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CURVES OF SMALL DEGREE ON CUBIC THREEFOLDS

JOE HARRIS, MIKE ROTH AND JASON STARR

ABSTRACT. In this article we consider the spaces Hd,g(X)
parametrizing smooth curves of degree d and genus g on a
smooth cubic threefold X ⊂ P4. For 1 ≤ d ≤ 5, we show that
each variety Hd,g(X) is irreducible of dimension 2d.

1. Introduction. Suppose that X ⊂ P4 is a smooth cubic
hypersurface in complex projective 4-space. In this article we consider
the space Hd,g(X) parametrizing smooth curves of degree d and genus
g on a smooth cubic threefold X ⊂ P4. For 1 ≤ d ≤ 5 we show that
each variety Hd,g(X) is irreducible of dimension 2d.

For the Fano scheme of lines F = H1,0(X), this is a classical result,
cf., [1]. We bootstrap from this case by residuation: in each case we
show that for a general point [C] ∈ Hd,g(X) there is a surface Σ ⊂ P4

which contains C and such that every irreducible component of the
residual to C in Σ∩X has degree e < d. In this way we inductively prove
that for 1 ≤ d ≤ 5 the space Hd,g(X) is irreducible, and in several cases
we also show smoothness. In a forthcoming paper [8], we use similar
methods to describe the Abel-Jacobi maps ud,g : Hd,g(X) → J(X) for
1 ≤ d ≤ 5.

1.1 Notation. All schemes in this paper will be schemes over C.
All absolute products will be understood to be fiber products over
Spec (C).

For a projective varietyX and a numerical polynomial P (t), HilbP (t)X

denotes the corresponding Hilbert scheme. For integers d, g, Hd,g(X) ⊂
Hilbdt+1−gX denotes the open subscheme parametrizing smooth, con-
nected curves of degree d and genus g.

2. Preliminaries. In this section we gather some preliminary facts
about deformation theory, residuation, and Abel-Jacobi maps.
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2.1 Deformation theory. All of the irreducibility arguments in this
paper follow the same pattern, and the linchpin of these arguments is
the infinitesimal analysis of the Hilbert scheme in [10, Section I.2], in
particular [10, Theorem I.2.15]. The part of this theorem which we
shall use most often is the following:

Proposition 2.1. Let Y be a smooth complex variety with canonical
divisor class KY , and let C ⊂ Y be a connected, local complete inter-
section curve with normal bundle NC/Y = IC/I2

C and with arithmetic
genus pa. Every irreducible component of the Hilbert scheme at [C] has
dimension at least

(1) χ(NC/Y ) = h0(NC/Y )−h1(NC/Y ) = −KY .[C]+(1−pa)(dimY−3).

The Zariski tangent space has dimension h0(NC/Y ); therefore, the
Hilbert scheme is smooth at [C] if h1(NC/Y ) = 0.

Although this is technically inaccurate, we will say that the curve
C ⊂ Y is unobstructed if h1(NC/Y ) = 0.

Another condition closely related to smoothness of the Hilbert scheme
at [C] is the question of whether deformations of C smooth the singu-
larities of C, i.e., whether or not C is in the closure of the open set
parametrizing smooth curves. Suppose that C is a nodal curve, i.e.,
every singular point is formally isomorphic to the formal neighborhood
of 0 ∈ SpecC[x, y]/xy. Then [2, Lemma 9.2.2] the deformation space
of the nodes p1, . . . , pδ is canonically identified with

(2) H0(C,Ext1OC
(ΩC ,OC)) = ⊕δi=1T

′
i ⊗ T ′′

i

where T ′
i , T

′′
i are the tangent spaces of the two branches of C at pi. In

the case that C is unobstructed we have a short exact sequence:
(3)
H0(C,NC/X) −→ H0(C,Ext1OC

(ΩC ,OC)) −→ H1(C, TY |C) −→ 0.

This calculation leads to the following:

Lemma 2.2. When h1(C, TY |C) = 0, the morphism from the formal
neighborhood of [C] in the Hilbert scheme to the deformation space of
the nodes is smooth at [C]; thus, deformations of C smooth the nodes.
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A different approach to smoothing nodes is as follows (at some level it
is equivalent to the last paragraph). Suppose Y is a smooth variety and
Z ⊂ Y is a simple normal crossings subscheme with no triple points;
in particular, each irreducible component of Z is smooth. Let Zi be
an irreducible component of Z, and let D1, . . . , Dr be the connected
components of sing (Z) ∩ Zi. For each j = 1, . . . , r, let Z ′

j be the
second irreducible component of Z which contains Di (if an irreducible
component intersects itself, make an étale base change such that the
preimage of Zi decomposes into a union of irreducible components in a
neighborhood of the preimage of Di). Consider the diagram of sheaves:

(4) 0 −→ (IZ/Y )/(IZ/Y IZi/Y ) −→ (IZi/Y )/(I2
Zi/Y

)

−→ (IZi/Y )/(IZ/Y ) −→ 0

where IA/B is the ideal sheaf of A in B. By passing to formal neigh-
borhoods and using the canonical form for a simple normal crossings
variety, one sees that this is a short exact sequence. Moreover, one can
identify the last term with ⊕rj=1IDj/Z′

j
/I2
Dj/Z′

j
. Dualizing this short

exact sequence leads to the short exact sequence:

(5) 0 −→ NZi/Y −→ NZ/Y |Zi
−→

r⊕
j=1

NDj/Zi
⊗NDj/Z′

j
−→ 0.

Now suppose that Z is a curve with two irreducible components Z1 and
Z2 intersecting at a node p. We have an obvious short exact sequence
of sheaves:

(6) 0 −→ NZ/Y |Z1(−p) −→ NZ/Y −→ NZ/Y |Z2 −→ 0,

and the map in equation (3) is simply the composite map

(7) H0(Z,NZ/Y ) −→ H0(Z2, NZ/Y |Z2) −→ TZ1,p ⊗ TZ2,p

where the second map comes from equation (5). Again using equa-
tion (5) and combining this with the long exact sequence in cohomol-
ogy associated to a short exact sequence of sheaves, we conclude the
following

Lemma 2.3. Suppose that Z ⊂ X is a nodal curve and Z1, Z2 are
two closed nodal subcurves of Z which intersect transversally in a single
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point p ∈ Z1 ∩ Z2. Then Z is unobstructed and the node of Z smooths
when H1(Z1, NZ1/Y (−p)) = H1(Z2, NZ2/Y ) = 0.

Let us return now to the strategy of proving that Hd,g(X) is irre-
ducible. The first case will be showing that the Fano scheme of lines
F := H1,0(X) is irreducible, in fact a smooth, projective surface. The
analysis of this case is classical. For each 1 < d ≤ 5, we define an
incidence correspondence

(8) fd,g : Id,g −→ Hd,g(X)

parametrizing curves C ⊂ X along with some extra data and such that
fd,g is dominant of constant fiber dimension. The extra data will allow
us to associate a surface S ⊂ P4 which contains C and such that the
residual of C in S ∩X is made up of curves of strictly smaller degree.
We stratify Id,g according to the behavior of the residual curve. By
studying the residual curves in each case, we prove that there is a unique
irreducible component of Id,g whose image in Hd,g(X) has dimension
≥ 2d, and that this image has dimension precisely 2d. Then it follows
that Hd,g(X) is irreducible of dimension 2d.

2.2 Residuation. In this section we review a few basic facts about
residuation of subschemes in a Gorenstein scheme.

Definition 2.4. Suppose that D is a Gorenstein scheme and D1 ⊂ D
is a closed subscheme of codimension 0. Let I denote the ideal sheaf
of D1 in D. Define

(9) J = (0 :OD
I) = HomOD

(OD1 ,OD).

Denote by D2 ⊂ D the closed subscheme associated to the ideal sheaf
J . We define D2 ⊂ D to be the residual subscheme to D1 ⊂ D.

Theorem 2.5 [3, Theorem 21.23]. Let D be a Gorenstein scheme
and D1 ⊂ D a codimension 0 closed subscheme. Let D2 ⊂ D be the
residual subscheme to D1 ⊂ D.

(1) The codimension of D2 ⊂ D is zero and D2 has no embedded
components. If D1 has no embedded components, then D1 ⊂ D is the
residual subscheme to D2 ⊂ D.
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(2) If D1 is Cohen-Macaulay, then D2 is Cohen-Macaulay.

(3) If D1 is Cohen-Macaulay, then J ⊗ ωD is a canonical sheaf for
D1. In particular, D1 is Gorenstein if and only if J is locally principal.

We will often be concerned with flat families of 1-cycles. The question
arises when flatness of D and D1 over B implies that D2 is also flat
over B. The following lemma addresses this issue and also establishes
a base-change result for residual subschemes.

Lemma 2.6. Let R be a local Noetherian ring. Let A be a local
Noetherian A-algebra, i.e., R → A is a local homomorphism, such that
A is Gorenstein and flat over R. Let I ⊂ A be a codimension zero ideal
such that A/I is Cohen-Macaulay. Define J = (0 :A I).

(1) For any regular sequence (r1, . . . , rn) in R, we have

(10) J/(r1, . . . , rn)J = (0 :A/(r1,... ,rn)A I/(r1, . . . , rn)I).

(2) If R is regular, then A/I and A/J are flat over R.

Proof. First we prove (1). Since I ⊂ A has codimension zero and
A/I is Cohen-Macaulay, A/I is a maximal Cohen-Macaulay module.
Since A is flat over R, r1, . . . , rn is a regular sequence for A. Using
[3, Proposition 18.13], the result follows by induction on n with [3,
Proposition 21.12(b)] as the induction step.

Now we prove (2). By (2) of Theorem 2.5, we know that A/J is
Cohen-Macaulay. By [3, Theorem 18.16], A/J is flat over R if and
only if

(11) dim(A/J) = dim(R) + dim(A/(J +mRA)).

We always have the inequality

(12) dim(A/J) ≤ dim(R) + dim(A/(J +mRA)).

We also have the inequality

(13) dim(R) + dim(A/(J +mRA)) ≤ dim(R) + dim(A/mRA).
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Now A is flat over R, so we have

(14) dim(R) + dim(A/mRA) = dim(A).

Finally, since J ⊂ A has codimension zero, dim(A) = dim(A/J).
Putting the inequalities together, we have

(15) dim(A/J) ≤ dim(R) + dim(A/(J +mRA)) ≤ dim(A/J).

Thus, A/J is flat over R. By the same argument A/I is also flat over
R.

Corollary 2.7 (Reformulation). Let B be a scheme and let f :
D → B be a flat morphism with D Gorenstein. Let D1 ⊂ D be
a codimension zero closed subscheme which is Cohen-Macaulay. Let
D2 ⊂ D be the residual subscheme to D1 ⊂ D.

(1) For any closed subscheme C ⊂ B which is a regular embedding,
D1×BC ⊂ D×B C and D2×BC ⊂ D×B C are residual to each other.

(2) If B is regular, then D1 and D2 are flat over B.

2.3 Reminder about Abel-Jacobi maps. We shall make occa-
sional use of the Abel-Jacobi maps associated to families of 1-cycles on
X. The reader is referred to [1, 6] for full definitions. Here we recall
only a few facts about Abel-Jacobi maps.

Associated to a smooth, projective threefold X, there is a complex
torus

(16) J2(X) = H3
Z(X)\H3(X,C)/(H3,0(X) ⊕H2,1(X)).

In case X is a cubic hypersurface in P4, in fact for any rationally
connected threefold, then J2(X) is a principally polarized abelian
variety with theta divisor Θ. Given an algebraic 1-cycle γ ∈ A1(X)
which is homologically equivalent to zero [6, 13], one can associate
a point u2(α). The construction is analogous to the Abel-Jacobi
map for a smooth, projective algebraic curve C which associates to
each 0-cycle γ ∈ A0(C) which is homologically equivalent to zero
a point u1(α) ∈ J1(C), the Jacobian variety of C. In particular,
u2 : A1(X)hom → J2(X) is a group homomorphism.
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Suppose that B is a normal, connected variety of dimension n and
Γ ∈ An+1(B × X) is an (n + 1)-cycle such that for each closed
point b ∈ B the corresponding cycle Γb ∈ A1(X) [4, Section 10.1]
is homologically equivalent to zero. Then in this case the set map
b 	→ u2(Γb) ∈ J2(X) comes from a (unique) algebraic morphism
u = uΓ : B → J2(X). We call this morphism the Abel-Jacobi map
determined by Γ.

More generally, suppose B as above, Γ ∈ An+1(B×X) is any (n+1)-
cycle, and suppose b0 ∈ B is some base-point. Then we can form a
new cycle Γ′ = Γ − π∗

2Γb0 , and for all b ∈ B we have Γ′
b = Γb − Γb0 is

homologically equivalent to zero. Thus we have an algebraic morphism
u = uΓ′ : B → J2(X). Of course this morphism depends on the choice
of a base-point, but changing the base-point only changes the morphism
by a constant translation. Thus we shall speak of any of the morphisms
uΓ′ determined by Γ and the choice of a base-point as an Abel-Jacobi
map determined by Γ.

Suppose that Γ1,Γ2 ∈ An+1(B × X) are two (n + 1)-cycles. Then
uΓ1+Γ2 is the pointwise sum uΓ1 + uΓ2 . This trivial observation is
frequently useful. Another useful observation is that any Abel-Jacobi
morphism αΓ contracts all rational curves on X, since an Abelian
variety contains no rational curves.

3. Lines, conics and plane cubics. We begin our analysis of the
spaces Hd,g(X) by recalling known results about the Fano scheme of
lines on X, F := H1,0(X).

Two general lines L1, L2⊂P4 determine a hyperplane by span(L1, L2).
We generalize this as follows: Let (F × F − ∆) Φ→ P4∨ denote the fol-
lowing set map:

(17) Φ([L1, L2]) =
{

[span(L1, L2)] if L1 ∩ L2 = ∅,
[TpX] if p ∈ L1 ∩ L2

By [1, Lemma 12.16], Φ is algebraic. Let X∨ ⊂ P4∨ denote the dual
variety of X, i.e., the variety parametrizing tangent hyperplanes to
X. Let X∨

s ⊂ X∨ denote the subvariety parametrizing hyperplanes
H which are tangent to X and such that the singular locus of H ∩X
is not simply a single ordinary double point. Let Us ⊂ U ⊂ F × F
denote the open sets Φ−1(P4∨ −X∨) ⊂ Φ−1(P4∨ −X∨

s ). Finally, let
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I ⊂ F × F denote the divisor parametrizing incident lines, i.e., I is
the closure of the set {([L1], [L2]) : L1 
= L2, L1 ∩ L2 
= ∅}. In [1],
Clemens and Griffiths completely describe both the total Abel-Jacobi
map F × F

ψ→ J(X) and the Abel-Jacobi map F
i→ J(X). Here is a

summary of their results.

Theorem 3.1. (1) The Fano variety F is a smooth surface and the
Abel-Jacobi map F

u→ J(X) is a closed immersion [1, Theorem 7.8,
Theorem 12.37].

(2) The induced map Alb (F ) = J2(F ) → J(X) is an isomorphism of
principally polarized Abelian varieties [1, Theorem 11.19].

(3) The class of u(F ) in J(X) is [Θ]3/3! [1, Proposition 13.1].

(4) The difference of Abel-Jacobi maps

(18) ψ : F × F −→ J(X), ψ([L], [L′]) = u([L]) − u([L′])

maps F × F generically six-to-one to the theta divisor Θ ⊂ J(X) [1,
Section 13].

(5) Let (Θ − {0}) G→ P(H1,2(X)∨) denote the Gauss map. If we
identify P(H1,2(X)) with P4 via the Griffiths residue calculus [5], then
the composite map

(19) (F ×C F − ∆)
ψ−→ (Θ − {0}) G−→ P4∨

is just the map Φ defined above [1, formula 13.6].

(6) The fibers of the Abel-Jacobi map form a Schläfli double-six, i.e.,
the general fiber of ψ : F×F → J is of the form {(E1, G1), . . . , (E6, G6)}
where the lines Ei, Gj lie in a smooth hyperplane section of X, the Ei
are pairwise skew, the Gj are pairwise skew, and Ei and Gj are skew
if and only if i = j.

