(r − k) + (d − dk)r,

which is exactly what we wanted.
This shows why the lemma gives us the dimension bound, at least as

long as we consider components X of Mg(G(E, k), βd) whose generic map
is irreducible. In the case that X is a component whose generic point does
correspond to a reducible map, we can express X (as above) as being in
the image of a product of spaces parametrizing rational tails, and a space
Mg(G(E, k), βd′) where d′ is of smaller degree. If the generic point of X
consists of a map with l rational tails, then the same kind of argument as
above shows that

dim X ≤ k(r − k) + (d − dk)r − l.

This finishes the proof of the theorem using Lemma 3.1. �

The only step remaining is to prove the lemma.

Proof of Lemma. Let X be a component satisfying the conditions of the
lemma. It is easier to pass to the space Mg,1(G(E, k), βd) with a single
marked point; let X̃ be the inverse image of X under the forgetful map
Mg,1(G(E, k), βd ) −→ Mg(G(E, k), βd ). It is sufficient to prove that there
is a nonempty divisor Ỹ in X̃ consisting of reducible maps. (In fact it
would be sufficient to prove that this component has at least one point
corresponding to a reducible map, since the locus of nodal curves in a family
is always of codimension at most one, provided it is nonempty.)

The advantage of passing to the space with a marked point is that we have
an evaluation map ev : X̃ −→ G(E, k). By hypothesis, X̃ has dimension
strictly greater than k(r −k)+1. SinceG(E, k) is of dimension k(r −k)+1,
we see that all the fibres of the evaluation map are at least one dimensional.
To show the existence (and dimension) of Ỹ , it is sufficient to show that
each fibre has a nonempty set of reducible maps, of codimension zero or
one.

Pick a point p of C, and let Fp be a k dimensional quotient of the vector
space E p. Let ZFp = ev−1([Fp]) be the fibre of the evaluation map over
this point in G(E, k). If ZFp is empty there is nothing to prove. If ZFp

consists completely of reducible maps, then there is still nothing to prove.
The remaining possibility, which has to happen generically over the image,
is that ZFp has some points which correspond to maps with an irreducible
domain curve. If the locus of reducible maps is not a (nonempty) divisor,
then we can find an irreducible complete curve B′′ in ZFp such that every
point of B′′ corresponds to a map with irreducible domain curve. (Also note,
by the discussion in Sect. 2, that these curves are all isomorphic to C). It is
now easy to show that the existence of B′′ leads to a contradiction.

Let B′ be the normalization of B′′, so that we can work with a smooth
base curve. We have a map B′ −→ B′′ −→ Mg,1(G(E, k), βd ). Since
the moduli space of maps is only a coarse moduli space, this might not
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correspond to an actual family. However, there is a finite cover B −→ B′ so
that the induced map B −→ Mg,1(G(E, k), βd ) does come from a family
C over B. This family is isotrivial, since all fibres are isomorphic to C.

At this stage we have the family C over B, along with a section s :
B −→ C corresponding to the marked point, and a map f : C −→ G(E, k)
inducing the stable maps on the fibres. The combination of the map f
followed by the projection π from G(E, k) to C gives an isomorphism of
each fibre of the family with C, and so we see that C is the trivial family
C = C × B over B.

The section s is sent to the point Fp under f , since B′′ is contained in
the fibre ZFp of the evaluation map. This shows that the images of the maps
C → G(E, k) parametrized by B go through the fixed point Fp. Now this
family of stable maps over B induced by f is not the constant family, since
B′′ was a nontrivial curve in the moduli space. This contradicts the bend
and break lemma of Kollár and Mori (see [16] 1.7), which asserts that in
the given situation at least one of the image curves should “break” and have
a rational component passing through Fp. We conclude that the curve B′′
could not exist, and therefore that the locus of reducible curves in ZFp is
a nonempty divisor. �

Remark. What we use is actually only the rigidity part of the bend and
break lemma, and not the full strength of Mori’s arguments. The referee has
pointed out that the rigidity statement can be proved directly in this case, as
follows:

The family C × B −→ G(E, k) gives a short exact sequence of bundles
over C × B

0 −→ S −→ pr∗1(E) −→ Q −→ 0.

For the special point p of C, the hypothesis is that Q restricted to {p}× B
is the trivial bundle, which implies that Q has degree zero when restricted
to {q} × B for any point q ∈ C.

For any such point q, the restriction of pr∗1(E) to {q} × B is the trivial
bundle. The only degree zero quotients of the trivial bundle are themselves
trivial bundles, via trivial quotients, i.e., quotients which do not depend on
the point of B.

This means that for each q ∈ C, the family of quotients parameterized
by B is constant, and therefore that the whole family of quotients on C does
not vary over B, contrary to the way that B was initially chosen.

Remark. Often in arguments using degeneration the difficult part is proving
that a one parameter family actually has to degenerate. In our situation, the
degeneration argument is very easy, the advantage coming from the fact that
the curves in our families do not vary in moduli.

Some variations on this bound. Let mk be the dimension of the space of
stable maps in the case of rank k quotients of minimal degree. i.e.:

mk := dim Mg(G(E, k), βdk).
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In order to use induction in the proof of Theorem 3.1, we need that at each
stage the dimension of the component we are considering be greater than
k(r − k). Therefore, whenever mk ≥ k(r − k) − r, the same argument also
gives the slightly better result

dim Mg(G(E, k), βd ) ≤ mk + (d − dk)r. (1)

There is also a lower bound on the dimension of M g(G(E, k), βd) involv-
ing the same number mk (and which does not require that mk ≥ k(r−k)−r).
The bound is obtained by taking sections C ′

0 corresponding to minimal quo-
tients and gluing on a single rational curve which maps to one of the fibres,
with the degree of the rational curve chosen to make up the difference
between d and dk . There are mk parameters for the choice of C ′

0, 1 pa-
rameter for the choice of where to glue the rational curve onto C ′

0, and
(d −dk)r −2 parameters for the choice of the map of the rational curve into
the Grassmannian fibre. This gives:

Proposition 3.2. dim Mg(G(E, k), βd ) ≥ mk + (d − dk)r − 1.

Remark. Going back to the case mk ≥ k(r − k) − r, the upper bound there
is one more then this lower bound, and this leaves only two possibilities for
the dimension of Mg(G(E, k), βd ). Which possibility occurs depends on
whether or not it is possible to smooth the nodes in the families above.

The same trick of gluing on a rational curve to make up the difference in
degree gives an inequality between the dimensions of any two of the stable
map spaces, namely

dim Mg(G(E, k), βd2)≥dim Mg(G(E, k), βd1)+(d2−d1)r−1, for d2 ≥d1.

Combining this information about the growth of the dimensions with the
same inductive argument of Theorem 3.1 gives the following other variation:
If d′ is the first degree so that dim Mg(G(E, k), βd′) ≥ k(r − k) − r, then

dim Mg(G(E, k), βd) ≤ k(r − k) + (d − d′)r, for all d ≥ d′ − 1. (2)

Our basic picture in these upper (and lower) bounds is that the dimension
grows by r when the degree increases by 1, at least once the dimension of
the space is large enough. It is tempting to wonder if this is always the case
(even when the dimensions are small), and if, for example, inequality (1)
might be true in all cases. This is in fact not true, as Example 5.3 will show.

4. Dimension estimates for Quot schemes

We now switch to looking at the other, more familiar, compactification
of the space of vector bundle quotients of a fixed vector bundle E, namely
Grothendieck’s Quot scheme. Let Quotk,d(E) be the the scheme parametriz-
ing coherent quotients of E of generic rank k and degree d. A general in-
troduction to the theory of Quot schemes is given e.g. in [18] Sect. 4 and
Sect. 8. We would like to prove the identical dimension estimate:
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Theorem 4.1.

dim Quotk,d(E) ≤ k(r − k) + (d − dk)r, for all d ≥ dk.

Proof. If Q is a component of Quotk,d(E) whose generic point parametrizes
vector bundle quotients, then there is nothing to prove, since it is birational
to a component of Mg(G(E, k), βd) and Theorem 3.1 applies. As in the case
of Mg(G(E, k), βd ), however, there are usually components whose general
point does not correspond to a locally free quotient, and, as in the case of
Mg(G(E, k), βd ), we will show that for these the inequality is always strict.

Let Q be a component of this type. Every non locally free quotient F
determines a diagram:

0

��

0

��

0 �� SF
��

��

∼=

SF ′ ��

��

τ ��

��

0

0 �� SF
�� E ��

��

F ��

��

0

F ′

��

��
∼=

F ′

��

0 0

where SF ′ is the saturation of the kernel SF, F ′ is a quotient vector bundle
of degree (d − a) and τ , the torsion subsheaf of F, is given by a nontrivial
zero-dimensional subscheme, say of length a > 0. We can stratify the set of
all such F’s in Q according to the value of the parameter a, which runs over
a finite set. If we denote by {F}a the subset of Q corresponding to a fixed a,
this gives:

dim {F}a ≤ dim Quotk,d−a(E) + (r − k)a.

Assuming the dimension bound true for smaller d, we get the inequality:

dim{F}a ≤ k(r − k) + (d − a − dk)r + (r − k)a

= k(r − k) + (d − dk)r − ka.

