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Abstract

The interest in representing numbers as a sum of squares of non-negative integers

is very old and has led to several celebrated results.

A classical result of Fermat from 1640 asserts that any prime p ≡ 1(mod 4) is a sum

of two squares of integers. Fermat also conjectured that each n ∈ N can be written as

a sum of triangular numbers where triangular numbers are those integers of the form

tx =
x(x + 1)

2
,

x ∈ Z. An equivalent version of this conjecture states that 8n + 3 is a sum of three

squares (of odd integers). This was solved by Legendre and Gauss when they proved

that any positive integer n can be written as a sum of three squares of integers iff

n 6= 4i(8k + 7) for any non-negative integers i and k.

Based on some work of Euler, in 1722, Lagrange showed that every natural number

is a sum of four squares of integers. In connection with Lagrange’s theorem, Ramanu-

jan raised the problem of determining all the positive integers a, b, c, d such that every

natural number n is representable in the form ax2 + by2 + cz2 + du2. He proved that

there exists 55 such quadruples (a, b, c, d) with 1 ≤ a ≤ b ≤ c ≤ d. A proof of this fact

will be outlined in Chapter 2. Motivated by Ramanujan’s work, L. Panaitopol proved

in 2005 that for a, b, c positive integers with a ≤ b ≤ c, every odd natural number can

be written in the form ax2 + by2 + cz2 with x, y, z ∈ Z iff the vector (a, b, c) is (1, 1, 2)

or (1, 2, 3) or (1, 2, 4). See [15].

While we can ask about which integers can be represented by a given quadratic

form, it is also interesting to ask in how many ways a certain integer m can be repre-

sented as that quadratic form. This will be one of our themes in this thesis.
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Diophantus concerned himself with several problems of this type more than eigh-

teen hundred years ago but it was only towards the end of the seventeenth century that

notable advances were made and valid proofs published. For a positive integer k, let

rk(n) denote the number of representations of the non-negative integer n as a sum of k

squares of integers, that is, rk(n) is the number of solutions of the Diopantine equation

x2
1 + · · · x2

k = n (xi ∈ Z, 1 ≤ i ≤ k). (0.1)

We observe that r2(1) = 4. For k = 2, Euler proved that (0.1) is solvable iff each prime

divisor p of n, for which p ≡ 3(mod 4) occurs in n to an even power. Later the formula

r2(n) = 4{ ∑
d|n

d≡1(4)

1− ∑
d|n

d≡3(4)

1}

was established independently by Gauss using arithmetic of Z[i] and by Jacobi using

elliptic functions. By similar methods, using theta functions Jacobi found formulas for

r4(n), r6(n), r8(n) (see for eg. pg.244 of [16]).

Liouville found formulas for the number of ways of representing an integer as

x2 + y2 + 2z2 + 2u2, x2 + y2 + z2 + 2u2, x2 + 2y2 + 2z2 + 2u2 (see [11] and [12]).

In 2015, using modular forms, Ayse Alaca and Jamiah Alanazi determined explicit

formulas for the number of representations of a positive integer n by quaternary qua-

dratic forms with coefficients 1, 2, 7 or 14. See [2].

The method employed by Ramanujan in his paper is elementary. We discuss this

in Chapter 2. What would be desirable are explicit formulas for the number of such

representations for each of the 55 tuples. In principle, this can be done using the theory

of modular forms. After discussing preliminaries in Chapter 3, we will sketch a general

strategy for this goal in Chapter 4. To illustrate how one applies this strategy, we will

consider the case (1, 1, 1, 3) in Chapter 5. That is, we determine the number of ways

to express any integer n as x2 + y2 + z2 + 3u2. As far as we know, this has not been

derived before and so we assume that this is the new result of this thesis.
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CHAPTER 1

SUM OF THREE SQUARES

In this chapter, we will study which numbers can be written as a sum of three

squares. We follow Ankeny [1] who gave an elementary presentation. We first review

basic facts relevant to our discussion.