There is a more precise result than above. Let

(20) R′ ⊂ (U ×P4∨ U) × F × Grass (3V ) × Grass (3V )

be the closed subscheme parametrizing data (([L1], [L2]), ([L3], [L4]), [l],
[H1], [H3]) such that, for each i = 1, . . . , 4, l ∩ Li 
= ∅ and such that
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H1 ∩X = l ∪L1 ∪L4, H2 ∩X = l ∪L2 ∪L3. Let R ⊂ U ×P4∨ U be the
image of R′ under the projection map. Let ∆ ⊂ U ×U be the diagonal.
Then the fiber product U ×Θ U ⊂ U ×U is just the union R∪∆ [1, pp.
347 348].

(7) The branch locus of Θ G→ P4∨ equals the branch locus of F ×F Φ→
P4∨ equals the dual variety of X, i.e., the variety parametrizing the
tangent hyperplanes to X. The ramification locus of U Φ→ P4∨ equals
the ramification locus of U

ψ→ Θ equals the divisor I. Each such pair
is a simple ramification point of both ψ and Φ [1, Lemma 13,8].

3.1 Conics. Next we consider H2,0(X) which parametrizes plane
conics on X. We are mostly interested just in the irreducibility of the
spaces Hd,g(X), but in this case we can give a complete description of
H2,0(X). We begin by proving that H2,0(X) is smooth.

Lemma 3.2. H2,0(X) is smooth of dimension 4.

Proof. Any plane conic C is a local complete intersection. So, by
Lemma 2.2, it suffices to prove that h1(NC/X) = 0. In fact, we will
prove that for each smooth conic C ⊂ X, eitherNC/X ∼= OC(1)⊕OC(1)
or else NC/S ∼= OC ⊕OC(2).

We have the standard normal bundle sequence:

(21) 0 −→ NC/X −→ NC/P4 −→ NX/P4 |C −→ 0.

Of course, NX/P4 ∼= OP4(3)|C and it isn’t hard to see that

(22) NC/P4 ∼= OP4(2)|C ⊕OP4(1)2|C ∼= OC(4) ⊕OC(2) ⊕OC(2).

By the Lefschetz hyperplane theorem, we know that the 2-plane
P = span (C) is not contained in X. Therefore the induced map
NC/P → NX/P4 is injective with length 2 cokernel. It follows then
that NC/X , considered as a subsheaf of NC/P4 maps injectively to the
quotient NP/P4 |C ∼= OC(2) ⊕ OC(2) and the cokernel is the length 2
cokernel above. So NC/X has degree 2 and no summand of NC/X can
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have degree higher than two. So either NC/X ∼= OC(1)⊕OC(1) or else
NC/X ∼= OC ⊕OC(2).

Since h1(OC(d)) = 0 for all d > −2, we conclude that H2,0(X) is
smooth.

Every plane conic C ⊂ P4 is contained in a unique 2-plane span (C) ⊂
P4. Therefore over H2,0(X) we have a flat family of 2-planes, Π ⊂
H2,0(X) × P4 such that Π[C] = span (C). Of course the projection
morphism Π → H2,0(X) is smooth. By Lemma 3.2, it follows
that Π is smooth. Now consider the intersection D ⊂ H2,0(X) × X
of Π with H2,0(X) × X in H2,0(X) × P4. First of all note that
D → H2,0(X) has constant fiber dimension 1 over H2,0(X), since by
the Lefschetz hyperplane theorem [7, p. 156], X contains no 2-planes.
Since H2,0(X) × X is a Cartier divisor in H2,0(X) × P4, also D ⊂ Π
is a Cartier divisor. In particular, D is a local complete intersection.
Therefore, D → H2,0(X) is flat.

Now let C ⊂ H2,0(X) × X denote the universal smooth family of
plane conics. Then C is smooth and C ⊂ D is a codimension zero
closed subscheme. Let D2 ⊂ D be the residual to C in D. Then by
Corollary 2.7, we conclude that D2 → H2,0(X) is flat and the fiber of
D2 over a closed point [C] ∈ H2,0(X) is simply the residual of C in
span (C) ∩X. But span (C) ∩X is a plane cubic curve, so the fiber of
D2 is just a line. So we have an induced morphism g : H2,0(X) → F
which associates to each [C] the residual line in span (C) ∩X.

Define Q to be the rank 3 vector bundle on F which is the quotient of
O5
F by the universal sub-bundle. Let π : P(Q) → F be the projective

bundle associated to the rank 3 vector bundle. The points of P(Q)
correspond to pairs ([L], [P ]) where L ⊂ X is a line and P ⊂ P4 is a
2-plane such that L ⊂ P . Therefore, over P(Q) we have a flat fam-
ily of 2-planes Π′ ⊂ P(Q) × P4. Let D′ ⊂ Π′ denote the intersection
of Π′ with P(Q) × X, and let C′ ⊂ P(Q) × X denote the pullback
from F of the universal family of lines. Then, C′ ⊂ D′ and the resid-
ual D′

2 is a flat family of conics. Thus there is an induced morphism
h : P(Q) → Hilb2t+1X. It is easy to see that h is a bijection of closed
points over the open subset H2,0(X) ⊂ Hilb2t+1X. Since both P(Q)
and H2,0(X) are smooth, it follows by Zariski’s main theorem [12,



CURVES OF SMALL DEGREE ON CUBIC THREEFOLDS 771

pp. 288 289] that H2,0(X) is isomorphic to an open subset of P(Q)
and g corresponds to the projection morphism PQ→ F .

But we can say more: since the Abel-Jacobi morphism u : F → J(X)
is an embedding, F contains no rational curves. Thus, all the rational
curves in P(Q) lie in fibers. Since h is finite over H2,0(X), no fiber
of P(Q) → F is contracted by h, thus no rational curve in P(Q) is
contracted by h (since all rational curves in P(Q) are numerically
equivalent, if one is contracted they all are). But by [10, Theorem
VI.1.2], the exceptional locus of h is ruled. Thus we conclude that
h is a finite morphism. It follows by Zariski’s main theorem that
h : P(Q) → Hilb2t+1X is the normalization of Hilb2t+1X. We
summarize the results as follows:

Proposition 3.3. The morphism H2,0(X) → F is isomorphic to
an open subset of a P2-bundle P(Q) → F . In particular, H2,0(X) is
smooth and connected of dimension 4. Moreover P(Q) is the normal-
ization of Hilb2t+1X.

3.2 Plane cubics. Every curve C ⊂ P4 with Hilbert polynomial
3t is a plane cubic, and the 2-plane P = span (C) is unique; we have
that C = X ∩ P . Therefore the Hilbert scheme Hilb3tX is just the
Grassmannian G(2, 4) of 2-planes in P4 and H3,1(X) is just an open
subset of G(2, 4).

4. Twisted cubics. In this section we prove the irreducibility of
H3,0(X). But first we prove an enumerative result about the number
of 2-secant lines to a curve C ⊂ X.

Given a smooth curve C ⊂ X we want to consider the set of 2-secant
lines to C which lie in X.

Definition 4.1. For a smooth curve C ⊂ X we define BC ⊂ F to
be the scheme parametrizing lines in X which intersect C in a scheme
of degree 2 or more.

A dimension count leads one to expect that BC is a zero-dimensional
scheme. What is the degree of this scheme?
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Lemma 4.2. Suppose that C ⊂ X is a smooth curve of genus g and
degree d. Define b(C) = [(5d(d− 3))/2] + 6 − 6g. If BC is not positive
dimensional and if b(C) ≥ 0, then the degree of BC is b(C).

Proof. This is a standard Chern class argument. We work in the
Chow ring of C × C. Let ω ∈ A∗(C) denote the first Chern class of
OP4(1)|C so that ω is algebraically equivalent to d times the class of a
point. Let ω1, ω2 ∈ A∗(C × C) denote the pullbacks of ω by the two
projection maps. Let C ∆→ C ×C denote the diagonal morphism. Also
let ∆, ∆∗ω ∈ A∗(C × C) denote the class of the image of ∆ and the
class of the pushforward by ∆ of ω respectively.

Let V be the underlying vector space of P4, and AC ⊂ GrassC(2V )
be the scheme parametrizing chords to C in P4. We adopt the following
convention: for p ∈ C we denote by span (p, p) the tangent line to C

at p. Then we have a morphism C ×C
f→ AC by (p, q) 	→ [span (p, q)].

Let S be the universal rank 2 subbundle of V ⊗OC×C whose fiber over
a point (p, q) corresponds to the line span (p, q). The inclusion S →
V ⊗COC×C induces a morphism of schemes P := P(S) → (C×C)×P4.
We have two sections of P determined by (p, q) 	→ p ∈ span (p, q) and
(p, q) 	→ q ∈ span (p, q). Let I1 and I2 denote the ideal sheaves of these
sections in P . Since both of these sections are divisors, the ideal sheaf of
their scheme theoretic union is just I1 ·I2

∼= I1⊗OP
I2. Let g : P → P4

be the inclusion of P into (C×C)×P4 followed by projection onto P4.
Let D be the set of points of P which are sent into X under this map,
with ideal sheaf ID = g∗IX . The two sections are two subvarieties of
D, and therefore we have that ID ↪→ OP factors through the subsheaf
I1 ·I2 ↪→ OP , i.e., we have ID ↪→ I1 ·I2. The ideal sheaf of the residual
to these sections inside of D is just what we obtain when we twist this
last map, namely ID ⊗OP

(I1 · I2)∨ ↪→ OP . We wish to determine
when this residual subscheme contains fibers of the projection map
P

π→ C × C. Let us assume that a general chord to C does not lie
in X. Then ID is isomorphic to the locally free sheaf OS(−3). So
we may twist our inclusion to get OP → (ID)∨ ⊗OP

I1 ⊗OP
I2. The

pushforward of this map yields a map

(23) OC×C
φ−→ π∗((ID)∨ ⊗OP

I1 ⊗OP
I2).

It is clear that the fiber π−1(p, q) will be contained in D if and only if
the image of the constant section 1 under this map vanishes at the stalk
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of (p, q). Therefore we conclude that the fiber product (C×C)×AC
BC

is precisely the zero scheme of φ. One sees that (ID)∨⊗OP
I1⊗OP

I2 is
a locally free sheaf of fiber degree 1; in particular, it is relatively ample.
Therefore the pushforward E := π∗((ID)∨ ⊗OP

I1 ⊗OP
I2) is a locally

free sheaf of rank 2. So, if the zero locus of φ is zero-dimensional, then
we see that the class of this locus in A∗(C × C) is just c2(E). So we
are reduced to a Chern class calculation.

What is the Chern class of S? The two sections in the last paragraph
yield a map of locally free sheaves pr∗1(OP4(−1)|C)⊕pr∗2(OP4(−1)|C) →
S. This is an injective map and the cokernel is supported on the
diagonal. Using the fact that the cokernel of S in V ⊗COC×C is locally
free and a simple snake lemma argument, one deduces that the cokernel
is isomorphic to the coherent sheaf OC×C(∆) ⊗OC×C

∆∗(OP4(−1)|C).
So we deduce that the Chern class of S is 1−ω1−ω2+∆+ω1 ·ω2−∆∗ω.
Let η denote the first Chern class of OS(1). One has exact sequences

(24) 0 −→ OS(1) ⊗OP
(pri ◦ π)∗(OP4(−1)|C) −→ OS(1) ⊗OP

π∗(S)
−→ I∨

i −→ 0

for i = 1, 2. Thus one deduces that the Chern classes of I1 and I2 are
1−η+ω2−∆ and 1−η+ω1−∆, respectively. Of course the Chern class
of ID is simply 1− 3η. Since I∨

D ⊗OP
I1 ⊗OP

I2 is relatively ample, its
higher direct images vanish. Thus we may calculate the second Chern
class of E by a simple application of the Grothendieck-Riemann-Roch
theorem [4]. It turns out to be 5ω1 · ω2 − 15∆∗ω + 6∆ · ∆. If we work
modulo algebraic equivalence and omit the phrase “class of a point,”
we have ω1 · ω2 = d2, ∆∗ω = d and ∆ · ∆ = χ(C) = 2 − 2g. Using
the fact that the map f is generically two-to-one, we deduce that the
degree of BC is [(5d(d− 3))/2] + 6 − 6g.

Lemma 4.3. H3,0(X) is smooth of dimension 6.

Proof. By Lemma 2.2 we need to prove that h1(NC/X) = 0 for all
[C] ∈ H3,0(X). Consider the normal bundle sequence

(25) 0 −→ NC/X −→ NC/P4 −→ NX/P4 |C −→ 0.

Of course, for any twisted cubic C, we have that H = span (C)
is a hyperplane, and NC/H ∼= OC(5)2. Thus we conclude that
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NC/P4 ∼= OC(5)2 ⊕ OC(3), and NX/P4 |C ∼= OC(9). So NC/X is a
rank 2 vector bundle of degree 4. By Grothendieck’s lemma about
vector bundles on P1, we conclude NC/X ∼= OC(a) ⊕ OC(4 − a) for
some a ≥ 2. But since NC/X is a subbundle of OC(5)2 ⊕ OC(3), we
conclude that a ≤ 5. In all four cases a = 2, 3, 4 and 5, we see that
4 − a > −2 so that h1(NC/X) = 0.

Define

(26) I = I3,0 ⊂ H3,0(X) × F

to be the closed subset parametrizing pairs ([C], [L]) where L is a 2-
secant line to C, and define

(27) f = f3,0 : I → H3,0(X)

to be the projection. By Lemma 4.2, we know that f3,0 is surjective.
Notice also that none of the lines L is a 3-secant line, because any three
points on a twisted cubic are linearly independent.

Now, given ([C], [L]) ∈ I, the reducible curve C ∪L lies on a pencil of
quadric surfaces in the 3-plane P = span (C), and the general member
of this pencil is smooth. Let J ⊂ I×Hilbt2+2t+1(P4) denote the locally
closed subset parametrizing triples ([C], [L], [S]) where S is a smooth
quadric surface containing C ∪ L. Then J → I is birational to a P1-
bundle, in particular given an irreducible component Ji of J with image
Ii ⊂ I, we have dim(Ii) = dim(Ji) − 1. By the Lefschetz hyperplane
theorem, X does not contain the surface S, thus S∩X ⊂ S is a Cartier
divisor of type (3, 3) on S. The residual to C ∪ L ⊂ S ∩X is a divisor
of type (1, 1) on S, i.e., a conic D ⊂ S.

Theorem 4.4. The space H3,0(X) is a smooth, irreducible 6-
dimensional variety.

Proof. By Lemma 4.3, every irreducible component of H3,0(X) has
dimension 6. We will prove that there is a unique irreducible component
of I of dimension d ≥ 6. Since I → H3,0(X) is surjective, this implies
that H3,0(X) is irreducible. In order to show this, we will prove that
J has a unique irreducible component of dimension 7.
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We stratify J into locally closed subsets J1, J2, according to the type
of the residual curve D. If D is a smooth conic, we say that D is the
first type. If D is a reducible conic, we say that D is the second type.
Notice that D cannot be a double line because it is a divisor of type
(1, 1) on a smooth quadric surface.

Second type. First consider J2 parametrizing triples ([C], [L], [S]) such
that D is the second type. Let H ⊂ F × F × F denote the locally
closed subset parametrizing triples ([L], [D1], [D2]) such that L and D1

intersect transversally in one point, D1 and D2 intersect transversally
in one point, and L is skew to D2. There is a morphism J2 → H defined
by decomposing D = D1 ∪ D2 so that L ∩ D1 is nonempty. Given a
triple ([L], [D1], [D2]), every quadric surface S containing L ∪D1 ∪D2

is contained in the 3-plane span (L,D1, D2). Moreover, there is a two-
dimensional linear system of quadrics S containing L∪D1 ∪D2. Thus
the fiber dimension of J2 → H is at most 2. We can also see that the
dimension of H is 4: there is a 2-parameter family of choices for the
line D1, and given D1 there is a 1-parameter family of lines intersecting
D1. Thus the dimension of H is 2 + 1 + 1 = 4. So every irreducible
component of J2 has dimension at most 6, which is less than 7.

Next we consider J1 parametrizing triples ([C], [L], [S]) such that the
residual curve D is a smooth conic. Let K ⊂ F × H2,0(X) denote
the closed subset parametrizing pairs ([L], [D]) such that L and D
intersect transversally in one point p. There is a morphism J1 → K
by sending ([C], [L], [S]) to ([L], [D]) with D the residual curve. For a
point ([L], [D]) ∈ K and a point ([C], [L], [S]) in the fiber over ([L], [D]),
we have that S is contained in the 3-plane span (L,D). There is a 2-
parameter linear system of quadric surfaces S ⊂ span (L,D) which
contain L ∪ D. The collection of quadric surfaces S ⊂ span (L,D)
containing L∪D and such that also the residual curve C of L∪D ⊂ S∩X
is a smooth twisted cubic forms an open subset of the collection of
all quadric surfaces S ⊂ span (L,D) containing L ∪ D. So every
(nonempty) fiber of J1 → K is irreducible of dimension 2.