Letting a run over all possible values (or the minimum value) which occur
for the component Q finishes the proof of the bound. �

Remark. With only slight rewording the proof also gives the stronger

dim Quotk,d(E) ≤ dim Mg(G(E, k), βd ) for all d ≥ dk.
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As in the case of Mg(G(E, k), βd ) (see 3.2), we can easily produce
a lower bound for the dimension of Quotk,d(E), this time by starting with
vector bundle quotients of lower degree and going up via elementary trans-
formations. Again, it may well be the case that the components achieving
such a bound consist entirely of non-locally free quotients.

Proposition 4.2. Let d ≥ d′ ≥ dk and δ = (d − d′). Then we have

dim Quotk,d(E) ≥ dim Quotk,d′(E) + δ(r − k).

In particular dim Quotk,d(E) ≥ mk + (d − dk)(r − k), for all d ≥ dk.

Proof. We only need to consider the diagram in the proof of Theorem 4.1
when F ′ runs over the family of quotients of degree d′. This gives at most
dim Quotk,d′(E) parameters, and the other δ(r − k) parameters come from
the fact that SF is an (inverse) elementary transformation of SF ′ of length δ.
The last statement follows by making d′ = dk.

Remark. Propositions 3.2 and 4.2 show that in general there is more flexi-
bility in dealing with stable maps with reducible domain rather than non-
locally free quotients. In Sect. 7 we will show that there is always a surjective
morphism Mg(G(E, k), βd) −→ Quotk,d(E) extending the map on smooth
curves if k = (r −1), and no such map if k �= (r −1). In general the relation
between the two compactifications seems a bit mysterious.

5. Examples and optimality of the bound

Example 5.1: Let E be the trivial bundle of rank r on C, and let k be any
number from 1 to (r − 1). A “section of the relative Grassmann bundle”
in this case is just the graph of a map from C to the usual Grassmannian
G(r, k). The degree of the corresponding quotient bundle is the degree of
the linear series associated to the map from C to PN

(
with N = (r

k

) − 1
)

induced by the Plücker embedding.
The minimal degree of a quotient bundle is zero (i.e. dk = 0 for all k)

and in this case we have dim Mg(G(E, k), β0) = k(r − k). For d = 1, there
will be no vector bundle quotients unless the genus of the curve is zero,
since for g ≥ 1 there are no maps from C to PN of degree 1. If g ≥ 1, all the
points of Mg(G(E, k), β1) correspond to maps mapping C to a point, and
mapping an attached rational curve in as a line. In the Quot scheme case,
all the degree 1 quotients are torsion.

For degree d = 2, there will again be no vector bundle quotients, unless
the curve is hyperelliptic, but there will always be reducible maps or torsion
quotients as above. For other low d, the geometry of both the stable map
and Quot scheme depend on the particular special linear series that live on
the curve.

For large d, the behaviour of linear series on C is regular, and there will
be components of both spaces corresponding to vector bundle quotients, of
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dimension dr − k(r − k)(g − 1). The behaviour of the largest components,
however, are different in the two cases. Following the constructions of
Proposition 3.2, Mg(G(E, k), βd) has a locus of dimension rd+k(r −k)−1
constructed by mapping C to a point, and mapping an attached rational
curve as a curve of degree d. If g �= 0, this is larger than the dimension of
points parametrizing vector bundle quotients, and so constitutes a separate
component. On the other hand, if we apply Proposition 4.2 to the Quot
scheme, we get a torsion locus of dimension d(r − k) + k(r − k). For
large d this is a sublocus of the component of Quotk,d(E) whose general
point parametrizes vector bundle quotients (see Theorem 6.4) and not a new
component at all.

This example shows that there are vector bundles E where the bound is
exact for d = dk , and gives an example of a case where the families con-
structed in Proposition 3.2 form components of the moduli spaces, i.e. where
it is impossible to smooth the nodes of the family from Proposition 3.2.

Example 5.2: On a curve C of genus g ≥ 2, let L be a line bundle of degree
1 with no global section, and let G1 be a generic extension of the type

0 →r−1⊕ O → G1 → L → 0.

If g ≥ (r − 1) then the usual dimension counting shows that the generic
extension of this type is a stable bundle (see also [6] Sect. 5 for more general
counts of this kind).

The minimum degree of any quotient is dk = 1, and for any k from 1 to
(r − 1) there is at least a (k − 1)(r − k) dimensional family of degree d = 1
quotients obtained by dividing out by a rank (r − k) subbundle of the direct
sum (if g ≥ r then these are the only quotients of degree 1).

In most uses of a bound for the dimension of the quotients of a fixed
bundle E, what is really needed is a bound for the moduli of the bundles F,
i.e. the dimension of the isomorphism classes of F, throwing away the data
of the particular morphisms E → F which express F as a quotient.

In this example, (d = 1, g ≥ (r − 1), and the extension generic) it is
not hard to check that all the quotients are nonisomorphic, and this provides
an example of a family of quotients with maximal variation in moduli (so
that the dimension of the space of quotients is the same as the dimension
of the moduli of F’s) as well as an example of a stable bundle where the
dimension in the case d = dk is close to the upper bound.

A similar example is to take a generic extension

0 → L∗ → G0 → G1 → 0

with L∗ the dual of the line bundle L above. For g ≥ r this extension is also
stable, and provides an example of a stable bundle with trivial determinant
with a large family of quotients of degree 1 (which also vary maximally in
moduli, since they are the same quotients as above).
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Example 5.3: For any r ≥ 11, pick k with r/2 < k < r such that
(r − k)(2k − r − 1) > r (this works out to be any k between (r + 5)/2
and (r − 2)). Let G1 be a bundle of rank k of the type from Example 5.2,
and let H be a stable bundle of rank (r − k) and degree 1. Set

E = H ⊕ G1,

which is a bundle of rank r and degree 2.
By the stability of G1 and H , E can have no quotients of degree 0. If F

is a quotient bundle of rank k and degree 1, then the kernel bundle SF fits in
the following diagram (where the vertical arrows are injections):

0 �� S′
F

��

��

SF

��

�� S′′
F

��

��

0

0 �� H �� E �� G1
�� 0

This shows that the slopes of S′
F and S′′

F are less than 1/(r − k) and 1/k
respectively. Since 1/k < 1/(r −k) and the slope of SF is 1/(r −k), the only
possibility is S′

F = H and S′′
F = 0, so that G1 is the only quotient bundle

of rank k and degree 1. Or, in the notation of Sect. 3, we have dk(E) = 1,
mk(E) = 0.

At the end of Sect. 3 we wondered if the bound (1)

dim Mg(G(E, k), βd ) ≤ mk + (d − dk)r

might be true in all cases. In this example, for d = 2, this would give the
bound

dim Mg(G(E, k), β2) ≤ r.

One way to get quotient bundles of degree 2, rank k is by taking quo-
tients of G1 which have degree 1 and rank (2k − r). We know the di-
mension of this family by the calculation in Example 5.2, and this shows
that dim Mg(G(E, k), β2) ≥ (2k − r − 1)(r − k), which we chose at the
beginning to be strictly larger than r.

Remark. The idea of the proof of the bound is to use degeneration to relate
bundles of higher degree to bundles of lower degree, which allows us to see
that the dimension goes up by r as the degree increases. The only way that
(1) might not be true in general is if there were families of quotients which
have no relation to each other at all, and that is what this example provides.

Example 5.4: Let E be a generic stable bundle of degree e and rank r on
a curve C of genus g ≥ 2. The behaviour of the dimensions of the Quot
schemes (which also applies to Mg(G(E, k), βd )) in this situation has been
worked out in [25], and a summary is the following:

• The invariant dk is the smallest value which makes the expression dkr −
ke − k(r − k)(g − 1) nonnegative.
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• The number mk is the value of dkr −ke−k(r −k)(g−1) (i.e. the residue
class of k2(g − 1) − ke mod r).

• dim Mg(G(E, k), βd ) = dim Quotk,d(E) = dr −ke−k(r −k)(g−1) =
mk + (d − dk)r for all d ≥ dk .

The bundles satisfying the first condition are sometimes called Lange
generic and were first studied in [17]. If a bundle satisfies all three conditions
above, we will say that it is generic in the sense of Example 5.4, or sometimes
just 5.4 stable.

The expression dr − ke − k(r − k)(g − 1) appearing repeatedly above
is the cohomological lower bound for a quotient bundle F of rank k and
degree d:

dim Mg(G(E, k), βd) ≥ χ(S∗
F ⊗ F) = dr − ke − k(r − k)(g − 1).

This example shows both that there are situations where this lower
bound is achieved, and where formula (1) in Sect. 3 may be valid without
the condition mk ≥ k(r −k)−r. Most importantly, in Sect. 6 we will see that
these are precisely the bundles for which Mg(G(E, k), βd ) is irreducible for
large d.

For special choice of the parameters, the dimension of Mg(G(E, k), βd )
in this example exactly matches our upper bound. If k = 1 and r divides
(g − e), or k = (r − 1) and r divides (g + e), then dim Mg(G(E, k), βd) =
(r − 1) + (d − dk)r for all d ≥ dk, which is the upper bound (similarly for
Quotk,d(E)). For all other choices of parameters the upper bound will be
strictly larger.