1.1. Jacobi Symbol

DEFINITION 1. Fix a prime p. Then for any integer a, the Legendre symbol is defined by

(
a
p

)
=


1 if a is a quadratic residue (mod p)

−1 if a is a quadratic nonresidue (mod p)

0 if p|a.

LEMMA 1. Let p be a prime and a 6= 0. Then x2 ≡ a(mod p) has a solution if and only if

a
p−1

2 ≡ 1(mod p).

PROOF. For the proof of the forward direction, suppose that x2 ≡ a(mod p) has a

solution. Let x0 be this solution, i.e., x2
0 ≡ a(mod p). But then,

a(p−1)/2 ≡ (x2
0)

(p−1)/2 ≡ xp−1
0 ≡ 1(mod p).

The last congruence follows from Fermat’s Little Theorem.

Conversely, note that a 6≡ 0(mod p). So a(mod p) can be viewed as an element of

(Z/pZ)∗, the units of (Z/pZ). Since (Z/pZ)∗ is a cyclic group, there exists some

generator g such that 〈g〉 = (Z/pZ)∗. So, a = gk, where 1 ≤ k ≤ p − 1. From our

hypothesis,

a(p−1)/2 ≡ gk(p−1)/2 ≡ 1(mod p).

Because the order of g is (p− 1), (p− 1)|k (p− 1)
2

. But this implies that 2|k. So, k = 2k′.

Hence we can write a(mod p) as

a ≡ gk ≡ g2k′ ≡ (gk′)2 (mod p).

Hence, a is a square mod p, completing the proof. �
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THEOREM 1. For a prime p,

a(p−1)/2 ≡
(

a
p

)
(mod p).

PROOF. If p|a, the conclusion is trivial. So, suppose p does not divide a. By Fermat’s

Little Theorem, ap−1 ≡ 1 (mod p). We can factor this statement as

ap−1 − 1 ≡ (a(p−1)/2 − 1)(a(p−1)/2 + 1) ≡ 0 (mod p).

Thus, a(p−1)/2 ≡ ±1 (mod p). We will consider each case separately.

If a(p−1)/2 ≡ 1 (mod p), then by the previous lemma, there exists a solution to the

equation x2 ≡ a (mod p). But that would mean that(
a
p

)
= 1.

Otherwise if a(p−1)/2 ≡ −1 (mod p), then by the previous lemma, there is no solution

to the equation x2 ≡ a (mod p). But that would mean that(
a
p

)
= −1.

Hence we conclude that

a(p−1)/2 ≡
(

a
p

)
(mod p).

�

THEOREM 2. (
ab
p

)
=

(
a
p

)(
b
p

)
.

PROOF. We will use Theorem (1) to prove this result, Thus,(
ab
p

)
= (ab)(p−1)/2 (mod p).

Similarly, (
a
p

)
= (a)(p−1)/2 (mod p).

and (
b
p

)
= (b)(p−1)/2 (mod p).

But then, (
ab
p

)
= (ab)(p−1)/2 = a(p−1)/2b(p−1)/2 ≡

(
a
p

)(
b
p

)
(mod p).
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Thus, (
ab
p

)
=

(
a
p

)(
b
p

)
(mod p).

But because the Legendre symbol only takes on the values ±1, we can rewrite this

statement as (
ab
p

)
=

(
a
p

)(
b
p

)
which is what we wanted to show. �

Now in the next theorem, we will state some more properties of the Legendre sym-

bol. (For a proof, see pg. 82, 83 of [8]).

THEOREM 3. For all odd primes p,

(
−1
p

)
=

 1 if p ≡ 1 (mod 4),

−1 if p ≡ 3 (mod 4).

i.e. (
−1
p

)
= (−1)(p−1)/2.

Also, (
2
p

)
=

 1 if p ≡ ±1 (mod 8),

−1 if p ≡ 3, 5 (mod 8).