Since J1 → K has irreducible fibers of dimension 2 (when they are
nonempty), we see that, for each irreducible component Ki of K, there
is at most one irreducible component of J1 which fibers over Ki with
fiber dimension 2. So we are reduced to proving that K is irreducible
of dimension 5. In order to specify a pair ([L], [D]) intersecting at
the point p, it is equivalent to specify L, a point p ∈ L, and the line
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N residual to D since then D is determined as the conic residual to
N ⊂ X ∩ span (N, p). So K is isomorphic to an open subscheme of the
product of the universal line over F (parametrizing pairs (L, p)) with
another copy of F (parametrizing N), and this is an irreducible 5-fold.
Thus there is at most one irreducible component of J1 of dimension at
least 7, and such an irreducible component is exactly seven-dimensional.
All that remains is to show that at least one such component exists.

Since H3,0(X) is nonempty, and J → H3,0(X) is surjective with
fiber dimension one, we conclude that J1 has such a component, and
therefore that H3,0(X) is an irreducible 6-dimensional variety.

4.1 The Abel-Jacobi map for H3,0(X). In order to ana-
lyze H4,0(X) we will need to understand the Abel-Jacobi map u :
H3,0(X) → J(X).

We have a morphism

(28) H3,0(P4) σ3,0−→ P4∨

defined by sending [C] to span (C). This morphism makes H3,0(P4)
into a locally trivial bundle over P4∨ with fiber H3,0(P3). Recall from
Section 3 that we defined X∨ ⊂ P4∨ to be the dual variety of X
which parametrizes tangent hyperplanes to X, and we defined U to
be the complement of X∨ in P4∨. Then we define H3,0

U (X) to be
the open subscheme of H3,0(X) which parametrizes twisted cubics, C,
in X such that σ3,0([C]) ∈ U . By the graph construction we may
consider H3,0

U (X) as a locally closed subvariety of U × Hilb3t+1X. Let
H ⊂ U × Hilb3t+1X denote the closure of H3,0

U (X) with the reduced

induced scheme structure. Denote by H f→ U the projection map.

Theorem 4.5. Let H f ′′
→ U ′ f ′

→ U be the Stein factorization of

H f→ U . Then H f ′′
→ U ′ is isomorphic to a P2-bundle PU ′(E)→U ′ with

E a locally free sheaf of rank 3, and U ′ f ′
→ U is an unramified finite

morphism of degree 72. Moreover, the Abel-Jacobi map H i→ J(X)

factors as H f ′′
→ U ′ i′→ J(X) where U ′ i′→ J(X) is a birational morphism

of U ′ to a translate of Θ.
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Proof. We need to use the following lemma:

Lemma 4.6. Let S be a smooth cubic surface in P3. Then there
are exactly 72 line bundles L on S such that L2 = 1, and L.KS = −3,
where KS is the canonical class. Furthermore, each of them satisfies
H1(S,L) = H2(S,L) = 0, and the general member of H0(S,L) is a
smooth curve.

We will explicitly describe such bundles L below, and this lemma
will be a straightforward consequence. Note that if C ⊂ S is a
curve with Hilbert polynomial 3t + 1, then C.KS = −3 since KS

is minus the hyperplane class, and since the curve has arithmetic
genus zero, adjunction shows that C2 = 1. This shows that all the
curves in H3,0

U (X) give line bundles L satisfying the conditions above.
Conversely, given any effective divisor C ∈ |L|, with L a line bundle
as above, we see that C has degree 3, and arithmetic genus zero, and
hence Hilbert polynomial 3t+ 1.

Now, let X π→ U be the universal family of smooth hyperplane
sections of X. For any [H] ∈ U , we use SH := H ∩ X to denote the
smooth cubic surface which is the fiber of π. Let Pic3,0(X/U) be the
subscheme of the relative Picard scheme parameterizing line bundles
LH on the fibers SH of π such that L2

H = 1 and LH ·KSH
= −3. For any

such LH , we have χSH
(LH) = 1/2(L2

H−L ·KSH
)+χ(OSH

) = 2+1 = 3.
By the above lemma, the line bundle LH has no higher cohomology on
SH , and so there is a rank 3 vector bundle E on Pic3,0(X/U) whose
fiber at a point (H,LH) of Pic3,0(X/U) consists of the global sections
H0(SH , LH). Let P = P(E) be the projectivization of this bundle, with
projection map g : P −→ Pic3,0(X/U). A point of this projectivization
consists of the data (H,LH , CH) where [H] ∈ U , LH is a line bundle on
SH satisfying the numerical conditions, and CH is an effective divisor
on SH with OSH

(CH) = LH .

By the remarks after Lemma 4.6, we see that CH has Hilbert poly-
nomial 3t + 1, and so we have a natural map P −→ U × Hilb3t+1(X)
sending ([H], LH , CH) to ([H], CH). The map is clearly an injection
since we can recover the line bundle LH from CH .
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The short exact sequence

0 −→ OSH
−→ OSH

(CH) −→ OSH
(CH)|CH

−→ 0

gives the long exact sequence in cohomology

0 −→ H0 (SH ,OSH
) ·CH−→ H0 (SH ,OSH

(CH)) −→ H0
(
CH , NCH/SH

)
−→ H1 (SH ,OSH

) = 0.

This sequence has the following interpretation. H0(SH ,OSH
(CH))

divided by the section CH is the vertical tangent space, at CH , for the
map P → Pic3,0(X/U). H0(CH , NCH/SH

) is the tangent space, at CH ,
of Hilb3t+1(SH). The sequence above shows that the map between these
tangent spaces is an isomorphism, and hence that P → U×Hilb3t+1(X)
is a closed embedding.

The subset H3,0
U (X) of U × Hilb3t+1(X) is contained in the image of

P , and, by Lemma 4.6, H3,0
U (X) is dense in each fiber of P → U , so we

conclude that P = H. The map ρ : Pic3,0(X/U) → U , since it is a finite
type subscheme of the relative Picard scheme, and by Lemma 4.6 each
fiber consists of 72 points, i.e., the map is finite. We also know that
this is unramified since the Picard group of a cubic surface is reduced.
Finally, the map P → Pic3,0(X/U) is a P2 bundle by construction.

Therefore, P
g→ Pic3,0(X/U)

ρ→ U is the Stein factorization H f ′′
→

U ′ f ′
→ U of H f→ U , and this factorization has the properties claimed

in the theorem.

It only remains to determine the Abel-Jacobi map H i→ J(X). Since
J(X) contains no rational curves, i is a constant map on each fiber
of g. Since Pic3,0(X/U) is smooth, it follows that i factors through a
morphism i′ : Pic3,0(X/U) → J(X). To determine i′, we introduce
the locus of “Z’s of lines,” i.e. the subscheme of H parametrizing
cubic curves whose irreducible components are lines. To be precise, let
Σ ⊂ H ×X be our flat family of cubic curves. We let Σs ⊂ Σ denote
the singular subscheme. We can form the flattening stratification for
Σs → H, and we define Z ⊂ H to be the stratum corresponding to
the constant Hilbert polynomial 2, i.e., the locus parametrizing curves
with two nodes. What are the fibers Z ∩ g−1(q) for q ∈ Pic3,0(X/U)?
Define H = ρ(q). In the analysis below, we will see that we can find
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a set of six mutually skew lines in SH such that g−1(q) corresponds to
the complete linear series of lines in the blown-down P2. It is clear that
a line � in this linear series will correspond to a singular cubic curve if
and only if � intersects one of the six special points. Similarly, � will
correspond to a cubic curve whose singular locus has degree 2 if and
only if � is one of the 15 lines joining a pair of the six special points.
Thus each fiber Z ∩ g−1(q) consists of 15 points, and ΣsZ → Z is an
unramified, finite morphism of degree 2. Thus ΣsZ → Pic3,0(X/U) is
an unramified, finite morphism of degree 30.

Denote by i1 : ΣsZ → J(X) the composition of ΣsX → Pic3,0(X/U)
with the Abel-Jacobi map Pic3,0(X/U) → J(X). Recall ΣsZ parame-
trizes pairs ([C], [x]), where C is a completely reducible cubic and x is
a node of C. We define a map h : Σs → F × F as follows. The union
of those components of C which intersect x is a completely reducible
conic, C ′. The residual to C ′ inside of C is a line �1. Now C ′ spans a
P2 in P4 and the residual to C ′ in span (C ′)∩X is another line �2. We
define h to be the map ([C], [x]) 	→ ([�1], [�2]). The point is, since C ′

and �2 are residual in a complete intersection which varies in a rational
family, it follows by the residuation trick that i1 is equal to ψ ◦ h, up
to a fixed translation.

What are the fibers of h? Suppose we are given two skew lines �1
and �2 whose span intersects X in a smooth cubic surface, X ′. How
many reducible conics C ′ are there which are residual to �2 and which
intersect �1? One of the lines in C ′, call it �3, intersects both �1 and �2.
The other line of C ′ is uniquely determined by the condition that it be
residual to �2∪�3 in the P2 they span. Thus the points in a fiber of h are
enumerated by the lines �3 joining �1 and �2. There are five such lines.
Therefore, h is dominant and generically finite of degree 5. We know
that ψ maps dominantly and generically finitely to Θ of degree 6, thus
ΣsZ maps to Θ dominantly and generically finitely of degree 5×6 = 30.
We have already seen that ΣsZ → Pic3,0(X/U) is unramified of degree
30. Therefore Pic3,0(X/U) → J(X) maps generically one-to-one and
dominates a translate of Θ.

Corollary 4.7. The Abel-Jacobi map i3,0 : H3,0(X) → J(X)
dominates a translate of Θ and is birational to a P2-bundle over its
image.
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Proof. H3,0
U (X) ⊂ H3,0(X) is dense in H.

We now need to examine the line bundles L on a cubic surface S
satisfying L2 = 1 and L.KS = −3. We need to establish the facts
claimed in Lemma 4.6 and also show that, for any such L, we can
always blow down six lines so that L is pullback of OP2(1) from the
resulting P2. We will follow [9, Chapter V, Notation 4.7.3] for our
notation of the Neron-Severi group of S. Recall that e1, . . . , e6 are the
linear equivalence classes of six mutually skew lines on S, so that the
contraction of e1, . . . , e6 is a P2, and l is the linear equivalence class of
the total transform of a line in P2. If we write L = al − ∑

biei, then
we have 3a− ∑

bi = 3 and a2 − ∑
b2i = 1. Since (

∑
bi)2 ≤ 6

∑
b2i , we

deduce that (3a−3)2 ≤ 6a2−6. This implies that either a = 1, 2, 3, 4, or
5. One quickly works out all the possibilities for (a, b1, . . . , b6). There is
an obvious action of the group S6 on the set of solutions via permuting
b1, . . . , b6. Representatives of the orbits of the set of solutions are as
follows:

(29)
(1, 0, 0, 0, 0, 0, 0), (2, 1, 1, 1, 0, 0, 0), (3, 2, 1, 1, 1, 1, 0),

(4, 2, 2, 2, 1, 1, 1), (5, 2, 2, 2, 2, 2, 2).

Counting the size of each orbit shows that there are a total of 72 distinct
solutions. With a slight amount of work, one shows that the separate
orbits all lie in the same orbit under the action of the full Weyl group
of E6. Thus, for some choice of six mutually skew six lines, we have
that L is just l. The general member of this linear series is obviously
smooth, and the long exact sequence in cohomology coming from

0 −→ OS −→ OS(l) −→ OP1(1) −→ 0

shows that H1(S,L) = H2(S,L) = 0, which was the last thing to be
checked.

5. Quartic elliptic curves. Recall that the normalization
of Hilb2t+1X is isomorphic to the P2-bundle P(Q) → F which
parametrizes pairs (L,P ) which L ⊂ X a line and P ⊂ P4 a 2-plane
containing L. Let A

g→ P(Q) denote the P1-bundle which parametrizes
triples (L,P,H) with H a hyperplane containing P . Let I4,1

h→ A de-
note the P4-bundle parametrizing 4-tuples (L,P,H,Q) where Q ⊂ H
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is a quadric surface containing the conic C ⊂ X ∩ P . Notice that I4,1
is smooth and connected of dimension 4 + 1 + 4 = 9.

Let D ⊂ I4,1 × X denote the intersection of the universal quadric
surface over I4,1 with I4,1 × X ⊂ I4,1 × P4. Then D is a local
complete intersection scheme. By the Lefschetz hyperplane theorem,
X contains no quadric surfaces; therefore D → I4,1 has constant fiber
dimension 1 and so is flat. Let D1 ⊂ I4,1 ×X denote the pullback from
P(Q) ×X = Hilb2t+1(X) ×X of the universal family of conics. Since
I4,1 ×X → P(Q) ×X is smooth and the universal family of conics is
a local complete intersection which is flat over P(Q), we conclude that
also D1 is a local complete intersection which is flat over I4,1. Clearly
D1 ⊂ D. Thus, by Corollary 2.7, we see that the residual D2 of D1 ⊂ D
is Cohen-Macaulay and flat over I4,1.

By the base-change property in Corollary 2.7, we see that the fiber of
D2 → I4,1 over a point (L,P,H,Q) is simply the residual of C ⊂ Q∩X.
If we choose Q to be a smooth quadric, i.e., Q ∼= P1 ×P1, then C ⊂ Q
is a divisor of type (1, 1) and X∩Q ⊂ Q is a divisor of type (3, 3). Thus
the residual curve E is a divisor of type (2, 2), i.e., a quartic curve of
arithmetic genus 1. Thus D2 ⊂ I4,1×X is a family of connected, closed
subschemes of X with Hilbert polynomial 4t. So we have an induced
map f : I4,1 → Hilb4tX.

Proposition 5.1. The image of the morphism above f : I4,1 →
Hilb4tX is the closure H4,1(X) of H4,1(X). Moreover the open set
f−1H4,1(X) ⊂ I4,1 is a P1-bundle over H4,1(X). Thus H4,1(X) is
smooth and connected of dimension 8.

Proof. If E ⊂ X is a smooth, connected curve with Hilbert poly-
nomial 4t, then E is a quartic elliptic curve in some hyperplane H.
Any such curve lies on a pencil of quadric surfaces Q, and the resid-
ual of E ⊂ Q ∩ X is a conic. Thus we see that f(I4,1) contains the
open subscheme H4,1(X) ⊂ Hilb4tX. Since f(I4,1) is closed and irre-
ducible, we conclude that f(I4,1) = H4,1(X). Since the fiber of f over
any smooth elliptic quintic E is determined by the P1 of quadrics Q
in H = span (E), we see that f−1(H4,1(X)) ⊂ I4,1 is an open subset
which is a P1-bundle over H4,1. In particular, since I4,1 is smooth
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and connected, we conclude that H4,1 is also smooth and connected of
dimension 8.

The surface F of lines contains no rational curves, so in the P1

fiber of f over [E] ∈ H4,1, the line L must be constant. Since
the hyperplane H is also determined by [E], we have a well-defined
morphism m : H4,1(X) → P(Q∨), where P(Q∨) is the P2-bundle
over F parametrizing pairs ([L], [H]), L ⊂ H. For a general H, the
intersection Y = H ∩ X is a smooth cubic surface, and the fiber
m−1([L], [H]) is an open subset of the complete linear series |OY L+ h|,
where h is the hyperplane class on Y . Thus m : H4,1(X) → P(Q∨) is
a morphism of smooth connected varieties which is birational to a P4-
bundle. Composing m with the projection P(Q∨) yields a morphism
n : H4,1(X) → F which is birational to a P4-bundle over a P2-bundle.

Corollary 5.2. The morphism n : H4,1(X) → F from above is
birational over F to a P4-bundle over a P2-bundle over F .

6. Cubic scrolls and applications.

6.1 Preliminaries on cubic scrolls. In the next few sections we
will use residuation in a cubic scroll. We start by collecting some basic
facts about these surfaces.

There are several equivalent descriptions of cubic scrolls.

(1) A cubic scroll Σ ⊂ P4 is a connected, smooth surface with Hilbert
polynomial P (t) = (3/2)t2 + (5/2)t+ 1.