How good is this bound? Viewed as functions of d, both our upper bound
(3.1 or 4.1) and the cohomological lower bound mentioned above are linear
functions with the same slope r, and therefore this part of the bound is
certainly sharp. There are also examples (5.1 and 5.4) where the values of
the “constant term” are achieved and so without extra conditions on the
bundle this cannot be improved either. Further evidence that the constant
term is good is that the difference between upper and lower bounds gives
the inequality:

rdk − ke ≤ k(r − k)g,

which is a theorem of Lange [17] and Mukai-Sakai [19] generalizing a rank
2 result of Segre and Nagata [20] on minimal sections of ruled surfaces.

One appealing aspect of the upper bound is that it depends on very little
data. The rank and degree (k and d) of the quotients and the rank r of
the bundle are the basic numerical invariants of the problem, and the only
thing which really ties the formula to the particular vector bundle E is the
(admittedly sometimes hard to understand) invariant dk(E). In particular,
the formula is independent of the genus of the curve, the characteristic of
the field, or any other conditions on the bundle E (including its degree).

Even with extra conditions on the bundle E, the only possible improve-
ment is better (and somewhat limited) control over the behaviour of the
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constant term. On the other hand, it is exactly the lack of extra conditions
on E that is one of the strongest features of this bound. This lack of restric-
tions makes it very useful in computations; Lemma 6.3 in the next section
is an illustration of this.

6. Components of Quot and Mg(G(E, k), βd ) for large d

Let E be a bundle of rank r and degree e on a curve of genus g > 0. We
start by proving a slightly weaker version of the theorem we are aiming for.

Proposition 6.1. For all large d there is a unique component of Quotk,d(E)

and Mg(G(E, k), βd) whose generic point corresponds to a stable bundle
quotient; this component is of dimension rd − ke − k(r − k)(g − 1).

We will need two vanishing lemmas.

Lemma 6.1. There is a number d1 = d1(E) such that for all stable bundles
F of rank k, degree d ≥ d1, Hom(E, F) is generated by its global sections
and H1(E∗ ⊗ F) = 0.

Proof. Let L be a line bundle of degree 1. For any bundle F ′, there is
a number n so that E∗ ⊗ F ′ ⊗ L⊗m is globally generated, and so that
H1(E∗ ⊗ F ′ ⊗ L⊗m) vanishes for all m ≥ n.

The condition we want is open, and so given any family X of vector
bundles F ′, the data of the minimum possible nx for each member F ′

x of the
family stratifies X into locally closed subsets. In particular, this function has
a maximum value on X, and so taking n equal to this shows we can choose
an n which works for all members of the family.

Apply this to the moduli spaces Us
C(k, j) of rank k stable bundles for

degrees j = 0, . . . , (k − 1), and choose an n which works for all of these
families. Set d1 = nk.

Any stable bundle F of rank k and degree d ≥ d1 can be written as
F = F ′ ⊗ L⊗m for m ≥ n (the n above) with F ′ a stable bundle of rank k
and degree between 0 and (k − 1), which proves the lemma. �

Remark. Considering filtrations shows that it is possible to choose a d1 so
that Lemma 6.1 holds for all semi-stable bundles F of rank k, degree d ≥ d1.

Lemma 6.2. There is a number d2 = d2(E) so that for any quotient bundle
F of rank k, degree d ≥ d2 with either F or SF (the kernel ) semistable,
h1(S∗

F ⊗ F) = 0 (and so h0(S∗
F ⊗ F) = rd − ke − k(r − k)(g − 1)).

Proof. Since the proofs in the two cases are very similar, we only look at the
case when F (as opposed to SF) is semistable. In this case, the result follows
immediately from Lemma 6.1 and the long exact sequence of cohomology,
if we choose d2 to be equal to the d1 we obtain in the above remark. �
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Proof of Proposition 6.1. Let F be a stable bundle of rank k and degree
d ≥ max(d1(E), d2(E)). Lemma 6.1 guarantees that Hom(E, F) is glob-
ally generated, and since k < r it is not hard to see that the generic
homomorphism is a surjection, which means that both Quotk,d(E) and
Mg(G(E, k), βd ) contain a point corresponding to the quotient

0 −→ SF −→ E −→ F −→ 0.

Lemma 6.2 now says that this point is a smooth point of the component it
lies on, and that the dimension of this component is rd−ke−k(r−k)(g−1).
Since a small deformation of a stable bundle is again a stable bundle, the
general point of this component also corresponds to a stable quotient, and
this proves all the statements of the proposition except for the uniqueness.

By Lemma 6.1 h1(E∗ ⊗ F) = 0 for all F in the moduli space Us
C(k, d)

of stable rank k degree d ≥ d1 bundles, and therefore the vector spaces
Hom(E, F) form a bundle over Us

C(k, d). Since Us
C(k, d) is irreducible, the

total space of the bundle is as well. (This should be interpreted correctly
in the usual way: even though there might not be a Poincaré bundle over
the moduli space, things are fine at least after passing to an étale cover.)
The points corresponding to surjections from E onto a stable bundle F of
rank k, degree d form an open subset of this total space. The points of
Mg(G(E, k), βd ) and Quotk,d(E) corresponding to stable quotients are in
one to one correspondence with the points of this irreducible open set, and
this proves uniqueness. �

Remark. The proof shows in particular that, as long as d is large enough,
every semistable bundle of degree d is a quotient of E and moreover, all
such quotients correspond to points in the smooth locus.

The uniqueness in Proposition 6.1 is true even if we ask just that the
general point of the component parametrize vector bundle quotients (without
necessarily being stable). To prove this we will use the proposition and the
following lemma on avoiding quotients.

Lemma 6.3. Given any d0 and k0 < k there is a number d3 = d3(E, d0, k0)
such that if F is a general quotient of E of rank k and degree d ≥ d3, then
F has no quotient of degree d0 and rank k0.

Definition 6.1. The expression “general quotient” means that F is a gen-
eral point of any component of either Mg(G(E, k), βd ) or Quotk,d(E) (and
such that the component actually has points corresponding to vector bundle
quotients).

Proof of Lemma 6.3. If we count dimensions for the space of the possible
F’s which do have a quotient F → F0 to a bundle F0 of degree d0 and
rank k0, then (viewed as a function of the degree d) we have:

• The dimension of the choice of bundle F0 is constant as a function of d.
Any quotient of such an F is also a quotient of E, so the choice of F0 is
at most the dimension of Mg(G(E, k0), βd0).
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• Fixing an F0 and the kernel SF0 of the surjection E → F0, we can
construct an F by taking a subbundle of SF0 of rank (r − k) and degree
(e − d), and then dividing E by this subbundle. Applying theorem 3.1
to the bundle S∗

F0
we see that the dimension of the choice of subbundles

of SF0 is bounded above by a linear function of d with slope (r − k0).

This shows that the dimension of possible F’s with the kind of quotient we
are trying to avoid is bounded above by a linear function of d with slope
(r −k0). On the other hand, the dimension of the components parametrizing
vector bundle quotients is bounded below by a linear function of d with
slope r (the cohomological lower bound). Therefore, for large enough d, no
general point of any of these components can have a quotient of degree d0
and rank k0. �

Remark. This proof shows the utility of Theorems 3.1 and 4.1. It is im-
portant that the theorems put no special condition on the bundle, since no
matter what conditions we put on E we have little control over SF0, and it is
important that the “slope” of the upper bound be the best possible, since it is
exactly a small difference in slopes which leads to the proof of the lemma.

Theorem 6.2. For all large d there is a unique component of Mg(G(E, k),
βd) and Quotk,d(E) whose generic point corresponds to a vector bundle
quotient; this component is of dimension rd − ke − k(r − k)(g − 1).

Proof. The key observation is that there are only a finite number of possible
pairs (d0, k0) such that E has a quotient bundle F0 of degree d0 and rank k0
which also injects into E ⊗ ωC. If we fix k0, then the degrees of possible
quotients of E of rank k0 are bounded from below, and similarly the degrees
of possible subbundles of E ⊗ ωC are bounded above. This shows that the
number of possible d0’s for a fixed k0 is finite, and therefore there are only
a finite number of possible pairs, since k0 can only run between 1 and (r−1).

The reason that this is useful is that if F is any quotient bundle of E,
then any map from F into E ⊗ ωC must factor through one of the bundles
F0 of the type above. If F has no such F0 quotient, then the only map from
F to E ⊗ωC is the zero map, and this amounts to a vanishing theorem as in
Lemma 6.2.

Apply Lemma 6.3 to all the possible pairs (d0, k0) above, and pick a
d3 which works for all of them. For any d ≥ d3, pick any component of
Quotk,d(E) or Mg(G(E, k), βd) whose general point corresponds to a vector
bundle quotient. By Lemma 6.3, the general point F of this component has
no map to E⊗ωC , and so (by Serre duality) both h1(E∗⊗F) and h1(S∗

F ⊗F)
are zero.

Pick a deformation (as an abstract bundle) of F over an irreducible base
B so that the generic member of the deformation is a stable bundle. Throw
away the closed set of points of B where either h1(E∗ ⊗ Fb) or h1(S∗

Fb
⊗ Fb)

jumps. We now have h1(E∗⊗Fb) = 0 for all b in B, so that the vector spaces
Hom(E, Fb) form a bundle over B. The condition of being a surjection is
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open, so that we can also deform the surjection E → F to a surjection
E → Fb for any general point b of B. The deformation was constructed so
that for general b, the bundle Fb is stable.