Now, we state the famous Law of Quadratic Reciprocity which can be proved using

properties of the Legendre symbol and Gauss sums (For a proof, see pg. 87 of [8]).

THEOREM 4. (Law of Quadratic Reciprocity) Let p and q be odd primes. Then,(
p
q

)
=

(
q
p

)
(−1)

p−1
2 . q−1

2 .

DEFINITION 2. Let b be a positive odd integer, and suppose that b = b1 · · · bl, a product of

(not necessarily distinct) primes. For an integer a relatively prime to b, the Jacobi symbol
( a

b

)
is defined to be the product ( a

b

)
=

(
a
b1

)
· · ·
(

a
bl

)
where

(
a
bi

)
, i = 1, 2, · · · l denotes the Legendre symbol. If b = 1,

( a
b

)
= 1.

We now state some properties of the Jacobi symbol (For a proof, refer to [8]).
3



THEOREM 5. (Properties of the Jacobi symbol)

(1) If b is a prime, the Jacobi symbol
( a

b

)
is the Legendre symbol

( a
b

)
.

(2) If
( a

b

)
= −1, then a is not a quadratic residue (mod b). The converse need not hold if

b is not a prime.

(3)
(

aa′

bb′

)
=
( a

b

) ( a
b′
)( a′

b

)(
a′

b′

)
if aa′ and bb′ are relatively prime.

(4)
(

a2

b

)
=
( a

b2

)
= 1 if a and b are relatively prime.

(5)
(
−1
b

)
= (−1)(b−1)/2 = 1 if b ≡ 1 (mod 4) and = −1 if b ≡ −1 (mod 4).

(6)
(

2
b

)
= (−1)(b

2−1)/8 = 1 if b ≡ ±1 (mod 8) and = −1 if b ≡ ±3 (mod 8).

(7) If a and b are relatively prime odd positive integers, then( a
b

)
=

(
b
a

)
(−1)

a−1
2 . b−1

2 .

1.2. Minkowski’s Theorem and Sum of two squares

A subset C ⊂ Rn is convex if ∀x, y ∈ C, we have

λx + (1− λ)y ∈ C for 0 ≤ λ ≤ 1.

We say C is symmetric if x ∈ C =⇒ −x ∈ C.

We say C is bounded if it is contained in some sphere of finite radius.

We define the volume of a domain C ⊆ Rn to be

vol(C) =
∫

C
χ(x)dx

where χ(x) is the characteristic function of C:

χ(x) =

 1 if x ∈ C

0 if x /∈ C

LEMMA 2. (Siegel) Let C be a symmetric, bounded domain in Rn. If vol(C) > 1, then

there are two distinct points P, Q ∈ C such that P−Q is a lattice point.
4



PROOF. Let φ(x) = 1 or 0 according as x ∈ C or not. Then the set

ψ(x) = ∑
γ∈Zn

φ(x + γ).

Clearly, ψ(x) is bounded and integrable. Thus∫
Rn/Zn

ψ(x)dx =
∫

Rn/Zn ∑
γ∈Zn

φ(x + γ)dx

= ∑
γ∈Zn

∫
Rn/Zn

φ(x + γ)dx

= ∑
γ∈Zn

∫
γ+Rn/Zn

φ(x)dx

=
∫

Rn
φ(x)dx

= vol(C) > 1.

Since ψ(x) takes only integer values, we must have ψ(x) ≥ 2 for some x. Therefore,

there are two distinct points P + γ, P + γ′ in C so their difference is a lattice point. �

LEMMA 3. If C is any convex, bounded, symmetric domain of volume > 2n, then C con-

tains a lattice point.

PROOF. By lemma 2, the bounded symmetric domain 1
2C contains two distinct

points 1
2 P and 1

2 Q such that 1
2 P− 1

2 Q is a lattice point, because

vol (
1
2

C) =
vol C

2n > 1.

Since C is convex,

0 6= γ =
1
2

P− 1
2

Q ∈ C

as P, Q ∈ C. This is a non-zero lattice point in C.