(2) A cubic scroll Σ ⊂ P4 is the determinantal variety defined by the
2 × 2 minors of a matrix of linear forms:

(30)
[
L1 L2 L3

M1 M2 M3

]
such that, for each row or column, the linear forms in that row or
column are linearly independent.

(3) A cubic scroll Σ ⊂ P4 is the join of an isomorphism φ : L → C.
Here L ⊂ P4 is a line and C ⊂ P4 a conic such that L∩ span (C) = ∅.
The join of φ is defined as the union over all p ∈ L of the line
span (p, φ(p)).
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(4) A cubic scroll Σ ⊂ P4 is the image of a morphism f : P(E) → P4

where E = OP1(−1)⊕OP1(−2) on P1, the morphism f : P(E) → P4 is
such that f∗OP4(1) = OE(1), and the pullback mapH0(P4,OP4(1)) →
H0(P(E),OE(1)) is an isomorphism.

(5) A cubic scroll Σ ⊂ P4 is as a minimal variety, i.e., Σ ⊂ P4 is any
smooth connected surface with span (Σ) = P4 which has the minimal
possible degree for such a surface, namely deg (Σ) = 3.

(6) A cubic scroll Σ ⊂ P4 is a smooth surface residual to a 2-plane Π
in the base locus of a pencil of quadric hypersurfaces which contain Π.

From the fourth description Σ = P(E) we see that Pic (Σ) =
Pic (P(E)) ∼= Z2. Let π : P(E) → P1 denote the projection morphism
and let σ : P1 → P(E) denote the unique section whose image
D = σ(P1) has self-intersection D.D = −1. Then f(D) is a line on
Σ called the directrix. For each t ∈ P1, f(π−1(t)) is a line called a
line of ruling of Σ. Denote by F the divisor class of any π−1(t). Then
Pic (Σ) = Z{D,F} and the intersection pairing on Σ is determined by
D.D = −1, D.F = 1, F.F = 0. The hyperplane class is H = D + 2F
and the canonical class is K = −2D − 3F .

Using the fourth description of a cubic scroll, we see that any two cu-
bic scrolls differ only by the choice of the isomorphism H0(P4,OP4(1))
→ H0(P(E),OE(1)). Therefore any two cubic scrolls are conjugate
under the action of PGL (5). So the open set U ⊂ HilbP (t)(P4)
parametrizing cubic scrolls is a homogeneous space for PGL (5), in par-
ticular it is smooth and connected.

One possible specialization of a cubic scroll is a reducible surface
Σ = Σ1∪Σ2 where Σ1 is a 2-plane, Σ2 is a smooth quadric surface, and
Σ1∩Σ2 is a line L. Let T ⊂ HilbP (t)(P4) denote the locus parametrizing
surfaces Σ of this form.

Lemma 6.1. The Hilbert scheme HilbP (t)(P4) is smooth along T .

Proof. Let [Σ] be a point of T . Since Σ is a local complete intersection,
the normal sheaf NΣ/P4 is locally free. The Zariski tangent space of
HilbP (t)(P4) at [Σ] is identified with H0(Σ, NΣ/P4). By [10, Theorem
I.2.15.2], we see that every irreducible component of HilbP (t)(P4)
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through [Σ] has dimension at least

(31) dimH0(Σ, NΣ/P4) − dimH1(Σ, NΣ/P4).

So once we show thatH1(Σ, NΣ/P4) = 0, it will follow that HilbP (t)(P4)
is smooth at [Σ].

In order to analyze the normal bundle NΣ/P4 we recall the following
result: Suppose that X is a smooth ambient variety, and suppose that
Y ⊂ X is a simple normal crossings variety with no triple points.
Let Yi ⊂ Y be an irreducible component, and let Z1, . . . , Zr be the
connected components of Sing (Y ) ∩ Yi. For each i = 1, . . . , r, there is
an étale cover f : W → V of a Zariski neighborhood of Zi ⊂ Y such
that the preimage Z = f−1(Zi) of Zi is connected and such that W is
reducible along Z. Denote the two branches of W along Z by W ′ and
W ′′. Then the line bundle NZ/W ′ ⊗NZ/W ′′ descends to a line bundle
Ni on Zi. We have a short exact sequence of coherent sheaves:

(32) 0 −→ NYi/X −→ NY/X |Yi
−→

r⊕
i=1

Ni −→ 0.

In our particular case, we have the two exact sequences:

(33)
0 −→ NΣ1/P4 −→ NΣ/P4 |Σ1 −→ NL/Σ1 ⊗NL/Σ2 −→ 0
0 −→ NΣ2/P4 −→ NΣ/P4 |Σ2 −→ NL/Σ1 ⊗NL/Σ2 −→ 0.

If we identify Σ1 with P2, then we have NΣ1/P4 ∼= OP2(1)⊕OP2(1).
If we identify Σ1 with P1×P1, then we have NΣ2/P4 = OP1×P1(1, 1)⊕
OP1×P1(2, 2). Identifying L with P1, we have NL/Σ1

∼= OP1(1)
and NL/Σ2

∼= OP1 . We are more interested in NΣ/P4 |Σ2(−L) than
we are in NΣ/P4 |Σ2 . To relate the two we use the identification
OΣ2(−L) ∼= OP1×P1(−1, 0). With all of these identifications, we get
two exact sequences:
(34)

0 −→ OP2(1) ⊕OP2(1) −→ NΣ/P4 |Σ1 −→ OP1(1) −→ 0

0 −→ OP1×P1(0, 1) ⊕OP1×P1(1, 2) −→ NΣ/P4 |Σ2(−L) −→ OP1(1) −→ 0.

Applying the long exact sequence in cohomology to these two short
exact sequences, we conclude the vanishing result

(35) H1(Σ1, NΣ/P4 |Σ1) = H2(Σ1, NΣ/P4 |Σ1)

(36) H1(Σ2, NΣ/P4 |Σ2(−L)) = H2(Σ2, NΣ/P4 |Σ2(−L)) = 0.
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We also have a short exact sequence:

(37) 0 −→ NΣ/P4 |Σ2(−L) −→ NΣ/P4 −→ NΣ/P4 |Σ1 −→ 0.

Applying the long exact sequence in cohomology to this short exact
sequence and combining with the vanishing result of the last paragraph,
we conclude that H1(Σ, NΣ/P4) = H2(Σ, NΣ/P4) = 0. Therefore
HilbP (t)(P4) is smooth along T .

Lemma 6.2. The union V = T ∪ U ⊂ HilbP (t)(P4) is a smooth,
connected open subset.

Proof. Given [Σ] ∈ T , we will show that every deformation of Σ can
be realized as a subvariety of a rank 4 quadric hypersurface Q ⊂ P4.
Then we will examine the deformations of Σ as a subvariety of Q to
prove the lemma.

Let I ⊂ HilbP (t)(P4)×P14 denote the closed subscheme parametriz-
ing pairs (Σ, Q) where Q ⊂ P4 is a quadric hypersurface and Σ ⊂ Q.
The fiber of the projection I → HilbP (t)(P4) over a point [Σ] is the
projective space corresponding to H0(P4, IΣ(2)), where IΣ is the ideal
sheaf of Σ ⊂ P4.

Let Σ̃ ⊂ HilbP (t)(P4) × P4 denote the universal closed subscheme,
and let I denote the ideal sheaf of this closed subscheme. Consider the
coherent sheaf

(38) F = pr1∗(I ⊗ pr∗2OP4(2)).

For each [Σ] ∈ HilbP (t)(P4) there is an evaluation map F|[Σ] →
H0(P4, IΣ(2)). We will show that Hi>0(P4, IΣ(2)) = 0. Then it
follows by cohomology and base change [9, Theorem III.12.11] that F
is locally free in a neighborhood of T and that all the evaluation maps
are isomorphisms in a neighborhood of T . Thus, in a neighborhood of
T , I → HilbP (t)(P4) is just the projective bundle associated to F .

To show that Hi>0(P4, IΣ(2)) = 0, we will use the short exact
sequence of coherent sheaves:

(39) 0 −→ IΣ(2) −→ OP4(2) −→ OΣ(2) −→ 0.
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Applying the long exact sequence in cohomology to this short exact
sequence, we see that we need to prove two things:

(1) Hi>0(Σ,OΣ(2)) = 0,

(2) H0(P4,OP4(2)) → H0(Σ,OΣ(2)) is surjective.

To prove (1) and (2) we will use the short exact sequence:

(40) 0 −→ OΣ1(2)(−L) −→ OΣ(2) −→ OΣ2(2) −→ 0.

Of course OΣ1(2)(−L) ∼= OP2(1) and OΣ2(2) ∼= OP1×P1(2, 2). So,
applying the long exact sequence in cohomology, we conclude that

(41) H1(Σ,OΣ(2)) = H2(Σ,OΣ(2)) = 0,

i.e., we have established (1).

To see that (2) is true, observe first that the composite map

(42) H0(P4,OP4(2)) −→ H0(Σ,OΣ(2)) −→ H0(Σ2,OΣ2(2))

is surjective, i.e., the linear system |OP1×P1(2, 2)| on a smooth quadric
surface is just the restriction of the linear system |OP3(2)|. The kernel
of the composite map is the vector space of quadratic polynomials which
vanish identically on span (Σ2). If F is a linear polynomial defining
span (Σ2), this subspace is just the image of the multiplication map

(43) H0(P4,OP4(1)) ∗F−→ H0(P4,OP4(2)).

The restriction to H0(Σ1,OΣ1(2)(−L)) = H0(P2,OP2(1)) is the re-
striction H0(P4,OP4(1)) → H0(P2,OP2(1)), which is clearly surjec-
tive. Thus we have established (2).

We conclude that near T , F is locally free and I → HilbP (t)(P4) is
just the projective bundle associated to F . If we let V ′ be the open
subset of HilbP (t)(P4) where Hi>0(P4, IΣ(2)) = 0, then we know that
V is contained in V ′ and that over V ′ the map I → HilbP (t)(P4) is
smooth (and hence flat). This means that if we have any open subset
O of I over V ′, its image in V ′, and hence in HilbP (t)(P4), will be open.

Notice that by the Lefschetz hyperplane theorem, there is no pair
(Σ, Q) ∈ I such that Q ⊂ P4 is a rank 5 quadric, i.e., a smooth
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quadric. Denote by W ⊂ I the open subscheme parametrizing pairs
(Σ, Q) such that Q is a rank 4 quadric. Denote by WT ⊂W the locally
closed subset such that Σ ∈ T and the singular point of Q is a smooth
point of Σ1.

Claim 6.3. The map WT → T is surjective.

If [Σ] is any point in T and p any point of Σ1 not on Σ2, then letting
Q be the cone over Σ2 with vertex p provides a point of WT over [Σ],
which establishes the claim. Now define O ⊂W to be the open subset
parametrizing pairs (Σ, Q) such that the singular point of Q is a smooth
point of Σ.

Claim 6.4. O is an irreducible open neighborhood of WT ⊂W whose
points (Σ, Q) are exactly the points of WT and the pairs with [Σ] ∈ U .

As part of the proof of the claim, we will see that there are points
of O with [Σ] ∈ U . Since U is a homogeneous space for PGL (5),
and since PGL (5) acts on the rank 4 quadrics Q as well, this means
that the image of O is exactly V = T ∪ U . This will show that V is
open in HilbP (t)(P4), since O is open in I over V ′, and also that V
is irreducible, since O is. Finally, we know that V is a smooth subset
of HilbP (t)(P4) since U is smooth, and the Hilbert scheme is smooth
along T , by Lemma 6.1. Thus, the only step left in proving Lemma 6.2
is to establish Claim 6.4 above.

So we are reduced to studying the open neighborhood O. If we let
Q̃ → Q denote the blow-up of Q at p, and if we let Σ̃ ⊂ Q̃ denote
the proper transform of Σ, then this open subset is also the parameter
space for pairs (Σ̃, Q̃).

We will describe the threefold Q̃. Projection from p defines a
morphism Q̃ → P3 whose image is a smooth quadric surface S ⊂
P3. Identifying S with P1 × P1, the projection π : Q̃ → S is
simply the P1-bundle associated to the vector bundle G = OP1×P1 ⊕
OP1×P1(1, 1). The exceptional divisor E of f : Q̃→ Q is a section of π.
Identifying E with P1 × P1, the normal bundle of E in Q̃ is identified
with OP1×P1(−1,−1). Let F1 and F2 denote the divisor classes of
π∗pr∗1OP1(1) and π∗pr∗2OP1(1). Then Pic (Q̃) = Z{E,F1, F2}, and, for



788 J. HARRIS, M. ROTH AND J. STARR

any (Σ, Q) ∈ O, the proper transform Σ̃ is a Cartier divisor with divisor
class E + 2F1 + F2, up to permuting F1 and F2.

Notice that, since p ∈ Σ is a smooth point, the intersection Σ̃ ∩ E is
a (−1)-curve in Σ̃ along which Σ̃ is smooth. Conversely, suppose that
Γ ∈ |E + 2F1 + F2| is a surface such that Γ ∩E is a curve along which
Γ is smooth (actually Γ is automatically smooth along Γ ∩ E if Γ ∩ E
is a curve, but we won’t need this fact). We will show that either Γ
is smooth or else Γ is reducible, Γ = Γ1 ∪ Γ2 where Γ1 is a smooth,
connected divisor in the class of F1, Γ2 is a smooth section of π in the
class of E + F1 + F2, and Γ1 ∩ Γ2 is transverse and maps to a line in
Q. Then it follows that f(Γ) is either a cubic scroll or else the union
f(Γ1) ∪ f(Γ2) of a 2-plane and a smooth quadric surface along a line,
and p ∈ f(Γ1) is a smooth point.

If Γ is smooth, it is clear that f(Γ) is a cubic scroll (it is a smooth
connected surface with Hilbert polynomial P (t)). Therefore, suppose
that Γ is singular at some point q. We know that q 
∈ E.

Suppose we pick a line L in the quadric surface S, in the ruling
corresponding to F1. If we restrict the P1 bundle Q̃ over S to L, the
resulting surface is a Hirzebruch surface F1 over L. A divisor in the
class F2 on Q̃ restricts to the class of a fiber F on F1, the exceptional
divisor E restricts to the unique (−1)-curve D and a divisor in the class
F1 restricts to the trivial class on F1.

Now let Lq be the particular line of ruling on S containing π(q),
and F1 the surface over Lq. If Γ doesn’t contain this F1, then the
intersection Γ∩F1 is a curve on F1 in the class |D+F |, with a singular
point at q, which is not on D. This is a contradiction since the only
singularities in the linear system |D+F | occur along D. (In the model
of F1 as the blowup of P2 at a point, this linear series is the pullback
of the lines.)

Therefore the existence of a singular point q ∈ Γ means that Γ is
reducible, and can be written Γ1 ∪ Γ2, with Γ1 in the class F1 and Γ2

in the class E + F1 + F2. Now since NE/Q̃ ∼= OP1×P1(−1,−1), we see
that E∩Γ2 is in the linear series |OP1×P1 |, which means that Γ2 and E
are disjoint (we know that Γ2 doesn’t contain E as a component since
Γ intersects E in a curve). This shows both that the point p lies on
f(Γ1) and that, if Γ2 were to have a singular point q′, this point would
not lie on E.
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If Γ2 were to have any singular points, then the same argument as
above would show that Γ2 would be reducible, with one piece in the
class of F1 and one piece in the class of E+F2. However, every element
of |E+F2| contains E as a component, which is again a contradiction.
We conclude that Γ2 is smooth.

The above arguments show that f(Γ) is the union of a 2-plane f(Γ1)
and a smooth quadric surface f(Γ2) meeting along a line and that p
lies on the 2-plane.

We now know that every point in O is either in WT or of the
form (Σ, Q) with Σ a cubic scroll. Notice also that O fibers over the
homogeneous space of rank 4 scrolls Q and the fiber over a point [Q] is
an open subset of the linear system |E+2F1 +F2| on Q̃. In particular,
the fibers are irreducible, so O is irreducible. This finishes the proof of
Claim 6.4 and hence of Lemma 6.2.

6.2 Additional constructions. We prove several additional con-
structions of cubic scrolls which will be needed.

Recall that our fourth description of a cubic scroll was an embedding
f : Σ → P4 where Σ is the Hirzebruch surface F1, and f∗O(1) ∼
OΣ(1) = OP(E)(D + 2F ). The fact that the map is an embedding is
equivalent to asking that the map f be given by the complete linear
series of OΣ(D + 2F ). In the next sections it will be useful to weaken
this condition.