Since h1(SFb ⊗ Fb) = 0 for all b in B, this deformation always stays in
the smooth locus of Mg(G(E, k), βd ) or Quotk,d(E), therefore in deforming
this surjection we remain on the same component that we started on.

This shows that as long as d ≥ d3, the condition that the general point
of a component correspond to a vector bundle quotient is enough to im-
ply that the general quotient on that component is actually stable. From
Proposition 6.1 we know that once d is large enough, there is a unique such
component, of dimension rd − ke − k(r − k)(g − 1), and this proves the
theorem. �

Remark. As the referee points out, the last part of the proof above can be
simply summarized as follows: we have that the Kodaira-Spencer infinites-
imal deformation morphism at a point of the corresponding component
chosen as above is surjective, and thus a generic quotient has to be stable.

Remark. The condition d ≥ d3 is already enough to guarantee the unique-
ness of the component parametrizing vector bundle quotients, since (as the
proof shows) every such component has quotients which form an open set
of the set of rank k, degree d, stable bundles. Since this set is irreducible,
and these quotients lie in the smooth loci of the components, the uniqueness
statement follows.

The theorem immediately implies the following useful corollary:

Corollary 6.3. Every vector bundle E on C can be written as an extension

0 −→ E1 −→ E −→ E2 −→ 0,

with E1 and E2 generic stable bundles of prescribed ranks.

Note that we are free to choose what we mean by generic, that is, we
may specify ahead of time any open condition on the space of stable bundles
(for Example 5.4 stable) and then express E as an extension where both
E1 and E2 satisfy that open condition. Similarly, we can freely specify the
ranks r1, r2 of the bundles E1, E2 involved in the extension.

We now study when the spaces Quotk,d(E) or Mg(G(E, k), βd ) can be
irreducible for large d.

Our main result says that in the case of the Quot scheme the best possible
result is true:

Theorem 6.4. For any vector bundle E on C, there is an integer dQ =
dQ(E, k) such that for all d ≥ dQ, Quotk,d(E) is irreducible.

Remark. Of course, this unique component is generically smooth, of dimen-
sion rd −ke−k(r −k)(g−1), and the general point corresponds to a vector
bundle quotient, all of which follows immediately from Theorem 6.2.
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Proof of Theorem 6.4. For simplicity, let us use Quot0
k,d(E) for the open

subset of Quotk,d(E) parametrizing vector bundle quotients (note that for
some d this might miss entire components of Quotk,d(E)).

Also set:

wd = dim Quot0
k,d(E) − (dr − ke − k(r − k)(g − 1)) ,

i.e. the difference between the dimension of this subset and the expected
dimension (the lower bound). We have wd ≥ 0 for all d ≥ dk , and the wd
are eventually zero (by Theorem 6.2) for large d.

Let W be the set of d ≥ dk so that wd �= 0, and define M by:

M := max
d∈W

{
d + wd

k

}
.

Finally, set
dQ = max(�M�, d3(E, k)),

where �M� is the smallest integer greater than M and d3(E, k) is the integer
d3 appearing in the proof of Theorem 6.2 (i.e., such that there is a unique
component corresponding to vector bundle quotients for d ≥ d3).

The claim is that for all d > M, the general point of every component of
Quotk,d(E) corresponds to a vector bundle quotient. Since, by Theorem 6.2
there is only one of these as soon as d ≥ d3, this proves the irreduciblity of
the Quot scheme for all d ≥ dQ .

Suppose we pick a degree d′ smaller than d and construct, as in Propo-
sition 4.2, torsion quotients of degree d by introducing torsion of order
δ = (d −d′) (all torsion loci are produced by this kind of construction). The
torsion quotients we get this way have dimension

dim Quot0
k,d′(E) + δ(r − k)

or, another way to write this (using the w’s) is

wd′ + d′r − ke − k(r − k)(g − 1) + δ(r − k).

The difference between this dimension and the lower bound rd −ke−k(r −
k)(g − 1) is:

−(d − d′)r + wd′ + δ(r − k) = wd′ − δk.

But, by assumption, d > M, which means that d > d′ + wd′
k , or equivalently

wd′ −δk < 0 (or, if d′ /∈ W , then wd′ = 0 and what we want is automatic). In
other words, the dimension of the space of quotients with torsion is strictly
lower than the lower bound, so the general point must be an actual vector
bundle quotient, which finishes the proof. �

Remark. We will use Theorem 6.4 at the end of the next section to show
that Mg(G(E, k), βd) is connected for large d (see Proposition 7.5).
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Remark on g = 0. In the genus zero case, when E is the trivial bundle,
Strømme [24] has shown that the Quot scheme is smooth and irreducible for
every k and d. For a general vector bundle E over P1, neither statement need
be true. However, the asymptotic results of Proposition 6.1 and Theorems 6.2
and 6.4 still remain valid for genus zero, with a slight modification in the
proof. The modification is necessary because there are not many semistable
bundles on genus 0 curves (if d is not a multiple of r, E cannot be semistable)
and we use the semistable bundles as a means of connecting and analyzing
the components. To replace them, for each d and each k ≥ 1, let Fk,d be
the unique (up to isomorphism) bundle of rank k and degree d on C ∼= P1

such that Fk,d = ⊕iOC(ai) with |ai − aj | ≤ 1 for all 1 ≤ i, j ≤ k. Then the
results in the proposition and theorems listed above are true in genus zero,
the only changes being that the words “stable bundle” used in the statements
and arguments should be changed to “of type Fk,d”.

We now study the irreducibility of the spaces Mg(G(E, k), βd). Unlike
the case of Quotk,d(E), it is typical (even for large d) that there are compo-
nents of larger dimension consisting entirely of reducible maps. If we want
to ensure that Mg(G(E, k), βd) has no other components, then we must put
strong conditions on the vector bundle E. (We assume in what follows that
g ≥ 2, see the remark after the proof for a discussion of g = 0, 1.)

Proposition 6.5. If Mg(G(E, k), βd ) is irreducible for all k and all large d,
then E is a stable bundle, generic in the sense of Example 5.4.

Proof of Proposition 6.5. Let E be a vector bundle of rank r and degree e
satisfying the conditions of the proposition. Consider k fixed; we will show
that (at least as far as rank k quotients are concerned) E is a generic stable
bundle in the sense of Example 5.4. Since it holds for all k this will prove
the proposition.

For d large we know that there is a component of dimension rd − ke −
k(r − k)(g − 1), and since we are assuming Mg(G(E, k), βd) irreducible,
this is the only component. Let mk be (as in Sect. 3) the dimension of
Mg(G(E, k), βdk).

In Proposition 3.2 we constructed a family of reducible curves of dimen-
sion mk + (d −dk)r −1. This family has to lie in the unique component, and
since the curves constructed have generically only one node, it is a divisor
in this component, which gives us

mk + (d − dk)r = rd − ke − k(r − k)(g − 1), or

mk = dkr − ke − k(r − k)(g − 1).

Since mk is nonnegative, the right hand side of the equation is as well. (The
fact that the subset above is a divisor is not really necessary for the argument
– we only need a proper subset, as the reader can easily check.)

For the fixed numerical data of r, e, g, and k, let Dk be the smallest
integer so that Dkr − ke − k(r − k)(g − 1) is nonnegative. By the results
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in [25] this is the smallest degree in which a generic stable bundle of rank r,
degree e has a rank k quotient.

The fact that mk is nonnegative gives us dk ≥ Dk, but since the number
dk(E) is lower semicontinuous in families of vector bundles, and since
any bundle can be deformed to a generic stable bundle, we always have
dk(E) ≤ Dk, and this gives dk = Dk.

This also shows that E has no rank k destabilizing quotient bundles,
either from the fact that (dkr − ke) is positive, or from the fact that the
degrees of its rank k quotients are the same as that of a generic stable bundle
of the same rank and degree.

To see that E is 5.4 stable (that is, has the same properties listed in
Example 5.4) we need to show the following additional two things:

1. Mg(G(E, k), βd ) has a component of dimension dr−ke−k(r−k)(g−1)
for all d ≥ dk .

2. There are no components of larger dimension.

Remark. We really only need to show this for “small d”, since for large d
this is a consequence of the assumptions and of Proposition 6.1.

The families of nodal curves constructed in Proposition 3.2 are of di-
mension mk + (d − dk)r − 1 which is dr − ke − k(r − k)(g − 1) − 1 in our
case.

The deformation theoretic lower bound for this family of curves is
dr − ke − k(r − k)(g − 1), which is one larger. Therefore Mg(G(E, k), βd )
has a component of dimension at least dr − ke − k(r − k)(g − 1) for all
d ≥ dk . We will be finished once we establish condition 2.

Suppose for some d1 that there is a component of Mg(G(E, k), βd1) of
dimension strictly greater than d1r−ke−k(r−k)(g−1). Again by attaching
a single rational curve mapping in with large degree we can produce nodal
families of dimension at least dr − ke − k(r − k)(g − 1) for all d ≥ d1.