�

THEOREM 6. (Minkowski’s Theorem on lattice points in convex symmetric bodies) Let C

be a bounded, symmetric , convex domain in Rn. Let a1, · · · , an be linearly independent vectors

in Rn. Let A be the n× n matrix whose rows are the a′is. If

vol (C) > 2n|det A|,

then there exists rational integers x1, · · · , xn (not all zero) such that

x1a1 + · · ·+ xnan ∈ C.
5



PROOF. Consider the set D of all (x1, · · · , xn) ∈ Rn such that

x1a1 + · · ·+ xnan ∈ C.

It is easily seen that D is bounded, symmetric, and convex because C is. Moreover,

D = A−1C so that by linear algebra,

vol (D) = vol (C)(|det A|)−1.

Thus, by lemma 3, if vol (D) > 2n, then D contains a lattice point (x1, · · · , xn) 6= 0

such that x1a1 + · · ·+ xnan ∈ C. But vol (D) > 2n is equivalent to

vol (D) > 2n|det A|,

which is what we desired. �

LEMMA 4. If p is a positive prime, then there is an element x ∈ Fp such that x2 ≡
−1 (mod p) if and only if either p = 2 or p ≡ 1 (mod 4).

PROOF. If p = 2, then 1 ≡ −1 (mod 2), so 12 = 1 ≡ −1 (mod 2). Hence we can take

x = 1. Conversely, if 1 ≡ −1 (mod p), we can see that p = 2 since 1 = ap− 1 for some

integer a which implies ap = 2.

Wilson’s Theorem gives

(p− 1)! ≡ −1 (mod p).

We can pair up k and (p− k) in the product above so that

k(p− k) ≡ −k2 (mod p)

which implies

(−1)(p−1)/2(
p− 1

2
)!2 ≡ −1 (mod p).

Thus if p ≡ 1 (mod 4), there is an x ∈ Fp such that x2 ≡ −1 (mod p). The converse

follows from Fermat’s little theorem:

1 ≡ (x2)(p−1)/2 ≡ (−1)(p−1)/2 (mod p)

so that (p− 1)/2 is even i.e. p ≡ 1 (mod 4).

�

THEOREM 7. (Sum of two squares) Let p be a prime such that p ≡ 1 (mod 4). Then, p can

be written as sum of two squares.
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PROOF. Consider the set

S = {m ∈N : pm = A2 + B2, A, B ∈ Z}.

First we note by lemma (4), S 6= ∅. Let m0 be the smallest non-zero element in S.i.e.

m0p = x2 + y2,

for some x, y ∈ Z.

We want to show that 1 ∈ S. By contradiction let us assume that m0 ≥ 2. Let

x ≡ x0 (mod m0)

and

y ≡ y0 (mod m0)

where

|x0| ≤
m0

2
and |y0| ≤

m0

2
.

This can be done by choosing residue classes modulo m0 as {−m0/2,−m0/2+ 1, · · · , m0/2}.
Thus, we have

x2 + y2 ≡ x2
0 + y2

0 (mod m0).

Let m1 ∈ Z be such that

m1m0 = x2
0 + y2

0.

Then,

m2
0m1p = (x2 + y2)(x2

0 + y2
0) (1.1)

= (xx0 + yy0)
2 + (xy0 − x0y)2 (1.2)

But

m0|xx0 + yy0

and

m0|xy0 − x0y.

Thus dividing (1.1) by m2
0, we get

m1p =
(xx0 + yy0

m0

)2
+
(xy0 − x0y

m0

)2 (1.3)

7



On the other hand we have that

m1m0 = x2
0 + y2

0

≤
m2

0
4
+ ≤

m2
0

4

=
m2

0
2

which implies that

m1 <
m0

2
.

Also, m1 6= 0. That is because that would contradict the fact that m0 6= 0. Now, by

(1.3), pm1 can be written as sum of two squares and that contradicts the minimality of

m0. That proves the theorem.