Definition 6.5. A cubic scroll in Pn is a finite morphism f : Σ → Pn

where Σ is isomorphic to the Hirzebruch surface F1 and such that
f∗OPn(1) is isomorphic to OΣ(D + 2F ).

We wish to look at various types of curves C in P4 and find conditions
for them to be enveloped by or contained in a cubic scroll Σ. We always
start by looking at the class of the curve on Σ, look at its behavior with
respect to the ruling and the directrix, and then seek to reconstruct
the scroll out of this type of data. When talking about the “degree”
of a curve C on Σ, we always mean with respect to the line bundle
OΣ(D + 2F ), which will be used to map Σ into P4.
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Lemma 6.6. Suppose L ⊂ P4 is a line and T ⊂ TP4 |L is a sub-line
bundle such that T ∼= OL(−1). Then there is a unique scroll f : Σ → P4

with f(D) = L (D the directrix of Σ) and such that the differential map
df∗ : TΣ → f∗TP4 takes the vertical tangent bundle TΣ/D ⊂ TΣ|D to
the pullback f |∗DT ⊂ f∗TP4 |D on D.

Proof. We have the restriction to L of the Euler sequence for P4:

(44) 0 −→ OL −→ OL(1)5 −→ TP4 |L −→ 0.

Define F ⊂ OL(1)5 to be the preimage of T ⊂ TP4 |L. We have an exact
sequence:

(45) 0 −→ OL −→ F −→ T ∼= OL(−1) −→ 0.

As Ext1OL
(OL(−1),OL) = H1(L,OL(1)) = 0, we see that F ∼= OL ⊕

OL(−1). Therefore E := F (−1) is isomorphic to OL(−1) ⊕ OL(−2).
By construction E is a subbundle E ↪→ O5

L. Defining Σ = P(E), we
have a map Σ → P(O5

L) ∼= P1×P4. Projecting onto the second factor,
we get an induced map f : Σ → P4.

The directrix D is the section of Σ corresponding to OL(−1) ⊂ E.
The composite map OL(−1) ↪→ E ↪→ O5

L is simply obtained from
the first map of the Euler sequence by twisting by OL(−1) and, by
construction of the Euler sequence, this is the same as the tautological
map OL(−1) → O5

L induced by the inclusion L ⊂ P4. Therefore,
f(D) is just our original embedding of L in P4. Moreover, the vertical
tangent bundle of Σ on D is identified with
(46)
Hom(OL(−1), E/OL(−1)) ⊂ Hom(OL(−1),O5

L/OL(−1)) = f∗TP4 |L.
By construction of E as the preimage of T , this is precisely F/OL =
f∗T ⊂ f∗TP4 |D. As well, f∗OP4(1) = OE(1) = OΣ(D + 2F ), and
therefore f : Σ → P4 is the necessary scroll.

To see that Σ is unique, simply observe that the lines through the
points of L are determined by the direction of T in TP4 . Since the scroll
is the union of its lines through L, we see that T uniquely determines
the scroll.

Lemma 6.7. Let C ⊂ P4 be a smooth conic curve, and let T ⊂ TP4 |C
be a sub-line bundle isomorphic to OC(1) (a degree 1 line bundle on
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C, not OP4(1)|C). Then there is a unique scroll f : Σ → P4 and
a factorization i : C → Σ of C → P4 such that the differential
df : TΣ → f∗TP4 maps the vertical tangent bundle i∗TΣ/C to i∗f |∗CT
on C.

Proof. As in the proof of Lemma 6.6, define F to be the subbundle
of OC(2)5 which is the preimage of T ⊂ TP4 |L. We have a short exact
sequence:

(47) 0 −→ OC −→ F −→ T ∼= OC(1) −→ 0.

Since H1(C,OC(−1)) = 0, we have that F ∼= OC ⊕OC(1). Therefore
E := F (−2) ⊂ O5

C is isomorphic to OC(−2) ⊕ OC(−1). Define Σ =
P(E). The injective map E → O5

C induces a morphism f : Σ → P4.
Define i : C → Σ to be the section associated to the twist by OC(−2)
of the injection from equation (47): OC → F .

The composite map OC(−2) → E → O5
C is just the twist of the

map in the Euler sequence OC → OC(2)5. By construction of the
Euler sequence, this is the map OC(−2) → O5

C corresponding to
OP4(−1) → O5

P4 induced by the inclusion C → P4. Therefore f(i(C))
is just our original embedding of C in P4. Finally, notice that the
restriction to i(C) of the vertical tangent bundle is simply
(48)
Hom(OC(−2), E/OC(−2))−→Hom(OC(−2),O5

C/OC(−2))=f∗TP4 |C .
By construction of E, this is precisely F/OC = f∗T ⊂ f∗TP4 |C .
Finally, f∗OP4(1) = OE(1) = OΣ(D + 2F ), and therefore f : Σ → P4

is the necessary scroll.

To see that Σ is uniquely determined, observe that T ⊂ TP4 |C
determines the lines in Σ which pass through C. Since Σ is the union
of the lines which pass through C, this shows that Σ is unique.

6.3 Cubic scrolls and quartic rational curves. Recall that
Pic (Σ) = Z{D,F} where D is the directrix and F is the class of a
line of ruling. The intersection product is given by D2 = −1, D.F = 1,
F 2 = 0. The canonical class is given byKΣ = −2D−3F . Our definition
of a cubic scroll is that the finite map f : Σ → P4 should come from
the line bundle f∗OPn(1) = OΣ(D + 2F ).
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The linear system |F | is nef because it is the pullback of OP1(1) under
the projection π : Σ → P1. Similarly, |D + F | is nef because it is the
pullback of OP2(1) in the realization of Σ as P2 blown up at a point.
Thus for any effective curve class aD+ bF we have the two inequalities
a = (aD + bF ).F ≥ 0, b = (aD + bF ).(D + F ) ≥ 0.

Suppose that C ⊂ Σ is an effective divisor of degree 4 and arithmetic
genus 0. By the adjunction formula

(49) KΣ.[C] + [C].[C] = 2pa − 2 = −2.

So, if [C] = aD + bF , then we have the conditions

(50) a ≥ 0, b ≥ 0, a+ b = 4, a2 − 2ab+ a+ 2b = 2.

It is easy to check that there are precisely two solutions [C] = 2D+2F
and [C] = D+3F . We will see that both possibilities occur and describe
some constructions related to each possibility.

We start with the case [C] = 2D + 2F .

Lemma 6.8. Let C ⊂ P4 be a smooth quartic rational curve, and let
V ⊂ |OC(2)| be a pencil of degree 2-divisors on C without basepoints.
There exists a unique cubic scroll f : Σ → P4 and a factorization
i : C → Σ of C → P4 such that [i(C)] = 2D + 2F and such that the
pencil of degree 2 divisors π−1(t) ∩ C, for t ∈ P1, is the pencil V .

Proof. Let g : C → P1 be a degree 2-morphism defining V . Define
E∨ := g∗(OP4(1)|C). Since g is finite and flat of degree 2, E∨ is locally
free of rank 2. Since g∗OP1(1) ∼= OC(2), the projection formula shows
that E∨ ∼= OP1(2)⊗g∗OC . But g : C → P1 is a cyclic cover of degree 2
branched over a divisor of degree 2. The theory of cyclic covers [11,
Definition 2.50] shows that g∗OC decomposes as a sum of Z/2Z-
eigensheaves: g∗OC

∼= OP1⊕OP1(−1). Thus E ∼= OP1(−2)⊕OP1(−1).

On P4 we have the surjection of vector bundles O5
P4 → OP4(1)

given by global sections of OP4(1). Restricting this to C gives O5
C →

OP4(1)|C , which by adjunction induces a map O5
P1 → g∗OC(2) = E∨.

Since C → P4 is an embedding, for each pair of points {p, q} ⊂ C
(possibly infinitely near), we have that O5

C → OP4(1)|{p,q} is surjective.
In particular, taking {p, q} = g−1(t) for t ∈ P1, we conclude that
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O5
P1 → E∨|t is surjective. Define Σ = P(E). Then the surjective

map O5
P1 → E∨ induces a morphism f : Σ → P4. We have

E ∼= OP1(−2) ⊕ OP1(−1) so that Σ ∼= F1, and f∗OP4(1) = OE(1) =
OΣ(D + 2F ).

By adjunction we have a map of sheaves g∗E∨ → OP4(1)|C . This
map is surjective since g is finite. Moreover g∗E∨ → OP4(1)|C even
separates points: for points in distinct fibers this is clear. For points
{p, q} = g−1(t) it follows because E∨|t is precisely OP4(1)|{p,q}. So
the induced morphism i : C → Σ is even an embedding. Moreover, the
pullback i∗O5

Σ → i∗OE(1) is precisely our original map O5
C → OP4(1)|C

so that f ◦ i : C → P4 is our original embedding of C in P4.

By construction of E, we have i∗|F | = V , and g∗OP1(−1) = OC(−2)
so we see i∗OΣ(D) ∼= OC(2). Thus we have i(C) ∼ 2D+2F . Therefore
f : Σ → P4, i : C → Σ are the necessary maps.

The map f is only an embedding if C is nondegenerate, otherwise f is
the normalization map for its image, which is a singular cubic surface.

To see that this is unique, notice that the lines f(π−1(t)) are simply
the lines obtained by taking the joins of the degree 2 divisors on C
which lie in V . Since f(Σ) is the union of this system of lines, this
proves that f(Σ) is uniquely determined. But f : Σ → f(Σ) is simply
the normalization map so that f is also uniquely determined.

Remark. While we are at it, let’s mention a specialization of the
construction above, namely what happens when V is not basepoint
free. Then V = p+ |OC(1)|, where p ∈ C is some basepoint. Consider
the projection morphism f : P4−−→ P3 obtained by projection from p
(this is a rational map undefined at p). The image of C is a rational
cubic curve B, possibly a singular plane cubic. Consider the cone S′ in
P4 over B with vertex p. This surface contains C. If we blow up P4 at p,
then the proper transform of S′ in P̃4 is a surface whose normalization
S is a Hirzebruch surface F3 (normalization is only necessary if B is
a plane curve). The pullback of the exceptional divisor of P̃4 plays
the role of the directrix D of S. The inclusion C ⊂ S′ induces a
factorization i : C → S of C → P4, with [i(C)] = D + 4F . The
intersection of D and i(C) is precisely the point p. Finally, the linear
system i∗|F | is exactly |OC(1)|.
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Next we consider the case of a rational curve C ⊂ Σ such that
[C] = D + 3F .

Lemma 6.9. Let C ⊂ P4 be a smooth quartic rational curve, and
let L ⊂ P4 be a line such that L ∩ C = Z is a degree 2 divisor.
Let φ : C → L be an isomorphism such that φ(Z) = Z and φ|Z
is the identity map. Then there exists a unique triple (f, i, j) where
f : Σ → P4 is a cubic scroll, i : C → Σ and j : L → Σ are
factorizations of C → P4 and L → P4, and such that j(L) = D is the
directrix, [i(C)] = D + 3F , and the lines of ruling induce the original
isomorphism φ : C → L.

Proof. Choose isomorphisms g : P1 → C and h : P1 → L such that
φ ◦ g = h. Consider the rank 2 vector bundle

(51) G = g∗OP4(1) ⊕ h∗O(1) ∼= OP1(4) ⊕OP1(1).

Let Z = g∗Z = h∗Z. Since g(Z) = h(Z) as subschemes of P4, we have
an identification of g∗OP4(1)|Z with h∗OP4(1)|Z . Define E∨ ⊂ G to
be the subsheaf of E of sections (sC , sL) such that sC |Z = sL|Z under
our identification.

Since the map g∗OP4(1) → g∗OP4(1)|Z is surjective, we conclude
that E∨ ∼= OP1(2) ⊕OP1(1). Moreover the linear series

(52) H0(P4,OP4(1)) −→ H0(P1, g∗OP4(1) ⊕ h∗OP4(1))

clearly factors through H0(P1, E∨). The question arises whether

(53) H0(P4,OP4(1)) ⊗C OP1 −→ E∨ = OP1(2) ⊕OP1(1)

is surjective. Certainly the corresponding maps to g∗OP4(1) and
h∗OP4(1) are surjective. The condition that C ∩ L = Z is precisely
the condition that the image of

(54) H0(P4,OP4(1)) ⊗C OP1 −→ f∗OP4(1) ⊕ g∗OP4(1)

is E∨. Thus the morphism is surjective. Denoting Σ = P(E), we
conclude that there is a well-defined morphism f : Σ → P4 such that
f∗OP4(1) = OE(1) and the pullback map

(55) H0(P4,OP4(1)) −→ H0(P(E),OE(1)) = H0(P1, E∨)

is the map above.
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The composition of E∨ → g∗OP4(1) ⊕ h∗OP4(1) with the two
projections define two surjective maps which yield sections i : P1 → Σ,
j : P1 → Σ. Clearly π ◦ i = g−1 and π ◦ j = h−1. From this it follows
that the isomorphism C ∼= L induced by the ruling of Σ is the same as
the isomorphism φ. Thus (f, i, j) is a triple as in the statement of the
lemma.

To see that this is unique, notice that the lines f(π−1(t)) are simply
the lines obtained by span (p, φ(p)). Since f(Σ) is the union of this
system of lines, we conclude that f(Σ) is unique. But f : Σ → f(Σ) is
just the normalization map so that f is also uniquely determined.

6.4 Cubic scrolls and quintic elliptics. Suppose that E ⊂ Σ is
an effective Cartier divisor of degree 5 and arithmetic genus 1. Writing
E = aD + bF , we see (a, b) satisfies the relations a, b ≥ 0, a + b = 5
and a(b− 3) + b(a− 2)− a(a− 2) = 0. These relations give the unique
integer solution E = 2D + 3F = −K. In particular, if E is smooth,
then π : E → P1 is a finite morphism of degree 2, i.e., a g1

2 on E. Thus
a pair (f : Σ → Pn, E ⊂ Σ) of a cubic scroll and a quintic elliptic
determines a pair (g : E → Pn, π : E → P1) where g : E → Pn is a
quintic elliptic and π : E → P1 is a degree 2 morphism.

Suppose we start with a pair (h : E → Pn, π : E → P1) where
h : E → Pn is an embedding of a quintic elliptic curve and π : E → P1

is a degree 2 morphism. Consider the rank 2 vector bundle π∗h∗OPn(1).

Lemma 6.10. Suppose E is an elliptic curve and π : E → P1 is a
degree 2 morphism. Suppose L is an invertible sheaf on E of degree d.
Then we have

(56) π∗L ∼=
⎧⎨
⎩

OP1(e) ⊕OP1(e− 1) d = 2e+ 1,
OP1(e) ⊕OP1(e− 2) d = 2e, L ∼= π∗OP1(e),
OP1(e− 1) ⊕OP1(e− 1) d = 2e, L 
∼= π∗OP1(e).

Proof. Using the projection formula, we see that the lemma for L is
equivalent to the lemma for L ⊗ π∗OP1(m). For any L there is an m
such that L⊗π∗OP1(m) has degree 0 or degree 1. Thus we are reduced
to the two cases d = 0 and d = 1. Notice also that in all cases we have
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χ(π∗L) = χ(L), so that by Riemann-Roch for E and P1 we have

(57) deg(π∗L) + rank (π∗L) = deg (L) = d,

i.e., deg (π∗L) = d−2. By Grothendieck’s lemma about vector bundles
on P1 we know π∗L = OP1(a) ⊕OP1(d− 2 − a).

Suppose now that d = 0. Then π∗L = OP1(a) ⊕ OP1(−2 − a). We
also have h0(π∗L) = h0(L). If L ∼= OE , then h0(L) = 1 so that we have
π∗L = OP1 ⊕ OP1(−2). If L 
∼= OE , then h0(L) = 0 so that we have
π∗L = OP1(−1) ⊕OP1(−1). Thus the lemma is proved when d = 0.

Next suppose that d = 1. Then π∗L = OP1(a) ⊕ OP1(−1 − a) and
h0(π∗L) = h0(L) = 1. Thus we have π∗L = OP1 ⊕ OP1(−1). So the
lemma is proved when d = 1. Thus the lemma is proved in all cases.