For large d, this is greater than or equal to the dimension of the unique
component. By 6.2 there is also a component of this dimension where the
general member of the universal family is a smooth curve. This contradicts
the uniqueness assumption and gives condition 2. �


The fact that the components are always of the same dimension as the de-
formation theoretic lower bound has an important consequence. Combined
with Theorem 6.2 this consequence proves the converse of Proposition 6.5.

Proposition 6.6. For a stable vector bundle E, generic in the sense of
example 5.4, the generic point of every component of Mg(G(E, k), βd )
corresponds to a map from a smooth curve (i.e., vector bundle quotient).

Proof. Suppose that we have a component consisting entirely of reducible
maps. We consider this to be built up (as usual) from a smaller component by
attaching rational curves. We know the dimension of the smaller component,
and if we compute the dimension of the family we obtain by gluing on the
curves, we find that it is of smaller dimension than it is supposed to be. �
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Putting together Propositions 6.5 and 6.6, and Theorem 6.2, we arrive at

Theorem 6.7. The spaces Mg(G(E, k), βd ) are irreducible for all k and all
large d if and only if E is stable bundle, generic in the sense of Example 5.4.

Remark. In the proof of Proposition 6.5 we showed that if for a fixed k,
Mg(G(E, k), βd ) is irreducible for all large d, then E is 5.4 stable “in rank k”
(i.e. at least as far as rank k quotients are concerned). On the other hand, if
we assume that E is 5.4 stable in rank k, then the result of Proposition 6.6 is
still true for rank k quotients, and so applying Theorem 6.2 we get a slight
generalization of Theorem 6.7: For fixed k, Mg(G(E, k), βd ) is irreducible
for all large d if and only if E is 5.4 stable in rank k.

Remark. In the case that g = 0 or g = 1, the proof breaks down at the
following point: when we wanted to show that Dk ≥ dk(E) we used the
fact that dk is lower semicontinuous in families, and that we could deform
E to a more general bundle E ′ with dk(E ′) = Dk. In the case that g < 2,
the gap is that we don’t know that such a bundle E ′ exists. The rest of the
argument still goes through, and shows that Mg(G(E, k), βd ) is irreducible
for large d if and only if all components of Mg(G(E, k), βd ) have exactly
the dimension of the lower bound, dr − ke − k(r − k)(g − 1). The only
difference in the result is that we don’t know when E starts to have quotients
of rank k, i.e., we don’t know what the value of dk(E) is – it could be strictly
larger than Dk. As an illustration, in Example 5.1 in the case that g = 0 the
value of Dk is negative, but dk(E) = 0 for all k. However, the dimension of
Mg(G(E, k), βd ) is the predicted value for all d ≥ 0, and these spaces are
easily seen to be irreducible.

Since in the case of 5.4 stable bundles one has good numerical control
over the invariants involved, all the steps in the proof can be made effective,
and we have:

Theorem 6.8. Let E be a 5.4 stable bundle. Then, for a fixed k, M g(G(E, k),
βd) and Quotk,d(E) are irreducible for

d ≥ ke + k(r − k)(g − 1)

r
+ 2(k − 1)(g − 1) + (r − k)(k − 1).

In particular

d ≥ (r − 1)µ(E) +
(

9

4
r − 4

)
(g − 1) + r2

4
− r + 1

works for all k.

Proof. As noted after the proof of Theorem 6.2, all we need to do is to find
an effective expression for the number d3 appearing in Lemma 6.3 which
works for all the possible pairs (k0, d0) which are the rank and degree of
quotients of E that are also subsheaves of E ⊗ ωC and such that k0 < k.
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Fixing such a pair (k0, d0), we first bound the dimension of the space of
quotients F of E which in turn have a quotient F0 of rank k0 and degree d0.
These are themselves quotients of E, and since E is 5.4 stable, we have

dim{F0} ≤ dim Quotk0,d0
(E) = rd0 − k0e − k0(r − k0)(g − 1).

Now each such F0 determines an exact sequence

0 −→ SF0 −→ E −→ F0 −→ 0,

and so the space of F’s which have F0 as a quotient is determined by the
space of subbundles of SF0 of rank r − k and degree e − d. Its dimension
is bounded above by the formula given in Theorem 4.1, and after a small
computation we get that the dimension of the space of all F’s we are looking
at is bounded by:

dim{F} ≤ rd0−k0e−k0(r−k0)(g−1)+(r−k)(k−k0)+(d−dk(E))(r−k0).

On the other hand (since E is 5.4 stable) the dimension of degree d rank
k quotients is exactly rd − ke − k(r − k)(g − 1), and so we want d large
enough so that

k0d > ke + k(r − k)(g − 1) + rd0 − k0e
− k0(r − k0)(g − 1) − dk(E)(r − k0) + (r − k)(k − k0).

Again using the fact that E is 5.4 stable, we have

−dk(E) ≤ −ke − k(r − k)(g − 1)

r
.

Plugging this into the previous inequality and computing further, we obtain

d >
ke + k(r − k)(g − 1)

r
+rµ(F0)−e−(r−k0)(g−1)+(r−k)

(
k

k0
− 1

)
.

In the proof of Theorem 6.2 we are assuming that F0 is a subsheaf of E⊗ωC
(which is also 5.4 stable), giving the additional condition:

µ(F0) ≤ µ(E) + r + k0

r
(g − 1).

And this gives us:

d >
ke + k(r − k)(g − 1)

r
+ 2k0(g − 1) + (r − k)

(
k

k0
− 1

)
.

Using the inequalities 1 ≤ k0 ≤ k−1, we see that this is satisfied whenever:

d ≥ ke + k(r − k)(g − 1)

r
+ 2(k − 1)(g − 1) + (r − k)(k − 1),

which is the desired bound on d depending only on k, r and e.
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Optimizing the terms involving k individually, we arrive at the final
answer which works for all k: all spaces Mg(G(E, k), βd) and Quotk,d(E)
are irreducible for:

d ≥ d3 = (r − 1)µ(E) +
(

9

4
r − 4

)
(g − 1) + r2

4
− r + 1.

�

Remark. In the final two steps of the computation above we optimized each
term containing k0 and then k individually, rather than optimizing the whole
expression as a function of k. Although the bound obtained is weaker,
we chose to do this in order to avoid some extra, not very illuminating,
calculations. The reader can certainly find better approximations for any
particular example, if needed.

In the case when E is only assumed to be stable, the number d3 can still
be approximated (thus making Theorem 6.2 effective), by simply changing
the 5.4 stability condition into usual stability. We skip the computation,
which is identical to the one above, but list the result:

d ≥ (r − 1)µ(E) +
(

r2 + 8r

4

)
(g − 1) + r2

4
+ r.

It is worth noting that, at least in characteristic 0, we only need E to be
stable in order to perform some other effective calculations. We conclude
with a sample such result, which essentially makes Proposition 6.1 effective:

Proposition 6.9. Assume that C is defined over a field of characteristic 0,
and let E be a stable bundle of rank r and degree e on C. Then, for a fixed k,
all semistable bundles of rank k and degree d ≥ k(µ(E)+2g) are quotients
of E, and in fact smooth points of a unique component of Quotk,d(E). In
particular

d ≥ (r − 1)(µ(E) + 2g)

works for all k.

Proof. Following the proof of Proposition 6.1 and the subsequent Remark,
we see that we only need to bound the numbers d1 and d2 appearing in
Lemmas 6.1 and 6.2 respectively. This involves only the well known facts
that the tensor product of two semistable bundles is semistable (in char-
acteristic 0) and that for a semistable bundle V , µ(V ) ≥ 2g − 1 implies
h1(V ) = 0 and µ(V ) ≥ 2g implies global generation.

In Lemma 6.1 we had µ(E∗ ⊗ F) = d
k − µ(E), and since E and F

are now both stable, E∗ ⊗ F will be globally generated and have vanishing
H1 as long as d ≥ k(µ(E) + 2g). Even simpler, the definition of stability
for E implies that the sequence of inclusions in Lemma 6.2 cannot hold if
d ≥ k(µ(E) + 2g − 2). This gives the desired bound. �
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7. Maps from Mg(G(E, k), βd ) to Quotk,d(E)

We would like to try and extend the isomorphism between the open sets
of Mg(G(E, k), βd) and Quotk,d(E) parametrizing vector bundle quotients
to a morphism between the two spaces. Since the boundary loci of the
stable map space are always of larger dimension than the boundary loci of
the Quot scheme, the only possible direction for such a morphism is from
Mg(G(E, k), βd ) to Quotk,d(E).

The moduli functor for Mg(G(E, k), βd) classifies flat families C → B
of nodal curves over a base B along with a map f : C −→ G(E, k) × B
such that over each point b of B, the fibre Cb and morphism fb is a stable
map into G(E, k), with fb∗[Cb] = βd .

The corresponding moduli functor for Quotk,d(E) classifies flat families
Q of quotients of E on C × B, such that over each point b the restriction
Qb of the family to the fibre C over b is a coherent sheaf of degree d and
generic rank k. (We will also use the symbol E for the pullback p∗

1 E on
C × B).

To give a morphism from Mg(G(E, k), βd) to Quotk,d(E) is to give
a functorial way of producing a flat family of quotients Q on C × B from
a family of stable maps over B.