�

1.3. Sum of Three Squares

In this section, we summarise a proof due to Ankeny [1] of the following theorem.

THEOREM 8. If n is a positive integer not of the form 4λ(8µ + 7), then n is the sum of

three squares.

PROOF. Without loss of generality, we can assume that n is square free. Also, we

can assume that n when considered modulo 8, leaves remainder 1, 2, 3, 5 and 6. First

we consider the case when n ≡ 3 (mod 8).

Since n is square free and congruent to 3 modulo 8, let

n = p1 · · · pr

where p′js are odd primes. Also consider a positive prime q which satisfies the follow-

ing conditions: (
−2q

pj

)
= 1, j = 1, 2, · · · , r, (1.4)

q ≡ 1 (mod 4) (1.5)

where
( a

b

)
denotes the Jacobi symbol. Equations (1.4) and (1.5) are equivalent to re-

quiring that q lies in certain residue classes modulo 4n (all relatively prime to 4n), such

a q does exist by Dirichlet’s Theorem on primes in arithmetic progressions.

8



Now,

1 =
r

∏
j=1

(
−2q

pj

)

=
r

∏
j=1

(
−2
pj

)(
q
pj

)
(by Theorem (2))

=

(
−2q

n

) r

∏
j=1

(
pj

q

)
(by Definition (2) and Theorem (4))

=

(
−2
n

)(
n
q

)
(by Theorem (2))

=

(
−2
n

)(
−n
q

)
(since n ≡ 3 (mod 8))

=

(
−n
q

)
(by Theorem (3)).

Thus we get that (
−n
q

)
= 1.

Thus there exists an odd integer b such that

b2 ≡ −n( mod q).

i.e. for some integer h1,

b2 − 4h1 = −n. (1.6)

Modulo 4,equation (1.6) gives

1− h1 ≡ 1 (mod 4),

i.e. for some integer h,

h1 = 4h

and

b2 − 4qh = −n. (1.7)

Equation (1.4) implies that there exists an integer t such that

t2 = − 1
2q

(mod n). (1.8)

Now consider the following figure

R2 + S2 + T2 < 2n (1.9)

where

R = 2tqx + tby + nz, (1.10)
9



S =
√

2qx +
b√
2q

y, (1.11)

T =

√
n√
2q

y. (1.12)

In the (R, S, T)− space, equation (1.9) defines a convex symmetric body of volume
4
3 π(2n)3/2 = 1

3(2n)3/2 since the figure has radius
√

2n. The determinant of the trans-

formation given by equations (1.10), (1.11) and (1.12) is∣∣∣∣∣∣∣∣∣∣
2tq tb n√

2q b√
2q

0

0
√

n√
2q

0

∣∣∣∣∣∣∣∣∣∣
(1.13)

which equals n3/2. Thus, (1.9) defines a convex symmetric body of volume 1
3(2n)3/2 in

the (x, y, z)− space. Clearly, 1
3(2n)3/2 > 8.

Hence, applying Theorem 6, we get that there exists integer values of x, y, z (not all

zero) which satisfy (1.9), (1.10), (1.11) and (1.12). Let those integer values be x1, y1, z1

and the corresponding values of R, S, T be R1, S1, T1 respectively.

By applying equations (1.10), (1.11), and (1.12), we get that

R2
1 + S2

1 + T2
1 = R2

1 + (
√

2qx1 +
b√
2q

y1)
2 + (

√
n√
2q

)2 (1.14)

= R2
1 +

1
2q

(2qx1 + by1)
2 +

n
2q

y2
1 (1.15)

= R2
1 + 2(qx2

1 + bx1y1 + hy2
1). (1.16)

Let v = qx2
1 + bx1y1 + hy2

1. Also, by choice of t in (1.8), we have the following,

R2
1 + S2

1 + T2
1 = (2tqx1 + tby1 + nz1)