By the lemma we see that the vector bundle G∨ := π∗h∗OPn(1)
is isomorphic to OP1(1) ⊕ OP1(2). Associated to the linear series
On+1
E → h∗OPn(1) defining the embedding h, we have the adjoint map

On+1
P1 → π∗h∗OP4(1) = G∨. Since h is an embedding, for each pair

of points {p, q} ⊂ E (possibly infinitely near), we have that On+1
E →

h∗OPn(1)|{p,q} is surjective. In particular, taking {p, q} = π−1(t) for
t ∈ P1, we conclude that On+1

P1 → G∨|t is surjective. Thus we have an
induced morphism P(G) → Pn which pulls back OPn(1) to OG(1). Let
us denote Σ := P(G), and let us denote the morphism by f : Σ → Pn.
Abstractly, Σ is isomorphic to F1 and f : Σ → Pn is a cubic scroll.

The tautological map π∗π∗h∗OPn(1) → h∗OPn(1) is clearly sur-
jective. Thus, there is an induced morphism i : E → Σ. Chas-
ing definitions, we see that h = f ◦ i. So we conclude that, given
a pair (h : E → Pn, π : E → P1) as above, we obtain a pair
(f : Σ → Pn, i : E → Σ). Thus we have proved the following:

Lemma 6.11. There is an equivalence between the collection of
pairs (f : Σ → Pn, i : E → Σ) with f : Σ → Pn a cubic scroll and
f ◦ i : E → Pn an embedded quintic elliptic curve and the collection of
pairs (h : E → Pn, π : E → P1) where h : E → Pn is an embedded
quintic elliptic curve and π : E → P1 is a degree 2 morphism.
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Stated more precisely, this gives an isomorphism of the parameter
schemes of such pairs, but we won’t need the result in this form.

6.5 Cubic scrolls and quintic rational curves. If one carries out
the analogous computations as at the beginning of subsection 6.3, one
sees that the only effective divisor classes aD + bF on a cubic scroll Σ
with degree 5 and arithmetic genus 0 are D + 4F and 3D + 2F . But
the divisor class 3D+ 2F cannot be the divisor of an irreducible curve
because (3D + 2F ).D = −1. Thus, if C ⊂ Σ is an irreducible curve of
degree 5 and arithmetic genus 0, then [C] = D + 4F .

Lemma 6.12. Let C ⊂ P4 be a smooth quintic rational curve, and let
L ⊂ P4 be a line such that L∩C is a degree 3 divisor Z. Let φ : C → L
be an isomorphism such that φ(Z) = Z and φ|Z is the identity map.
Then there exists a unique triple (f, i, j) such that f : Σ → P4 is a
cubic scroll, i : C → Σ, and j : L → Σ are factorizations of C → P4,
and L→ P4, and such that j(L) = D is the directrix, [i(C)] = D+4F ,
and the lines of ruling induce the original isomorphism φ : C → L.

Proof. The proof is very similar to the proof of Lemma 6.9.

7. Quartic rational curves. In this section we will prove that the
space H4,0(X) of smooth quartic rational curves C ⊂ X is irreducible of
dimension 8. Recall from Section 2.1 that every irreducible component
of H4,0(X) has dimension at least −KX .C = 2 × 4 = 8. First we
prove that the open subset U ⊂ H4,0(X) parametrizing curves C with
span (C) = P4 is Zariski dense. To prove this, it suffices to prove that
the complement D ⊂ H4,0(X) has dimension at most 7.

Lemma 7.1. Every irreducible component of the closed subset
D ⊂ H4,0(X) parametrizing degenerate curves C, i.e., span (C) 
= P4,
has dimension at most 7.

Proof. By Riemann-Roch we see that a smooth quartic rational curve
C ⊂ P3 lies on at least one quadric surface S. It cannot lie on two
distinct quadric surfaces, for then it would have arithmetic genus 1
which is a contradiction. Thus, to each point [C] ∈ D, there is an
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associated quadric surface S ⊂ span (C). Moreover the residual to
C ⊂ S ∩X is a pair of lines L1, L2 (possibly a single nonreduced line).
Thus there is a morphism D → Hilb2(F ). Since F is a smooth surface,
Hilb2(F ) has dimension 4.

Now there are two types of behaviors depending on whether or not
span (L1, L2) is a 2-plane or a 3-plane. The set of pairs {L1, L2} such
that span (L1, L2) is a 2-plane corresponds to a point in the three-
dimensional divisor I ⊂ Sym2(F ) parameterizing incident lines. For
each pair {L1, L2} on this 3-fold, there is a 1-parameter family of
hyperplanes containing span (L1, L2). For each such hyperplane, there
is a P3 of quadric surfaces Q in this hyperplane which contain L1 ∪L2.
Thus the locus of all curves [C] ∈ D whose associated pair {L1, L2} lies
in I has dimension at most 3 + 1 + 3 = 7.

Next consider the case that span (L1, L2) is a 3-plane. Then every
quadric surface containing these lines lies in this 3-plane. The set of
quadric surfaces in this 3-plane which contain L1 and L2 is itself a P3.
Thus the set of curves [C] ∈ D whose associated pair {L1, L2} spans
a 3-plane has dimension at most 4 + 3 = 7. So the lemma is proved.

Recall from Lemma 4.2 that, given any smooth quartic rational curve
C ⊂ X, the subscheme AC ⊂ Grass (2, 5) parametrizing the 2-secant
lines to C is either 1-dimensional or else is 0-dimensional of length 16.
In either case we conclude that there exists a 0-dimensional, length 2
subscheme Z ⊂ AC (in fact many such subschemes). Suppose, given
a zero-dimensional, length 2 subscheme, that Z ⊂ AC . Then Z either
consists of two reduced points [L1], [L2] ∈ AC or else Z corresponds
to a nonreduced point of AC . In the case that Z = {[L1], [L2]},
there are again two behaviors depending on whether Z is planar, i.e.,
span (L1, L2) is a 2-plane, or whether Z is nonplanar, i.e., span (L1, L2)
is a 3-plane. In the case that Z is planar, notice that we have the
distinguished point p ∈ X corresponding to the intersection of L1 and
L2. In order to explain the analogues of planar and nonplanar in the
case that Z is nonreduced, we make a brief digression on ribbons.

A ribbon, for our purposes, is a degree 2 subscheme R of P4 supported
along a line L, such that the ideal sheaf IL of L in R satisfies I2

L = 0,
and such that the conormal sheaf IL/I2

L = IL is a line bundle on
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L. A ribbon is therefore a kind of doubled line in P4, such that at
each point p of L the doubling occurs in a specified direction, given by
the normal bundle NL/R = I∨

L , and such that this doubling direction
varies reasonably along the line. Starting with a fixed line L in P4, and
a sub-line-bundle N ⊂ NL/P4 , there is a unique ribbon R supported
on L with NL/R = N .

A nonreduced zero-dimensional subscheme Z of Grass (2, 5) of length 2
determines a ribbon R in P4. The line L of the ribbon is given by the
point of support of Z in Grass (2, 5), while the tangent direction of Z
corresponds to a global section of NL/P4 , and there is a unique sub-line
bundle N of NL/P4 containing this section, which gives the ribbon.

There are two possibilities.

First of all we could have NL/R ∼= OL(1). In this case we say
that R is planar ribbon since there is a unique 2-plane P ⊂ P4 such
that R ⊂ P ; in fact, P is the unique 2-plane such that NL/P = NL/R
as subbundles of NL/P4 . Notice that in this case the global section
OL → NL/R is not determined by the ribbon R; in fact, the data of
this section is equivalent to a point p ∈ L such that the length 2 scheme
Z is simply the tangent direction at [L] to the pencil of lines in P which
pass through p. We refer to the point p ∈ L as the distinguished point
of L determined by Z.

The second possibility for the ribbon is that NL/R ∼= OL. First of
all notice that in this case Z is uniquely determined by the ribbon.
Second, given any subbundle OL

∼= N ⊂ NL/P4 ∼= OL(1)3, there is
a unique 3-plane H ⊂ P4 such that the map OL → NL/P4 factors
through NL/H ⊂ NL/P4 . Moreover, in H there is a P3 of quadric
surfaces Q ⊂ H such that R ⊂ Q. The general surface Q in this P3

will be smooth and we will have NL/R = NL/Q as subbundles of NL/H .
We will call a ribbon of this type a nonplanar ribbon.

Define I = I4,0 ⊂ U × Hilb2(F ) to be the incidence correspondence
of pairs ([C], [Z]) such that Z ⊂ AC is a zero-dimensional length 2
subscheme. The idea of the proof of irreducibility of H4,0(X) is to
consider for such a pair ([C], [Z]) a certain cubic surface Σ which
contains the curve which is the union of C and the scheme parametrized
by Z. The residual of this curve in Σ ∩ X will be a cubic curve
and, for general ([C], [Z]), this will be a smooth cubic rational curve.
Moreover, if we associate to this cubic rational curve its image in Θ
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under the Abel-Jacobi map, then we obtain a rational transformation
I → Θ × Hilb2(F ) as the product of this map with projection I ⊂
H4,0(X) × Hilb2(F ) → Hilb2(F ). The main fact is that this rational
transformation is birational.

In order to prove the claims made in the last paragraph, we must
first dispense with some degenerate possibilities. Let IP ⊂ I denote
the closed subset parametrizing pairs ([C], [Z]) such that Z is planar.

Lemma 7.2. Every irreducible component of IP has dimension at
most 7.

Proof. In the reduced case Z = {[L1], [L2]}, we have that C∩(L1∪L2)
is a 0-dimensional subscheme of length 4 unless the distinguished point
p ∈ C, in which case C ∩ (L1 ∪ L2) has length 3. Similarly, in the
case that Z is nonreduced and gives rise to a planar ribbon R, we have
C ∩ R is length 4 unless the distinguished point p is on C. But, since
span (C) = P4, there is no 2-plane P such that P ∩ C has length 4; if
such a 2-plane exists, then for any point q ∈ C − P ∩ C we have the
hyperplane H = span (P, q) intersects C in a scheme of length 5 which
contradicts Bézout’s theorem since C 
⊂ H. Therefore, we conclude
that, if Z ⊂ AC is planar, then the distinguished point p lies on C.

Now define S to be the cone over C with vertex p. The projection
of P4 away from p, to P4/p ∼= P3, maps C birationally to a smooth
cubic rational curve C ′, and S is simply the cone over this cubic curve.
Moreover, S contains the curve E which is the union of C and the
degree 2 subscheme parametrized by Z (either L1∪L2 or else the ribbon
R determined by Z). By the Lefschetz hyperplane theorem, X contains
no cubic surfaces other than the (degenerate) hyperplane sections of X.
Now S is non-degenerate since it contains C and C is non-degenerate.
Therefore S is not contained in X. So S∩X is a divisor on S of degree
deg (S) × deg (X) = 3 × 3 = 9. But E has degree 6. Thus the residual
curve D to E is a curve of degree 3. The only curves of degree 3 on
S are hyperplane sections. There are two possible cases depending on
whether or not p ∈ D.

Suppose that p ∈ D. In this case D is a union of three lines in S
through p, or some degeneration thereof. Let H ⊂ P4 be the tangent
hyperplane to X at p. Then every line L ⊂ X containing p is contained
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in H. In particular, the residual subscheme to C in S ∩X is contained
in H. But an easy divisor class calculation on the blowup of S at p
shows that the residual to C intersects C in a divisor of degree 5 (not
counting p where the residual isn’t well-defined). So C ∩H is a divisor
on C of degree at least 5. This contradicts Bézout’s theorem unless
C ⊂ H. But by assumption span (C) = P4. So we conclude that
p /∈ D.

Every hyperplane section of S which does not contain p is a smooth
cubic rational curve D ⊂ X. Thus we have a well-defined morphism
IP → H3,0(X). Let us define Π ⊂ Hilb2(F ) to be the divisor
parametrizing planar subschemes Z ⊂ F . Then we can define a
morphism

(58) fP : IP −→ Π × Θ

as the product of the projection map IP → Hilb2(F ), which factors
through Π by construction, and the composition of IP → H3,0(X)
with the Abel-Jacobi map H3,0(X) → Θ.

The claim is that the morphism fP is injective. Recall that the fiber
of the Abel-Jacobi map H3,0(X) → Θ containing some curve [D] ∈
H3,0(X) is an open set of the two-dimensional linear series determined
by D on the cubic surface X ∩ span (D). The scheme determined by Z
will intersect this cubic surface in a zero-dimensional scheme of length 2.
Such a scheme imposes two linearly independent conditions on divisors
in the linear series |D|. Therefore, there is a unique curve D in this
linear system which contains this zero-dimensional scheme of length 2.
Given the curve D and the distinguished point p, which is determined
by Z, we can reconstruct the scroll Σ as the cone over D with vertex
p. We can then reconstruct C as the curve residual to the scheme
determined by Z andD in the intersection Σ∩X. Thus we can uniquely
recover [C] from fP ([C]) which shows that fP is injective. Therefore
dim IP ≤ dim Π + dim Θ = 3 + 4 = 7. This proves the lemma.

Now define IU ⊂ I to be the Zariski dense open subset parametrizing
pairs ([C], [Z]) with Z ⊂ AC a 0-dimensional scheme of length 2
such that span (C) = P4 and Z is nonplanar. If we consider AC
as a subscheme of Sym2(C) ∼= P2, then the length 2 subscheme
Z ⊂ Sym2(C) determines a line in Sym2(C), i.e., a linear series of
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degree 2 divisors on C. One consequence of the assumption that Z is
nonplanar is that this linear series has no base-points. By Lemma 6.8,
there is a unique cubic scroll Σ ⊂ P4 which contains C and such that
the linear series of degree 2 divisors is the linear series of intersections
of C with the lines of the ruling of Σ. Let D denote the directrix of
Σ, and let F denote the divisor class of a line of the ruling. Then the
hyperplane class on Σ is H ∼ D + 2F so the intersection X ∩ Σ has
divisor class 3D+6F . Now C.F = 2 and C.H = 4, thus C ∼ 2D+2F .
On the other hand, the scheme determined by Z (either L1 ∪ L2 if Z
is reduced, or the ribbon R if Z is nonreduced) has divisor class 2F .
Thus the residual to C and the subscheme determined by Z is a divisor
D2 ⊂ Σ linearly equivalent to D + 2F .

Theorem 7.3. The space H4,0(X) is irreducible of dimension 8.

Proof. We continue to use the notation introduced in this section.
Because of Lemma 7.1 and Lemma 7.2, it is equivalent to prove the IU
is irreducible of dimension 8. We stratify IU according to the type of
the residual curve D2 defined above. If D2 is a smooth curve, we say it
is the first type. If D2 is the union of a conic and a line of the ruling,
we say it is the second type. If D3 is the union of the directrix D and
two lines of the ruling (possibly one nonreduced line), we say it is the
third type. Define the corresponding loci in IU to be I1, I2 and I3.

Third type. First we deal with the third type because it is the most
involved. We will prove that every irreducible component of I3 has
dimension at most 7. We can associate to each pair ([C], [Z]) ∈ I3
the configuration ([D], [W ]) where [D] ∈ F is the directrix line and
[W ] ∈ Hilb4(F ) is the length 4 scheme parametrizing the residual to D
and C in Σ. Because of Lemma 7.2, we may disregard the subvariety
of I3 such that any length 2 subscheme of W is planar. Let us define
I3,U ⊂ I3 to be the open subset such that no length 2 subscheme of
W is planar. Then we are reduced to proving that every irreducible
component of I3,U has dimension at most 7.

Notice that W is a subscheme of the divisor ZD ⊂ F which
parametrizes lines in X which intersect D. Let M ⊂ F × Hilb4(F )
be the closed subset parametrizing configurations ([D], [W ]) such that
W ⊂ ZD. Then we have a morphism f3 : I3,U →M .
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Now we consider the dimension of M . By [1, Lemma 10.5], for a
general [D] ∈ F , the divisor ZD is smooth. Therefore, the fiber of
projection onto the first factor M → F over the point [D] is simply the
four-dimensional scheme Sym4(ZD). It also follows by [1, Lemma 10.5]
that, when ZD is singular, the singular set consists of a single ordinary
node. The dimension of the space of length d subschemes of a nodal
curve whose reduced scheme is the node is 0 if d = 1 and 1 if d > 0.
Therefore, even when ZD is singular, the dimension of Hilb4(ZD) is
still only 4. So we conclude that M → F has fiber dimension 4 so that
dim(M) = 6.