The Grassmann bundle G(E, k) comes with the projection π : G(E, k)
−→ C, and so given any family of stable maps over B, we can compose the
morphism f : C −→ G(E, k) × B with π to get a map

g = (π ◦ f ) : C −→ C × B.

One way to produce sheaves on C × B is to push forward bundles from
the family C, and we will use the following lemma (with g = (π ◦ f ) as
above).

Lemma 7.1. If V is a vector bundle on a family of stable maps over B such
that R1g∗V = 0, then g∗V is a flat family of coherent sheaves on C × B,
and formation of g∗V commutes with arbitrary base change B′ → B.

Proof. This is a relative version of the standard theorem on base change and
cohomology, and the proof is almost the same. The bundle V is flat over
B since C is a flat family and V locally free. We can compute the derived
sheaves on C × B by means of the relative Čech complex, which is a two
term complex V0 → V1 of quasi-coherent flat OB modules. The map of
complexes is surjective since by hypothesis R1g∗V = 0. This gives us the
exact sequence

0 −→ g∗V −→ V0 −→ V1 −→ 0

on C× B. Since both V0 and V1 are flat over B, g∗V is as well. Computation
of the kernel commutes with arbitrary base change induced from B, again
since V1 is flat, and finally, g∗V is coherent over C × B since g is proper. �
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The map g from C to C × B is the contraction of all the “rational tails”
on the curves, and the derived sheaf R1g∗V vanishes whenever the bundle
V has no H1 when restricted to these fibres. If it happens that V is trivial
when restricted to the fibres, then the pushforward g∗V is a vector bundle
on C × B, a fact which we will use later on.

Given any family of stable maps, the exact sequence of tautological
bundles

0 −→ S −→ π∗E −→ F −→ 0

onG(E, k) pulls back via f to give a similar exact sequence on the family C.
For any rational curve D mapping to a fibre of the relative Grassmannian,
the pullback f ∗π∗E is trivial; this means that the tautological subbundle
f ∗S restricted to D decomposes as ⊕iO(ai) with all ai ≤ 0, and similarly
that the pullback of the tautological quotient bundle f ∗F restricted to D
decomposes as a sum ⊕ jO(bj) with all bj ≥ 0.

The decomposition of f ∗F on the rational curves shows that this bundle
has no H1 on any of the fibres of the map g : C → C × B, and therefore
Lemma 7.1 says that the sheaf g∗( f ∗F ) forms a flat (over B) family of
coherent sheaves on C × B. On each fibre Cb, the restriction is of degree d
and rank k.

This family of coherent sheaves unfortunately does not in general give
a map from Mg(G(E, k), βd ) to Quotk,d(E). There are two ways to see
this; the first is that when the subbundle f ∗S has higher cohomology on the
rational fibres, the induced map from g∗( f ∗π∗E) = E to g∗( f ∗F ) on C×B
is not surjective. This does not completely rule out this family, since it is
conceivable that it might be a quotient of E in some other way. What really
shows that this is the wrong construction is the following. If Cb is a fibre
where the family g∗( f ∗F ) has torsion, and x a local coordinate at a torsion
point, then multiplication by x kills all torsion at that point. In general for
quotients of E with torsion, we expect situations where multiplication by
x2 (or higher powers of x) is necessary to annihilate the torsion submodule.

In situations where the subbundle does not have higher cohomology
along the rational fibres (for instance, if d = dk + 1, where the ai’s are all
zero except for one −1), this does give the right morphism to Quotk,d(E).

The correct approach is to try and alter the subbundle f ∗S along the
contracted rational fibres of g so that it is trivial along these fibres. The
pushforward will then be a vector bundle on C × B which includes into E,
and gives a flat family of quotients.

This is always possible in the case that k = (r − 1), when the subbundle
is a line bundle.

Theorem 7.1. If k = (r − 1) then there is a surjective morphism from
Mg(G(E, k), βd ) to Quotk,d(E) which extends the map on the locus where
the domain curve is smooth.

Proof. In order to describe a construction to be applied naturally (i.e., func-
torially) to all families of stable maps, we should describe the construction
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on Mg,1(G(E, k), βd), the universal curve over Mg(G(E, k), βd ). The idea
is that the loci of rational tails form divisors in Mg,1(G(E, k), βd) and twist-
ing by these divisors will allow us to make the line bundle f ∗S trivial along
all the tails. There is some awkwardness in the description because there
can be components of Mg(G(E, k), βd) where the general map is reducible,
and here the loci of rational tails we must twist by in Mg,1(G(E, k), βd )
occur as both divisors and components.

Let D be either a divisor or a component of Mg,1(G(E, k), βd ) such that
the general fibre of the map to Mg(G(E, k), βd ) is an irreducible rational
curve, with the additional condition that this general fibre touches only
one other curve in the domain of the map it is associated to. (This extra
condition only comes up because of the components where the general map
is reducible.)

For each such locus D there is a well defined line bundle OMg,1
(D) on

Mg,1(G(E, k), βd )1; this line bundle has degree −1 when restricted to the
general fibre of the induced map from D to Mg(G(E, k), βd ). We attach the
weight δ to such a D if the degree of f ∗S restricted to the general fibre in
D is −δ.

Set
S′ = f ∗S ⊗δ OMg,1

(−δ · Dδ),

where the tensor product runs over all possible δ and all possible Dδ with
weight δ satisfying the conditions above.

For any family C of stable maps over a base B, this construction gives us
a line bundle S′ on C of degree 0 on all components of all rational tails. In
addition, this bundle has a nonzero map S′ → f ∗S obtained by multiplying
by a section of ⊗δO(δ · Dδ).

By Lemma 7.1 the pushforward g∗S′ is a flat family of line bundles on
C × B, and comes with a natural inclusion g∗S′ ↪→ E induced from the
map S′ → f ∗S on the family C. Let Q be the quotient.

By definition, Q is a family of quotients of E. If b is a point of the
base B where the domain of the map Cb is an irreducible curve, then the
construction with S′ changes nothing near Cb and the quotient on the fibre
Cb is precisely the quotient we expect. The only step remaining is to see
that Q is a flat family over B.

Let � be an ideal sheaf in OB. Tensoring the defining sequence for Q
with (OB/� ) gives the sequence

0 → Tor1(OB/� ,Q) −→ g∗S′ ⊗ (OB/� )

−→ E ⊗ (OB/� ) −→ Q ⊗ (OB/� ) → 0.

1 The fact that O(D) is a line bundle can be seen by pulling it back from the (nonseparated)
stack of all nodal curves of genus g, where deformation theory shows it to be a line bundle.
This argument is well known to the experts, but there does not seem to be any published
reference.
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However, both g∗S′ and E are vector bundles, and at a general point of
every fibre over B the map g∗S′ → E is an injection, therefore the map
from g∗S′⊗(OB/� ) to E⊗(OB/� ) is an injection and Tor1(OB/� ,Q) = 0.

�

It is easy to see what this construction is doing. Suppose that we start

with C0, a section of the relative Grassmannian G(E, r − 1), and let S0 be
the universal sub-line bundle restricted to C0. Attach a rational curve to C0
at a point p, and extend the inclusion C0 ↪→ G(E, r − 1) to this reducible
curve by mapping the rational component in so that it accounts for δ in
degree. In this situation the construction produces the subsheaf S′ of S0
(on C0) which vanishes to order δ at p. This bundle includes into E, and
gives a quotient with torsion of order δ at that point.

This suggests how the “right” torsion quotient to associate to any stable
map into the relative Grassmannian might look, in the general case (i.e., for
arbitrary k).

Possible description of Quotient: Suppose that we have a reducible map
consisting of a section C0 and a single rational curve attached to C0 at p
mapping intoG(E, k). Let S0 be the restriction of the universal subbundle to
the section C0 and let S1 be the restriction to the rational curve. The bundle
S1 on the rational curve breaks up into a sum ⊕r−k

i=1O(ai) with ai ≤ 0.
We can identify the fibre of S0 at p with the fibre of S1 at the corres-

ponding point of attachment. The picture in the case k = (r − 1) suggests
that we should be able to choose a local basis {s1, . . . , s(r−k)} for S0 at p,
compatible with the splitting on S1, so that if x is a local coordinate at p
on C0, the subsheaf S′ of S0 generated locally by {x−a1s1, . . . , x−a(r−k) s(r−k)}
gives the correct quotient.

This unfortunately is also not true in most situations (see Example 7.7.1
below). It is however true in two special cases, and these special cases will
be sufficient to show that there is in general no map from Mg(G(E, k), βd )
to Quotk,d(E) (if k �= (r − 1)) which extends the map on smooth curves.

Proposition 7.2. Suppose that C −→ B is a one parameter family of stable
maps with both C and B smooth, and that at a point b0 of B the fibre Cb0

consists of a section C0 and a single rational curve joined at a point p. If the
pullback f ∗S of the universal subbundle decomposes on the rational curve
as ⊕O(ai) such that |ai − aj | ≤ 1 for all i, j, then the limiting quotient Qb0

in Quotk,d(E) is given by the rule above.

Remark. The condition that both C and B are smooth means that the gen-
eral fibre is as well, and this gives a generically defined map from B to
Quotk,d(E); it is this map that we use to compute the one parameter limit.