2 + (
√

2qx1 +
b√
2q

y1)
2 + (

√
n√
2q

y1)
2 (1.17)

≡ t2(2qx1 + by1)
2 +

1
2q

(2qx1 + by1)
2 (1.18)

≡ 0 (mod n). (1.19)

Thus the above gives that R2
1 + 2v < 2n and n|R2

1 + 2v. Also since the transformation

given by (1.10), (1.11), (1.12) is non-degenerate and not all of x1, y1, z1 are zero, R2
1 +

10



2v 6= 0. Hence,

R2
1 + 2v = n. (1.20)

Let p be an odd prime which divides v exactly to an odd power.

Now we consider two cases :

Case 1 : p 6 | n
By (1.20), we have that

(
n
p

)
= 1. (1.21)

Also, since v = qx2
1 + bx1y1 + hy2

1,

4qv = (2qx1 + by1)
2 + ny2

1. (1.22)

If p|q, then by (1.7), (
−n
p

)
= 1.

If p 6 |q, then by (1.22), (
−n
p

)
= 1.

Thus in either case (
−n
p

)
= 1.

which combined with (1.21), gives(
−1
p

)
= 1 or p ≡ 1 (mod 4).

Case 2 : p | n
By (1.20) and since v = qx2

1 + bx1y1 + hy2
1, we get that

R2
1 +

1
2q

((2qx1 + by1)
2 + ny2

1) = n (1.23)

which implies that p|R1 and p|(2qx1 + b1) and thus dividing both sides of

(1.23) by p, we get
1
2q

n
p

y2
1 =

n
p

(mod p).

i.e.

y2
1 = 2q (mod p).

i.e. (
2q
p

)
= 1

11



which combined with (1.4), yields(
−1
p

)
= 1 or p ≡ 1 (mod 4).

Thus in both cases, we get that p ≡ 1 (mod 4).i.e. all odd primes which divide v ex-

actly to an odd power are congruent to 1 modulo 4, which implies that 2v is the sum of

two squares by Theorem 7. Thus by (1.20), n is the sum of three squares. That proves

the theorem for the case when n ≡ 3 (mod 8).

Now for the case when m ≡ 1, 2, 5 or 6 (mod 8), the same proof as above goes

through with a few alterations as follows :

Consider a positive prime q which satisfies the following conditions :(
−q
pj

)
= 1, j = 1, 2, · · · , r, (1.24)

q ≡ 1 (mod 4) (1.25)

and if n is even, choose n = 2n1,(
−2
q

)
= (−1)(n1−1)/2,

t2 ≡ −1
q

(mod pj),

t odd,

b2 − qh = −n,

and

R = tqx + tby + nz, (1.26)

S =
√

qx +
b
√

q
y, (1.27)

T =

√
n
√

q
y. (1.28)

With these changes, the proof in the other cases also follows.

�
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CHAPTER 2

SUMMARY OF RAMANUJAN’S PAPER

In this chapter, we give a summary of Ramanujan’s paper “On the expression

of numbers of the form ax2 + by2 + cz2 + du2” where he found 55 positive 4-tuples

(a, b, c, d) such that any positive number can be written as ax2 + by2 + cz2 + du2 for

those 4-tuples. He used the process of elimination first to get the 55 possible 4-tuples

(a, b, c, d) such that any positive number can be written as ax2 + by2 + cz2 + du2. Here

is his argument.

Without loss of generality, we can assume a ≤ b ≤ c ≤ d.

Note a = 1 otherwise 1 cannot be expressed as ax2 + by2 + cz2 + du2. This is because

the least value of ax2 + by2 + cz2 + du2 would be ax2 when y = z = u = 0 for any

value of b, c, d and if a > 1, then 1 can never be expressed as ax2 + by2 + cz2 + du2 for

any value of a. Thus a = 1. So, we have to find values of b, c, d such that any positive

integer can be written as x2 + by2 + cz2 + du2.