Now we consider the fiber dimension of f3 : I3,U →M . We will prove
that every fiber of f3 has dimension at most 1. Suppose we are given a
configuration ([D], [W ]). We want to consider the quotient P4/D ∼= P2.
Because no length 2 subscheme of W is planar, the image of W in P4/D
is a zero-dimensional subscheme of length 4. Given any scroll Σ which
contains D as the directrix, the image of Σ in P4/D is a smooth plane
conic. Given a zero-dimensional subscheme of P2 of length 4, there is
a pencil of conics containing this subscheme. So if Σ is a scroll which
contains both D and W , then the image of Σ in P4/D must be a conic
B in the pencil determined by the image of W . Moreover, the scroll Σ
determines an isomorphism φ : D → B which associates to each point
in D the image in P4/D of the line of the ruling through that point.
Notice that, given a conic B in P4/D which contains the image of W ,
there is at most one isomorphism φ : D → B such that φ identifies
the projection of W onto D with the projection of W onto B (because
the only automorphism of P1 which fixes a divisor of degree 4 is the
identity map).

By the last paragraph, associated to a configuration ([D], [W ]) there
is a pencil of smooth conics B in P4/D which contain the image of W ,
and to each B there is (at most) one automorphism φ : D → B which
identifies the two projections of W . What extra information is needed
to determine a scroll Σ such that Σ containsD andW and such that the
image of Σ is B? To answer this question we recall Lemma 6.6 which
says that, to determine a scroll Σ ⊂ P4 which contains a line D as the
directrix, it is equivalent to determine the rank 1 subbundle T ⊂ TP4 |D,
where T ∼= OD(−1) is the bundle of tangent spaces to line of the ruling
of Σ. Also, we have that T is everywhere distinct, as a rank 1 subspace
of TP4 , from TD. So first we consider the image of T in ND/P4 . But



804 J. HARRIS, M. ROTH AND J. STARR

of course this is just ND/Σ ⊂ ND/P4 . Also ND/P4 = OD(1) ⊗C N
where N is the rank 3 vector space whose associated projective space
is canonically P4/D. The map φ : D → P4/D is equivalent to
a subbundle N ′ ⊂ OD ⊗C N where N ′ is isomorphic to OD(−2),
and the subbundle ND/Σ ⊂ OD(1) ⊗C N is simply N ′ ⊗ O(1). So
ND/Σ ⊂ ND/P4 is uniquely determined by the map φ : D → P4/D.

Finally, to determine the scroll Σ, we have to determine a subbundle
T ⊂ TP4 |D which projects isomorphically to ND/Σ. The set of such
subbundles is equivalent to the set of global sections of the bundle
Hom (OD(−1), TD ⊕ ND/Σ) ∼= OD ⊕ OD(3) (modulo nonzero scaling)
whose composition with TD ⊕ ND/Σ → ND/Σ is an isomorphism. In
other words, the set of such subbundles is simply Hom(OD(−1), TD) ∼=
OD(3). But this section is determined along the projection of W since
W must be a subscheme of the scheme of lines of the ruling of Σ.
Since a length 4 subscheme of P1 imposes four linear conditions on
OD(3), we see that there is a unique section which restricts to W in the
appropriate way. So finally we conclude that the scroll Σ is determined
by the configuration ([D], [W ]) together with the conic B. Since M
has dimension 6, and since, for each ([D], [W ]) there is at most a one-
dimensional family of possible B’s, we conclude that I3,U has dimension
at most 7.

Second type. Next we consider the second type. We will prove
that every irreducible component of I2 has dimension at most 7. Let
B denote the smooth conic. Again let W ⊂ ZB ⊂ F denote the
length 3 subscheme parametrizing the lines which make up the residual
to C ∪ B ⊂ X. By Lemma 7.2, we may suppose that every length 2
subscheme of W is nonplanar. The claim is that the subscheme
parametrized by W spans P4. By way of contradiction, suppose that
it is contained in a hyperplane H. By Bézout’s theorem, B is also
contained in H. But then the intersection of H and the scroll Σ
contains the degree 5 curve which is the union of B and the subscheme
parametrized by W . This contradicts Bézout’s theorem unless Σ ⊂ H.
But then C is also contained in H, and this contradicts the hypothesis
on C. Therefore the scheme parametrized by W spans P4.

LetM2 ⊂ H2,0(X)×Hilb3(F ) be the locally closed subset parametriz-
ing configurations ([B], [W ]) such that B is smooth, such that ev-
ery length 2 subscheme of W is planar, such that the subscheme of
X parametrized by W spans P4, and such that W ⊂ ZB, where
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ZB ⊂ F is the locally closed set which parametrizes lines which in-
tersect B exactly once (there is exactly one line which intersects B
twice). By the same type of argument at in the first case, we conclude
that dimM2 = dimH2,0(X) + 3 = 4 + 3 = 7.

There is an obvious morphism f2 : I2 → M2, and we are reduced
to showing that this map is injective. Now, given a subscheme [W ] ∈
Hilb3Grass (2, 5) such that no length 2 subscheme of W is planar, and
such that the scheme parametrized by W , in P4, spans P4, then there
is precisely one line L whose intersection with this scheme is of length 3.
We will only give the proof when W is reduced; the nonreduced case is
only slightly more technical. Suppose thatW = {[L1], [L2], [L3]}. Then
L1, L2, L3 are all disjoint. If a line L intersects L1 and L2, then it lies
in the hyperplane H = span (L1, L2). Since span (L1, L2, L3) = P4,
the line L3 is not contained in H. Therefore H ∩L3 is a point p which
does not lie on L1 or L2. We conclude that the lines L which intersect
L1, L2, and L3 are exactly the lines L ⊂ H which intersect L1, L2 and
which pass through p. If we consider projection away from p, then the
set of such lines corresponds to the intersection points in H/p ∼= P2 of
the images of L1 and L2. Since these lines are skew and don’t contain
p, their images in H/p consist of two distinct lines, and two distinct
lines in P2 intersect in precisely one point.

But, given a scroll Σ, the directrix line D is a line which intersects
L1, L2 and L3. Thus we conclude that the directrix line D is uniquely
determined by the configuration ([B], [W ]) (in fact just by [W ]). More-
over, the lines of the ruling induce an isomorphism φ : D → B which
carries each intersection Li ∩D to the intersection Li ∩ B. There is a
unique isomorphism φ : D → B with this property (because the only
automorphism of P1 which fixes a length 3 divisor is the identity).
Thus φ is also determined by the configuration ([B], [W ]). From φ we
recover the scroll Σ. From the scroll Σ we recover C as the residual to
B∪L1∪L2∪L3 in Σ∩X. Thus we conclude that f2 is injective, which
proves that I2 has dimension at most 7.

First type. Finally we consider I1. This analysis will also be very
important for describing the Abel-Jacobi map α4,0 : H4,0(X) → J(X).
Denote the residual curve by A (this is the curve we were calling
D2). Let N ⊂ H3,0(X) × F × F denote the locally closed subscheme
parametrizing triples ([A], [L1], [L2]) such that L1 and L2 are skew lines,
each of which intersects A transversely in one point and such that
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span (A,L1, L2) = P4. Of course, N fibers over H3,0(X) and the fiber
is an open subset of DA ×DA. Thus we have

(59) dim(N) = dim(H3,0) + 2 dim(DA) = 6 + 2 = 8.

There is an obvious map I1 → N , and the only nontrivial condition
to verify is that span (A,L1, L2) = P4, but this follows by applying
Bézout’s theorem to Σ.

What are the fibers of I1 → N? Consider the 3-plane P =
span (L1, L2). This intersects A in a degree 3 divisor. Two of the
points of this divisor are the points of intersection of A and L1, L2.
The third point p lies on neither L1 nor L2 since A.Li is a degree 1
divisor. Now there is a unique line M which contains p and which in-
tersects both L1 and L2: if we project P away from p, then the line M
corresponds to the unique point of intersection of the images of L1 and
L2 in P2. Now suppose that Σ is a scroll which contains L1 and L2 and
A. Let D denote the directrix. Since D intersects L1 and L2, it must lie
in P . If D does not contain p, then there is a line of the ruling F of Σ
which passes through p. But then L1∪L2∪D∪F is a divisor of degree
4 in the hyperplane section P ∩Σ. This contradicts Bézout’s theorem.
What we conclude is that D must equal M . Moreover the isomorphism
φ : A→M corresponding to projection of Σ →M must be the unique
isomorphism such that φ(p) = p and such that φ(A∩Li) = φ(M ∩Li).
Of course the scroll Σ is determined by M and the isomorphism φ.
Thus there is a unique scroll Σ which contains A∪L1∪L2, i.e., I1 → N
maps one-to-one to its image since there is some irreducible component
of I of dimension 8, in fact, we must have that I1 → N is dominant,
i.e., I1 → N is an open immersion. Finally notice that N fibers over
the irreducible space H3,0 and the general fiber DA×DA is irreducible.
Thus, N is irreducible. So I1 is irreducible of dimension 8.

Since I → H4,0(X) is surjective, every component of H4,0(X) is dom-
inated by a component of I, which must be at least eight-dimensional,
since so is every component of H4,0. The only component of I with
this property is I1, which is precisely eight-dimensional, so we conclude
that H4,0 is irreducible of dimension 8.

Remark. Let I1 be as in the proof above, and let J1 be the quotient
of I1 by the involution ([C], [L1], [L2]) 	→ ([C], [L2], [L1]). Notice that
J1 → H4,0(X) is still dominant.
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8. Quintic elliptic curves. In Section 7 we proved that H4,0(X)
is irreducible by residuating the union of a quartic curve and a pair of
2-secant lines in the intersection of X with a suitable cubic scroll Σ. In
this section we will prove that H5,1(X) by residuating a quintic genus 1
curve in the intersection of X with a suitable cubic scroll. The idea
of the proof is very similar to the proof of Theorem 7.3. As in that
proof, there are several degenerate behaviors which we need to rule out
as generic.

Theorem 8.1. The space H5,1(X) is irreducible of dimension 10.

Proof. By Lemma 6.11 the irreducibility of H5,0 is equivalent to
showing that H̃5,1 is irreducible, where H̃5,1 is the parameter space for
pairs (f : Σ → P4, i : E → Σ) such that f ◦i : E → P4 is an embedding
of E as a quintic elliptic curve. Indeed, we have seen that the fiber of
projection H̃5,1 → H5,1(X) over a point [E] is simply the set of g1

2s on
E, i.e., Pic2(E) ∼= E. Since the fibers are irreducible of constant fiber
dimension 1, we conclude that H5,1(X) is irreducible of dimension 10
if and only if H̃5,1 is irreducible of dimension 11.

On the other hand, each pair (f : Σ → P4, iE : E → Σ) is equivalent
to a pair (f : Σ → P4, iC : C → Σ) where C is the residual quartic
curve, [C] = D+3F . We decompose H̃5,1 into a union of locally closed
subsets H̃1, H̃2, H̃3, H̃4 parametrizing the set where iC : C → Σ is in
the first, second, third or fourth case (we say that iC : C → Σ is in the
ith case if C ′.D = i−2 where C ′ is the unique irreducible component of
C which projects isomorphically to P1 under π). We will show that, for
i 
= 1, H̃i has dimension ≤ 10, and we will show that H̃1 is irreducible
of dimension 11.

First case. Now H̃1 parameterizes pairs (f : Σ → P4, iC : C → Σ)
where Σ is in the first case, and f(iC(C)) ⊂ X. There is a projection
H̃1 → H4,0 which assigns to (f, iC) the curve C ⊂ X, the embedding
being given by f ◦ iC . We have seen in Lemma 6.9 that the fiber of
this projection over a particular curve C ⊂ P4 consists of the data
of a line L in P4 intersecting C in a subscheme Z of length 2, and
an isomorphism φ between C and L which is the identity map on Z.
The length 2 subscheme Z uniquely determines L and, given a fixed Z,
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there is a C∗ worth of choices of such isomorphisms φ. Therefore, each
fiber of H̃1 → H4,0 is itself a C∗ bundle over the space Sym2(C) = P2

parameterizing the Z’s. We see that H̃1 → H4,0 has irreducible fibers
of dimension 3. By Theorem 7.3, H4,0(X) is irreducible of dimension 8,
and therefore H̃1 is irreducible of dimension 11.

Second case. Now H̃2 parametrizes pairs (f : Σ → P4, iC : C → Σ)
where C = C ′ ∪ F is the union of a smooth rational cubic curve C ′

and a line of ruling F , and f(iC(C)) ⊂ X. Consider the morphism
H̃2 → H3,0 which associates to (f, iC) the curve C ′ ⊂ X. Recall that
dim(H3,0) = 6. We analyze the fiber of this map by looking for the
data necessary to reconstruct Σ. The irreducible component F ⊂ C
is mapped to a line in X which intersects C ′ in a single point. The
directrix D of Σ is mapped to a line in P4 which intersects F and
also intersects C ′ in a single point. Given a fixed C ′ ⊂ X, there is
a one-parameter family of lines in X to serve as an F . Given a fixed
F , we recover the directrix as follows: pick any point p on C ′. Then
there is a P1 of lines D passing through p and intersecting F (in case
p ∈ F ∩ C ′, the limiting condition is that D lie in the P2 spanned by
F and the tangent line to C ′ at p). Finally, we need to specify the
isomorphism φ : C ′ → D induced by the lines of ruling.Since this must
be the identity on p and on F ∩ C ′, this is parameterized by C∗. As
in the other lemmas on reconstructing cubic scrolls in Section 6, this
data is sufficient to specify Σ. Altogether we see that the dimension of
H̃2 is the sum of 6 for dim(H3,0), 1 for the choice of the line F , 1 for
the choice of point p ∈ C ′, 1 for the choice of D going through p and
intersecting F , and 1 for the C∗ of isomorphisms between C ′ and D
satisfying our conditions, i.e., dim(H̃2) = 10.

Third case. This time the curve C ′ is a smooth conic, and C consists
of C ′ and two lines F1, F2 of ruling (possibly a double line). The
inclusion iC takes the lines of ruling to two lines, or possibly a nonplanar
ribbon, in X which intersect C ′. The directrix D of Σ maps to a line in
P4 which intersects C ′ once and the union of the lines in a subscheme
of length two. We have a projection H̃3 → H2,0, given by forgetting
all of the data except the conic C ′. Reversing this procedure, if we
start with a smooth conic C ′ ⊂ X, the choices of two lines F1, F2,
in X meeting C ′ form a two-dimensional family. Given the two lines,
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the directrix D must meet each of them and so is also parameterized
by a two-dimensional family, namely the choices of the intersection
points on the two lines. Finally, given this data, we have to specify
the isomorphism φ : C ′ → D corresponding to the lines of ruling. This
isomorphism must take Fi ∩ C ′ to Fi ∩ D for i = 1, 2, and so we see
that there is a C∗ of choices. Altogether the dimension of H̃3 is the
sum of 4 = dim(H2,0), 2 for the union of two lines intersecting C ′, 2
for the two-parameter family of possibilities for the directrix D, and 1
for the C∗ of isomorphisms π : C ′ → D, i.e., dim(H̃3) = 9.

Fourth case. Finally we consider the fourth case. This time C ′ is the
directrix of Σ, and C ′ ⊂ X is a line in X. The Fano scheme of lines in
X has dimension 2. The remaining components of C are mapped to a
union of three lines intersecting C ′, or some degeneration thereof. For
fixed C ′, the dimension of such triples of lines is 3. By Lemma 6.6, in
order to construct a scroll Σ containing C ′ as the directrix, we need to
provide a sub-line bundle T ⊂ TP4 |C ′, with T ∼= OC′(−1). The set of
such bundles is a P12, since hom (OC′(−1), TP4 |C′) = 13. In order for
the scroll to contain the three lines touching C ′, this sub-bundle must
agree with the direction of each line at the point of contact with C ′.
For each line, this is a three-dimensional linear condition. Therefore
the space of scrolls containing C ′ as the directrix, as well as the three
lines as lines of ruling is a P3. Thus, altogether H̃4 has dimension
(2 + 3 + 3) − 1 = 7.

Remark. Of course the proof shows more than just that H5,1(X)
is irreducible. We see that for a general quintic elliptic E ⊂ X and a
general cubic scroll containing E, the residual curve is a smooth quartic
rational curve.

9. Quintic rational curves. In this section we will prove that the
space H5,0(X) is irreducible.

Lemma 9.1. Let C ⊂ Pn be a rational normal curve ,and let P ⊂ Pn

be a linear r-plane. If (r+ 2)k ≥ (r+ 1)(n+ 1), then P is contained in
a k-secant (k−1)-plane of C, i.e., there exists a divisor D = q1 + . . . qk
on C such that P ⊂ span (D).
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Proof. We identify C with P1 so that OC(1) is a degree 1 line bundle,
and OPn(1)|C is a degree n line bundle. Up to a choice of basis of Pn,
we can identify the inclusion C ↪→ Pn with the morphism associated
to the complete linear series |OC(n)|.