Remark. In this case (that |ai − aj | ≤ 1) any choice of local generators of
the sheaf S0 at p (compatible with the splitting along the rational curve)
gives the same subbundle S′. (See Proposition 7.3 for an example where
this choice does matter).
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Proof. Let D be the rational curve over b0 on the smooth surface C. Suppose
that the subbundle f ∗S restricted to D decomposes as

f ∗S|D = m⊕ OD(a)
n⊕ OD(a − 1)

with a ≤ 0 and m + n = (r − k).
The curve D is a (−1) curve on the surface; and so setting S′ = f ∗S ⊗

OC(aD) we have

S′|D = m⊕ OD
n⊕ OD(−1).

If S0 is the bundle f ∗S restricted to C0, then S′ restricted to C0 is generated
by the sections of S0 vanishing to order (−a) at p.

Shrink B so that b0 is the only singular fibre. The bundle S′ then satisfies
the conditions of Lemma 7.1 and therefore g∗S′ gives a family of vector
bundles over C × B. This bundle also has an inclusion into E induced by
the map S′ = f ∗S ⊗ O(aD) → f ∗S.

The quotient of E by g∗S′ gives (using the same argument as in Theo-
rem 7.1) a flat family of quotients over B. Since the Hilbert scheme is
proper, the quotient at b0 must be the correct one parameter limit, and all
that remains is to compute what this limit is.

To compare the restriction of g∗S′ to Cb0 (on C×B) and the restriction of
S′ to C0 (on the family C) we use the fact that formation of g∗S′ commutes
with base change from B, and so we only have to compute this for the
contraction map

gb0 : Cb0 = (C0 
p D) −→ C0 = Cb0.

Choose a local basis s′
1, . . . , s′

(r−k) at p of S′ restricted to (C0 
p D),
compatible with the splitting of S′ along D. Since the bundle OD(−1)
has no global sections, we see that g∗S′ is generated by {s′

1, . . . , s′
m, x ·

s′
m+1, . . . , x · s′

(r−k)}.
The image of S′|Cb0

in S0 is (as mentioned above) all the sections of S0

vanishing to order (−a) at p. The image of g∗S′|C0 is therefore m sections
vanishing to order (−a) and n = (r − k − m) sections vanishing to order
(−a + 1), as claimed in the proposition. �

Proposition 7.3. Suppose that we have a family C −→ B satisfying the
same conditions as in Proposition 7.2 but that this time the restriction of
f ∗S to the rational curve splits as (r − k − 1) copies of O and one copy of
O(−2), then the limiting quotient Qb0 is also given by the rule above.

This means that it is possible to choose a basis {s1, . . . , s(r−k)} for f ∗S
restricted to C0 (compatible with the splitting on the rational curve) so that
the limit is the quotient by S′ = {s1, . . . , sr−k−1, x2s(r−k)}.
Remark. In this case the subbundle S′ does depend on the basis chosen
near p. For example, if (r − k) = 2 the bases {s1, s2} and {s1 + xs2, s2} can
both be compatible with the splitting (at p) along the rational curve, but the
subsheaves generated by {s1, x2s2} and {s1 + xs2, x2s2} are not the same.
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Proof. Let D be the rational curve and C0 the section as before. The restric-
tion of f ∗S to D is

f ∗S|D = r−k−1⊕ OD ⊕ OD(−2).

Let S′ be the kernel (on C) of the projection onto the OD(−2) factor, so that
we have

0 −→ S′ −→ f ∗S −→ OD(−2) −→ 0.

We restrict this defining sequence to D to get

0 −→ Tor1(OD(−2),OD) −→ S′|D −→ f ∗S|D −→ OD(−2) −→ 0.

The map f ∗S|D −→ OD(−2) is just the projection we started with, and
since Tor1(OD(−2),OD) = OD(−1), we have

0 −→ OD(−1) −→ S′|D −→r−k−1⊕ OD −→ 0.

This sequence splits, and the splitting is canonical, since the trivial subbun-
dle of S′|D is exactly the subbundle generated by global sections.

Choose a basis {s′
1, . . . , s′

(r−k)} near p for S′ restricted to Cb0 compatible
with the splitting on D (the basis element s′

(r−k) should be associated to the
O(−1) subbundle).

The image of S′ in f ∗S restricted to D is
(r−k−1)⊕ OD. This shows that we

can pick a basis {s1, . . . , s(r−k)} for f ∗S restricted to C0 so that the induced
map S′|C0 → S0 = f ∗S|C0 is given by s′

i �→ si for i = 1, . . . , (r − k − 1)
and s′

(r−k) �→ x · s(r−k) for the remaining basis element.
We again pushforward the bundle S′ to get a bundle on C × B which we

use to construct a flat family of quotients over B. Following the same type
of argument as in Proposition 7.2, we see that g∗S′|Cb0 is the subbundle of
S′|C0 generated by {s′

1, . . . , s′
(r−k−1), x · s′

(r−k)}.
Using our previous description for the image of S′|C0 in S0 = f ∗S|C0

we see that the image S′ of g∗S′ in S0 is {s1, . . . , s(r−k−1), x2s(r−k)}. �

Remark. A combination of the arguments in Propositions 7.2 and 7.3 shows
that the “rule” for computing the limit also works if the subbundle splits as
m0 copies of OD(a), m1 copies of OD(a − 1), and m2 copies of OD(a − 2).

The actual subbundle S′ of S0 produced depends on the bundle S′ which
is in turn dependent on the first order information of the curve Cb0 in the
family. Different families can produce different limits, and this is the reason
that we cannot in general define a morphism from Mg(G(E, k), βd) to
Quotk,d(E).

The easiest way to see that the limit varies according to the family is
to take a second limit consisting entirely of singular curves. If we stratify
the singular curves by the way the restriction of the universal subbundle
decomposes on the rational tails, then the reason why we cannot extend the
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map is very clear: the limit of the rules for computing the quotient on one
strata is not the rule for computing the quotient on a limiting strata.

The simplest case of this is to take a degeneration of the decomposition
O(−1) ⊕ O(−1) to the decomposition O ⊕ O(−2).

Theorem 7.4. If k �= (r −1) then in general there is no map from the space
Mg(G(E, k), βd ) to Quotk,d(E) extending the map on smooth curves.

Proof. We show the case (r − k) = 2; the idea works for all k �= (r − 1).
Pick d large so that by Theorem 6.2 there is a component of dimension

dr − ke − k(r − k)(g − 1) whose generic point is a smooth point of the
component, and corresponds to a vector bundle quotient.

Let C0 be a section corresponding to one of these points, and S0 the
restriction of the universal subbundle to C0. Pick a point p of C0 and glue
on a rational curve D. Extend the inclusion C0 ↪→ G(E, k) by mapping the
curve in so that the universal subbundle restricts to D as O ⊕ O(−2).

Because the point on Mg(G(E, k), βd ) corresponding to C0 was a smooth
point of the component, a tangent space calculation shows that this new sta-
ble map is a smooth point of Mg(G(E, k), βd+2) and lies on a component
of dimension (d + 2)r − ke − k(r − k)(g − 1). The dimension of the locus
of nearby nodal curves is one less than this, so the general point of this
component corresponds to a smooth map.

Take a smooth one parameter family B1 containing our stable map as
a fibre b0. Proposition 7.3 now shows that there is a basis {s1, s2} of S0
near p so that the limiting quotient is given by dividing out by the subsheaf
S′

1 = {s1, x2s2}.
Starting with the same stable map, we now construct another family B2,

by fixing the section C0, the point of attachment p and varying only the map
of the rational curve D into the Grassmannian fibre. For a general variation,
the decomposition of the universal subbundle will be O(−1) ⊕ O(−1). Let
b0 again stand for the fibre with the original stable map.

Since all of the curves in our family can also be deformed to smooth
curves, Proposition 7.2 shows that for points where the decomposition is
O(−1)⊕O(−1) the corresponding point in Quotk,d(E) must be the quotient
by S′

2 = {xs1, xs2}. As the point b varies in B2 the subbundle S′
2 does not

change, and the inclusion S′
2 ↪→ E is clearly the same away from p, and

therefore the same at p as well. Therefore this is a constant family of
quotients, and the limit at b0 in this family is also the quotient by S′

2.
The two quotients are different, and this shows that (unless we blow up)

we cannot extend the map on smooth curves to all of Mg(G(E, k), βd+2). �

Remark. It is not clear if the fact that the splitting can change is the only
obstruction to extending the map. In the two cases where the decomposition
cannot change (when k = (r − 1) or when d = dk or d = dk + 1) the map
can always be defined.

Remark. For a general rational curve in a Grassmannian, the splitting of
the restriction of the universal subbundle is as “democratic” as possible
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– no ai will differ by more than one from any other. Proposition 7.2 is
therefore a reflection of the fact that rational maps extend into codimension
one subsets.

Example 7.1: Let L be any line bundle, and p any point on a curve C. Set

S = L ⊕ L(p), and E = L ⊕ L(p) ⊕ L(3p).