If b > 2, then c, d ≥ 3 and 2 cannot be expressed in this form because setting z = u = 0,

we will have x2 + by2 = 2. The only solutions to this are :

(1) x = 1, y = 1, b = 1

(2) x = 0, y = 1, b = 2.

Thus, 1 ≤ b ≤ 2. So, there are two cases we need to consider :

Case 1: Values of (c, d) such that any positive integer can be written as x2 + y2 + cz2 +

du2.

Case 2: Values of (c, d) such that any positive integer can be written as x2 + 2y2 + cz2 +

du2.

Case 1. If c > 3,, then 3 cannot be expressed in this form because for any value of

d, taking u = 0, we will have x2 + y2 + cz2 = 3.

The only solutions to this are

(1) x = 0, y = 0, z = 1, c = 3.

(2) x = 1, y = 1, z = 1, c = 1.
13



(3) x = 1, y = 0, z = 1, c = 2.

Thus, 1 ≤ c ≤ 3.

So, there are three subcases of this Case 1 that we need to consider.

Case 1 a. Values of d such that any positive integer can be written as x2 + y2 + z2 +

du2.

If d > 7, then 7 cannot be written as x2 + y2 + z2 + du2. Thus 1 ≤ d ≤ 7.

Case 1 b. Values of d such that any positive integer can be written as x2 + y2 + 2z2 +

du2.

If d > 14, then 14 cannot be written as x2 + y2 + 2z2 + du2. Thus 2 ≤ d ≤ 14.

Case 1 c. Values of d such that any positive integer can be written as x2 + y2 + 3z2 +

du2.

If d > 6, then 6 cannot be written as x2 + y2 + 3z2 + du2. Thus 3 ≤ d ≤ 6.

Case 2. If c > 5, then 5 cannot be expressed in this form because since c ≤ d, for

any value of d, taking u = 0, we will have x2 + 2y2 + cu2 = 5.

The only solutions to this are:

(1) x = 0, y = 0, u = 0, c = 5.

(2) x = 0, y = 1, u = 1, c = 3.

(3) x = 1, y = 0, u = 1, c = 4.

(4) x = 1, y = 1, u = 1, c = 2.

Thus 2 ≤ c ≤ 5. So, there are four subcases of this Case 2 that we need to consider.

Case 2 a. Values of d such that any positive integer can be written as x2 + 2y2 +

2z2 + du2. If d > 7, then 7 cannot be written as x2 + 2y2 + 2z2 + du2. Thus 2 ≤ d ≤ 7.

Case 2 b. Values of d such that any positive integer can be written as x2 + 2y2 + 3z2 +

du2. If d > 10, then 10 cannot be written as x2 + 2y2 + 3z2 + du2. Thus 3 ≤ d ≤ 10.

Case 2 c. Values of d such that any positive integer can be written as x2 + 2y2 + 4z2 +

du2. If d > 14, then 14 cannot be written as x2 + 2y2 + 4z2 + du2. Thus 4 ≤ d ≤ 14.

Case 2 d. Values of d such that any positive integer can be written as x2 + 2y2 + 5z2 +

du2. If d > 10, then 10 cannot be written as x2 + 2y2 + 5z2 + du2. Thus 5 ≤ d ≤ 10.

That leaves the following 55 4−tuples listed in the next page.

Next, Ramanujan uses the following result about ternary quadratic forms.

THEOREM 9. The necessary and sufficient condition that a number cannot be expressed as

x2 + y2 + z2,
14



(1, 1, 1, 1) (1, 2, 3, 5) (1, 2, 4, 8) (1, 1, 1, 2) (1, 2, 4, 5) (1, 2, 5, 8) (1, 1, 2, 2) (1, 2, 5, 5)

(1, 1, 2, 9) (1, 2, 2, 2) (1, 1, 1, 6) (1, 2, 3, 9) (1, 1, 1, 3) (1, 1, 2, 6) (1, 2, 4, 9) (1, 1, 2, 3)