Let Pk be identified with the complete linear series |OC(k)|. Then
on Pk we have the tautological injection of vector bundles OPk(−1) →
H0(C,OC(k))⊗C OPk . If we take the tensor product of this map with
H0(C,OC(n− k)) and then use the product map

(60) H0(C,OC(n− k)) ⊗C H0(C,OC(k)) −→ H0(C,OC(n)),

we have the composite map

(61) H0(C,OC(n− k)) ⊗C OPk(−1) −→ H0(C,OC(n)) ⊗OPk .

If we think of Pk as the parameter space for degree k divisors D =
q1 + · · ·+qk on C, i.e., as Symk(C), then the fiber of this map of vector
bundles at a point [D] is just H0(C,OC(n)(−D)) → H0(C,OC(n)).

Under the identification H0(C,OC(n)) = H0(Pn,OP1(1)), we have a
restriction map H0(C,OC(n)) → H0(P,OPn(1)|P ). Thus we have an
induced map of vector bundles on Pk obtained as the composite map

(62) H0(C,OC(n−k)) ⊗C OPk(−1) −→ H0(C,OC(n)) ⊗C OPk

−→ H0(P,OPn(1)|P ) ⊗C OPk .

Suppose the fiber of this map is the zero map at a point [D]. Then
every linear polynomial of Pn which vanishes on D also vanishes on P .
Since span (D) ⊂ Pn is cut out by the linear polynomials which vanish
on D, we conclude that the ideal of span (D) is contained in the ideal
of P , i.e., P ⊂ span (D). So we are reduced to showing that some fiber
of this map is zero, i.e., this map of vector bundles has nonempty zero
locus.

We may think of the map above as a global section of the bundle

(63) HomC(H0(C,OC(n− k)), H0(P,OPk(1)|P )) ⊗C OPk(1).

The rank of this vector bundle is

(64) dimH0(C,OC(n−k))×dimH0(P,OPk(1)|P ) = (n+1−k)(r+1).



CURVES OF SMALL DEGREE ON CUBIC THREEFOLDS 811

Thus the map is a global section of OPk(1)(n+1−k)(r+1). The zero locus
is just defined by the vanishing of (n+1−k)(r+1) linear polynomials.
So long as (n+ 1− k)(r+ 1) ≤ k, these linear polynomials always have
a solution. Thus if (r + 2)k ≥ (n + 1)(r + 1), then the zero locus is
nonempty.

Remark 9.2. Notice that the proof also shows that the set of k-secant
(k−1)-planes which contain P is a linear subspace of Pk. In particular,
when this set is finite, there is a unique solution.

Corollary 9.3. If C ⊂ P4 is a smooth, nondegenerate quintic
rational curve, then C has a unique 3-secant line L ⊂ P4, and L is
not a 4-secant line. If C ⊂ P3 is a smooth quintic rational curve, the
C has a one-parameter family of 3-secant lines L ⊂ P3. If every 3-
secant line to C is a 4-secant line, then C lies on a smooth quadric
surface as a divisor of type (1, 4).

Proof. First consider the case where C is nondegenerate. Then we can
think of C ⊂ P4 as the projection of a rational normal curve C ′ ⊂ P5

from a point p not on C ′. By Lemma 9.1, we see that there is a 3-secant
2-plane span (D) which contains p. The projection of P is a 3-secant
line L to C. On the other hand, suppose that C has a 4-secant line L.
The preimage of L is a 4-secant 2-plane to C ′. But, since any 4 points
on C are linearly independent, or more generally any degree 4 divisor
on C imposes four conditions on linear forms, we see that C ′ does not
have a 4-secant 2-plane. Thus C has a 3-secant line but does not have
a 4-secant line.

Suppose that C has two distinct 3-secant lines L and M . Consider
H = span (L,M). If this is a hyperplane in P4, then H ∩ C has
degree 6. This contradicts Bézout’s theorem unless C ⊂ H, i.e., C is
degenerate. If H is a 2-plane, choose any point p ∈ C not contained
in H and let H ′ = span (H, p). Then H ′ is a hyperplane, and again
H ′ ∩ C ⊃ {p} ∪ (H ∩ C) has degree at least 6. Again, by Bézout’s
theorem, we conclude that C ⊂ H ′ so that C is degenerate.

Suppose now that C is degenerate. Since C is smooth, span (C) is
a hyperplane in P4. Thus we may think of C as the projection of a
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rational normal curve C ′ ⊂ P5 from a line N ⊂ P5. Now the 3-secant
lines to C correspond to 3-secant 3-planes to C in P5 which contain N .
It is a bit simpler to think of this as the set of 3-secant 2-planes which
intersect the line N . Since there is one such 2-plane for each point of
N , we see that C has a pencil of 3-secant lines. Suppose, moreover,
that each of these 3-secant lines is actually a 4-secant line. If two of
these lines, L and M , intersect nontrivially, then P = span (L,M) is
a 2-plane and P ∩ C has degree at least 7. This contradicts Bézout’s
theorem unless C ⊂ P , which itself contradicts that C is smooth. Thus,
all of the 4-secant lines are skew. Now let S be the surface swept out
by the 4-secant lines. Then S contains C. Choose any 2-secant line M
to C. For each 4-secant line L to C which intersects M , consider the
2-plane span (L,M). If L does not pass through one of the 2 points
of intersection of M ∩ C, then span (L,M) intersects C in at least six
points, which contradicts Bézout’s theorem. Therefore the only lines L
which intersect M are the lines through the two points of intersection
of M ∩ C. Thus, S intersects M in exactly two points, i.e., S is a
quadric surface. Since S contains a 1-parameter family of skew lines,
we conclude that S is a smooth quadric surface. Finally, every smooth
quintic rational curve on a smooth quadric surface has divisor class
(1, 4), with respect to some ordering of the two rulings.

Now suppose that [C] ∈ H5,0(X). If C has a one-parameter family
of 4-secant lines, then we see by Corollary 9.3 that C is a divisor of
type (1, 4) on a smooth quadric Q. But Q∩X is a divisor of type (3, 3)
on Q; it cannot contain a divisor of type (1, 4) as an irreducible
component. This contradiction shows there are no such curves.

Define I = I5,0 ⊂ H5,0(X)×G(1, 4) to be the locally closed subvariety
parametrizing pairs (C,L) where L is a 3-secant line to C which is not
a 4-secant line. Given such a pair, let Z = L ∩ C. This is a degree 3
divisor on both L and C, so there is a unique isomorphism φ : L → C
such that φ(Z) = Z. By Lemma 6.12 associated to the data C, L,
and φ, there is a unique triple (f, i, j) with f : Σ → P4 a cubic scroll,
i : C → Σ and j : L → Σ factorizations of C → P4, and L → P4, and
such that L is the directrix of Σ.

Conversely, given a cubic scroll f : Σ → P4 and a factorization
i : C → Σ of the inclusion with i(C) ∼ D + 4F , we see that f(D) is a
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3-secant line which is not a 4-secant line. Therefore I also parametrizes
triples (C, f : Σ → P4, φ).

Now, for each cubic scroll f : Σ → P4 and j : C → Σ as above, the
residual C2 to j(C) in f−1(X) is a divisor of type 2D + 2F . We know
from subsection 6.3 that such a divisor is a quartic curve of arithmetic
genus 0, e.g., a quartic rational curve.

Theorem 9.4. H5,0(X) is irreducible of dimension 10. For a general
[C] ∈ H5,0(X), if f : Σ → P4 is the unique cubic scroll containing C,
the residual curve C2 to C ⊂ f−1(X) is a smooth quartic rational curve.

Proof. Decompose I depending on the type of C2. We say C2 is the
first type if it is a smooth quartic rational curve. We say C2 is the
second type if C2 is a union of two smooth conics A ∪B. We say that
C2 is the third type if it is a union of the directrix and a twisted cubic
D ∪ A. We say that C2 is the fourth type if it is the union of a conic,
the directrix, and a line of the ruling A∪D∪F . We say that C2 is the
fifth type if C2 is the union of the double of the directrix and two lines
of the ruling 2D ∪ F1 ∪ F2. Finally, we say that C2 is of the sixth type
if C2 is the double of a conic. We will label the corresponding locally
closed subsets of I by I1, . . . , I6.

First we show that for each i > 1, dim Ii ≤ 9.

Second type. Suppose that C2 is the second type. The scroll
f : Σ → P4 is determined by giving the union of the two conics A ∪B
meeting at a point p, and by giving the isomorphism φ : A → B,
φ(p) = p induced by the lines of the ruling of Σ. Thus, we see that
I2 fibers over the Hilbert scheme of intersecting conics with fibers of
dimension 2: the set of isomorphisms is a principal homogeneous space
for the two-dimensional subgroup of automorphisms in PGL(2) which
fix a point of P1. To specify a conic in X, it is equivalent to specify a
line in X and a 2-plane containing this line (the conic is the residual
of the line). Thus, to specify two conics intersecting in a point p ∈ X,
it is equivalent to specify a pair of lines L,M and then let the 2-planes
be span (L, p) and span (M,p). So we see that the Hilbert scheme of
intersecting conics is birational to X × Sym 2(F ) and so has dimension
3 + 2 + 2 = 7. So I2 has dimension 2 + 7 = 9.
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Third type. Suppose that C2 is the third type. To specify the scroll
it is equivalent to specify the twisted cubic A, the directrix D which
intersects A in a point p, and an isomorphism φ : A → D such that
φ(p) = p. Thus, I3 fibers over the Hilbert scheme of unions A ∪ D
with fibers which are two-dimensional. We have seen that H3,0 has
dimension 6 and that the set of lines intersecting a twisted cubic A has
dimension 1. Thus the Hilbert scheme of unions A∪B has dimension 7.
So I3 has dimension 2 + 7 = 9.

Fourth type. Suppose that C2 is the fourth type. To specify the
scroll it is equivalent to specify the directrix line D, the conic A, a
line of ruling F intersecting both D and A (in distinct points) and an
isomorphism φ : D → A such that φ(F ∩D) = F ∩ A. Thus I4 fibers
over the Hilbert scheme of curves A∪D∪F with fibers which are two-
dimensional. To specify A∪D ∪F , it is equivalent to specify D ∪ F , a
point p ∈ F and the residual line L to A. The dimension of the space
of intersecting lines is 3. The dimension of choices for p is 1, and the
dimension of choices for L is 2. Thus the dimension of the space of
curves A ∪D ∪ F is 3 + 1 + 2 = 6. So I4 has dimension 8.

Fifth type. Suppose that C2 is the fifth type. By Lemma 6.6, we
know that the scroll Σ is determined by the vertical tangent bundle
T ⊂ TP4 |D. The condition that the intersection of Σ contain the double
of D is exactly that the normal bundle ND/Σ ⊂ ND/P4 is contained in
ND/X . But this normal bundle is simply the image of T in the quotient
ND/P4 of TP4 |D. Thus the scrolls Σ such that Σ ∩X contains 2D are
the same as sub-line-bundles T ⊂ TX |D of degree −1. In both of the
cases TX |D ∼= OD(2)⊕OD⊕OD and TX |D ∼= OD(2)⊕OD(1)⊕OD(−1)
we have that H0(C, TX |D(1)) is an eight-dimensional vector space.
Moreover, each of the two lines F1 and F2 of the ruling contained in X
imposes two linear conditions on the sections. Since the set of scrolls
is the projective space associated to the possible sections, we see that
there is at most a three-dimensional family of scrolls which contain the
double of D and F1, F2. Therefore the dimension of the space of pairs
([D], {F1, F2}) is just the sum of 2 for the line in X, and 1 each for the
Fi’s. Altogether, we see that dim(I5) ≤ 2 + 1 + 1 + 3 = 7.

Sixth type. Finally we consider the sixth type. By Lemma 6.7, to
specify a scroll containing a conic A ⊂ X is the same as giving a sub-
line bundle T ⊂ TP4 |A of degree 1. As in the last case, the condition
that Σ∩X contain 2A is exactly that T ⊂ TX |A. The two possibilities
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for TX |A are OA(2)⊕OA(1)⊕OA(1) and OA(2)⊕OA(2)⊕OA. In both
cases we see that H0(A, TX |A(−1)) is a vector space of dimension 4.
Thus there is a P3 of scrolls Σ such that Σ ∩ X contains 2A. Since
dim(H2,0(X)) = 4, we conclude that dim(I6) = 4 + 3 = 7.

In each case the dimension is at most 9. By Proposition 2.1 every
irreducible component of H5,0 has dimension at least 10. By Corol-
lary 9.3 we know I → H5,0 is surjective. So we conclude that the
image of I1 → H5,0 is Zariski dense and has dimension at least 10.

Fixing a quartic rational curve C2 ⊂ X, by Lemma 6.8 the set of cubic
scrolls f : Σ → P4 containing C2 is equivalent to the set of (basepoint
free) g1

2 ’s on C2. The set of g1
2 ’s on C2 is simply Sym2(C2) ∼= P2. We

see that I1 fibers over H4,0 as a P2-fibration. By Theorem 7.3, H4,0 is
irreducible of dimension 8. Thus I1 is irreducible of dimension 10. So
the image of I1 → H5,0 is irreducible of dimension at most 10. On the
other hand, we know the image has dimension at least 10. So H5,0 is
irreducible of dimension 10.

10. Quintic curves of genus 2. By Bézout’s theorem, X cannot
contain a plane curve of degree d > 3. Thus the next case after quintic
elliptic curves is quintic curves of genus 2.

Suppose C ⊂ X is a quintic curve of genus 2. Let H denote the
hyperplane class on C. Since deg (H) = 5 > 2 = deg (KC), we conclude
that H1(C,OC(H)) = 0. Thus by Riemann-Roch we have

(65) dimH0(C,OC(H)) = deg (H) + 1 − g = 5 + 1 − 2 = 4.

Thus, the complete linear system |H| is a P3, i.e., C is contained in a
P3 inside P4. Moreover, by Riemann-Roch we also have that

(66) H0(C,OC(2H)) = 10 + 1 − 2 = 9 < 10 = H0(P3,OP3(2)).

Therefore C is contained in a quadric surface C ⊂ S. Now S ∩X is a
Cartier divisor of degree 6 on S. Since C is degree 5, the residual of
C ⊂ S ∩X is a divisor of degree 1, i.e., a line. Therefore every quintic
genus 2 curve is residual to a line L ⊂ X in a quadric surface.

Let P(Q∨) → F denote the P2-bundle over F parametrizing pairs
([L], [H]) where L ⊂ H ⊂ P4 is a line contained in a hyperplane



816 J. HARRIS, M. ROTH AND J. STARR

contained in P4 such that L ⊂ X. Let U → P(Q∨) denote the P6-
bundle parametrizing triples ([L], [H], [S]) where S ⊂ H is a quadric
surface containing L. The universal quadric surface S̃ ⊂ U × P4

is a Cartier divisor inside the pullback of the universal hypersurface
H̃ ⊂ U×P4. Since U is smooth so is H̃ , therefore S̃ is a local complete
intersection. Next, U × X ⊂ U × P4 is a Cartier divisor. Since S̃
and U × X have no irreducible component in common, we see that
D := S̃ ∩ U ×X ⊂ S̃ is a Cartier divisor locally cut out by a regular
element, so D is also a local complete intersection. In particular, D is
Gorenstein.

Let D1 ⊂ D denote the pullback from F of the universal line in X.
Then D1 → U is smooth, therefore D1 is smooth. In particular D1 is
Cohen-Macaulay. Therefore by Corollary 2.7, the residual D2 to D1

in D is a flat family of Cohen-Macaulay schemes. By specializing to
a point ([L], [H], [S]) with S smooth, we see that the general fiber of
D2 is a smooth quintic genus 2 curve in X. Thus there is an induced
map f : U → Hilb5t−1(X). We have seen that this map is a bijection
over H5,2(X). Therefore the preimage f−1(H5,2(X)) is precisely the
normalization H̃5,2(X). Since U is irreducible, we also conclude that
f(U) = H5,2(X). Thus we have the following result.

Theorem 10.1. The normalization H̃5,2(X) of H5,2(X) is a smooth,
connected variety of dimension 10.
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