Let b be a coordinate on the affine line, and define a family of inclusions

S
ib−→ E by

L
ib−→ ( b2 · IdL, ·σp, 0 )

L(p)
ib−→ ( 0, b · IdL(p), ·σ2

p )

where σp is the section of OC(p) and “·” indicates multiplication by the
section. If x is a coordinate at p, then locally the inclusion is given by the
matrix 


b2 0
x b
0 x2




If b �= 0 then the inclusion is rank 2 everywhere, and gives a vector bundle
quotient. When b = 0 the quotient has torsion, and looks like E divided by
a subsheaf of the type {xs1, x2s2}.

For b �= 0 we can consider this as a family of stable maps, and take
the one parameter limit in Mg(G(E, k), βd ). To do this, blow up the family
C × A1

b at (p, 0) and pull back both bundles to this surface. The inclusion
of S into E now drops rank along the exceptional divisor D, and if we take
the saturation of S in E on the blow up, this gives the subbundle of the
limiting stable map. Computation in coordinates on the blowup shows that
this subbundle restricted to D decomposes as OD ⊕ OD(−3).

Since we know that the corresponding torsion quotient is not of the type
where we divide out by something of the form {s1, x3s2}, this shows that
the decomposition of the subbundle on the rational tails has no relation in
general to the corresponding limiting quotient in one parameter families.

Remark. In the proof of Proposition 7.3 there was one step where an exact
sequence of bundles on D split. It is the failure of this kind of sequence to
split in general which prevents the rule from being true. The example above
is the simplest case where this splitting (and therefore the rule) fails.

To finish, here is a result that properly belongs in the previous section,
but appears here because we need to use our picture of the relationship be-
tween Mg(G(E, k), βd ) and Quotk,d(E), especially pushing forward vector
bundles, and computing one parameter limits.
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Proposition 7.5. There is a dM = dM(E, k) so that Mg(G(E, k), βd ) is
connected for all d ≥ dM.

Proof. Choose dM so that it is larger than the dQ of Theorem 6.4 and also
large enough so that every component of Mg(G(E, k), βd) has dimension
at least k(r − k) + 1.

For any d ≥ dM, let X be a component of Mg(G(E, k), βd). By
Lemma 3.1 X has a nonempty divisor Y of reducible maps. Suppose that
a point of a component of this divisor is given by a section C0 correspond-
ing to a quotient of degree (d − δ) and an attached rational curve making
up the difference in degree. By deforming the rational curve alone in the
Grassmannian fibre, we can break it into a tree of δ rational curves, each
accounting for one in degree (this is a degeneration, and the resulting stable
map is still a point of X).

Now move the δ rational curves “off” the tree so that they are connected
to C0 at δ different points (it is at this stage that we may be moving from
one component to another). The result is a section C0 with δ rational curves
attached at {p1, . . . , pδ} on C0, and so that each curve accounts for one in
degree. Let (C ′, f ) be the resulting stable map into the relative Grassman-
nian. The claim is that this point is in the same connected component as the
locus parametrizing vector bundle quotients.

To see this, we use the fact that the pushforward g∗( f ∗F ) of the pullback
of the tautological quotient bundle on G(E, k) gives a quotient of E. This
happens since (in this situation) the pullback of the canonical subbundle
f ∗S decomposes as the sum of O’s and one O(−1) on each of the δ rational
tails (see the discussion after Lemma 7.1). The resulting pushforward F ′ is
a quotient with torsion. The torsion free part is the vector bundle quotient
corresponding to the section C0, and the torsion part is supported at the
points p1, . . . , pδ, and is of length one at each of those points.

Since dM is larger than dQ , Quotk,d(E) is irreducible, and so we can
find a smooth one parameter family B of quotients so that the general
point is a vector bundle quotient and the special point q ∈ B is the torsion
quotient F ′. Since the general point of B is a vector bundle quotient, we
can also consider this a curve in Mg(G(E, k), βd), and we take the one
parameter limit approaching q ∈ B. To compute the limit we just need to
blow up the family C × B at the points {(p1, q), . . . , (pδ, q)} since this is
where the quotient map drops rank, and take the saturation of the universal
subbundle pulled back to the blown up surface. The limit is not necessarily
the stable map (C ′, f ) but it is a stable map with section C0 (the same C0)
and δ rational curves attached at p1, . . . , pδ each one accounting for one in
degree.

This curve can be deformed (by moving the rational curves in the Gras-
mannian fibres) to (C ′, f ), and so we see that the component X is in the
same connected component as the locus parametrizing vector bundle quo-
tients. Since X was arbitrary, this means that Mg(G(E, k), βd ) is connected.

�
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8. Application to base point freeness on moduli spaces

In this section we assume that C is a smooth projective complex curve of
genus g ≥ 2. Let SUC(r) denote the moduli space of semistable rank r
vector bundles on C of trivial determinant. The Picard group of SUC(r) is
isomorphic to Z (see [11] Theorem B), with ample generator L (called the
determinant bundle).

For any bundle E in SUC(r), if there is a bundle E ′ of rank p and slope
(g − 1) such that h0(E ⊗ E ′) = 0, then E is not a basepoint for |Lp|. (It
is not known if the converse is true – this is the content of the geometric
formulation of the Strange Duality conjecture, see e.g. [2] Sect. 8).

If we treat an element of H0(E ⊗ E ′) as a homomorphism from E∗ to E ′,
then we can factor the homomorphism as E∗ −→ F ↪→ E ′, where the map
to F is a surjection.

Suppose that we fix a quotient bundle F of rank k and degree d, then we
can ask for the dimension of stable bundles E ′ of rank p and slope (g − 1)
which fit in the diagram

0 −→ F −→ E ′ −→ Q −→ 0.

Counting dimensions of the quotient sheaf Q and the extension space
Ext1(Q, F) shows that these bundles are of codimension at least dp + 1
in the moduli space of bundles of rank p, slope (g − 1). (In fact, for the
purpose of dimension counts, Q can be thought of a being a stable bundle
– for details and further references related to all these facts, please see [21],
especially Sect. 4).

This gives the following lemma on basepoint freeness:

Lemma 8.1. For a bundle E in SUC(r), if p is a number so that

dim
{ Moduli of rank k, degree d, quo-

tient bundles F of E

}
≤ dp

for all k = 1, . . . , (r − 1), and all d, then E is not a basepoint of |Lp|.
The dimension above is the dimension of the moduli of the quotient bun-
dles F, throwing away the data of the surjections E → F. The space of
quotients (i.e., this time including the data of the surjections) provides an
upper bound for the dimension of this moduli. We have dk(E) ≥ 1 for all
k since E is stable of degree 0, and using our upper bound 4.1 gives the
following (note that the argument works literally only for r ≥ 3, but it is
well known that L is already very ample on SUC(2)):

Theorem 8.1. The series |Lp| on SUC(r) is base point free for p ≥ [ r2

4 ].
Remark. This is a small improvement on a similar bound in [21]. In the
same paper, the following question appeared:

Question. Is the series |Lp| base point free on SUC(r) for p ≥ (r − 1)?
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Even though we have examples of bundles with large families of quo-
tients, we know of no potential counterexample (i.e. modulo Strange Du-
ality) to this conjecture. There are two difficulties in constructing good
examples in this situation. The first is that we would like the family of quo-
tients to have maximal (or at least large) variation in moduli. The second
(and more difficult) is that the dimension count in Lemma 8.1 does not
take into account the fact that different extensions involving different Q’s
may produce the same stable bundle E ′. This contribution is difficult to
estimate.

For instance, the bundles G0 constructed in Example 5.2 are stable
bundles of rank r and trivial determinant with at least a (k − 1)(r − k − 1)
dimensional family of rank k, degree 1 quotient bundles. As stated in the
example, these families of quotients vary maximally in moduli, and so
seem as if they should provide a potential counterexample to the conjecture.
However, all the quotients F are extensions of the form

0 →k−1⊕ O → F → L → 0,

where L is a fixed line bundle of degree 1. The general stable bundle E ′
of slope (g − 1) has no global sections, and also will not accept a nonzero
map from L , and therefore any morphism of the type F → E ′ is the zero
morphism.

In any construction we can make, either the dimension of the quotients
is too small, or the quotient bundles produced are too special. The vague
principle seems to be that quotients of a fixed bundle cannot be too general,
and the Question above is a quantitative expression of this.

The improved upper bound also gives a few new cases of a conjecture made
in [21] 5.5 about linear series on the moduli space UC(r, 0) of semistable
vector bundles of rank r and degree 0 on C.

Once a line bundle N ∈ Picg−1(C) is fixed, we can define (see [11]
7.4.2) a generalized theta divisor ΘN on UC(r, 0), given set-theoretically
by:

ΘN = {E | h0(E ⊗ N) �= 0}.
The conjecture mentioned above asserts that the linear series |kΘN | should
be base point free for k ≥ r + 1. In the case r = 1, this is the classical
statement that |2ΘN | is base point free on the Jacobian of C, and in [21] 5.4
a proof is also given for r = 2 and 3. By arguments in [22] 5.3, |kΘN | is
base point free as long as k ≥ r + 1 and |Lk| is base point free on SUC(r).
Concluding, Theorem 8.1 provides a solution to the conjecture up to the
case of rank 5 vector bundles:

Corollary 8.2. |kΘN | is base point free on UC(r, 0) for k ≥ r + 1 if r ≤ 5.
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