(1, 2, 2, 6) (1, 2, 5, 9) (1, 2, 2, 3) (1, 1, 3, 6) (1, 1, 2, 10) (1, 1, 3, 3) (1, 2, 3, 6) (1, 2, 3, 10)

(1, 2, 3, 3) (1, 2, 4, 6) (1, 2, 4, 10) (1, 1, 1, 4) (1, 2, 5, 6) (1, 2, 5, 10) (1, 1, 2, 4) (1, 1, 1, 7)

(1, 1, 2, 11) (1, 2, 2, 4) (1, 1, 2, 7) (1, 2, 4, 11) (1, 1, 3, 4) (1, 2, 2, 7) (1, 1, 2, 12) (1, 2, 3, 4)

(1, 2, 3, 7) (1, 2, 4, 12) (1, 2, 4, 4) (1, 2, 4, 7) (1, 1, 2, 13) (1, 1, 1, 5) (1, 2, 5, 7) (1, 2, 4, 13)

(1, 1, 2, 5) (1, 1, 2, 8) (1, 1, 2, 14) (1, 2, 2, 5) (1, 2, 3, 8) (1, 2, 4, 14) (1, 1, 3, 5)

Table 1: Table of 55 tuples

x2 + y2 + 2z2,

x2 + y2 + 3z2,

x2 + 2y2 + 2z2,

x2 + 2y2 + 3z2,

x2 + 2y2 + 4z2,

x2 + 2y2 + 5z2,

is that it should be of the form

4λ(8µ + 7),

4λ(16µ + 14),

9λ(9µ + 6),

4λ(8µ + 7),

4λ(16µ + 10),

4λ(16µ + 14),

25λ(25µ + 10) or 25λ(25µ + 10)

respectively.

PROOF. Consider the first case of the theorem. Suppose an integer can be written

as sum of three squares. Now we know that any integer can be written as 4k or 8k + 1

for some k. Now considering the different residues that the three squares leave, it

can be seen that the sum of the three squares is never congruent to 7 modulo 8. The

other direction of the theorem follows from Theorem 8. The other cases can be done

similarly. �
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Now let us consider Case 1a as before.

We have to show that any integer N can be expressed as N = x2 + y2 + z2 + du2,

1 ≤ d ≤ 7. If N is not of the form 4λ(8µ + 7), then N can be written as x2 + y2 + z2

by Theorem 9. So we take u = 0 for 1 ≤ d ≤ 7. Then those N can be written as

x2 + y2 + z2 + du2.

Let N be of the form 4λ(8µ + 7).

When d = 1, 2, 4, 5, 6, taking u = 2λ, we get that

N − du2 = 4λ(8µ + 7− d)

which is not of the form 4λ(8µ + 7). So, by Theorem 9, N − du2 can be written as

x2 + y2 + z2, that is

N = x2 + y2 + z2 + du2.

When d = 3 and µ = 0, taking u = 2λ, we get that,

N − du2 = 4λ+1

which is not of the form 4λ(8µ + 7). So, by Theorem 9, N − du2 can be written as

x2 + y2 + z2, that is

N = x2 + y2 + z2 + du2.

When d = 3 and µ ≥ 1, taking u = 2λ+1, we get that,

N − du2 = 4λ(8µ− 5)

which is not of the form 4λ(8µ + 7). So, by Theorem 9, N − du2 can be written as

x2 + y2 + z2, that is

N = x2 + y2 + z2 + du2.

When d = 7 and µ = 0, 1, 2, taking u = 2λ. we get that,

N − du2 = 0, (2× 4λ+1), 4λ+2

none of which is of the form 4λ(8µ + 7). So, by Theorem 9, N − du2 can be written as

x2 + y2 + z2, that is

N = x2 + y2 + z2 + du2.

When d = 7 and µ ≥ 3, taking u = 2λ+1. we get that,

N − du2 = 4λ(8µ− 21)
16



which is not of the form 4λ(8µ + 7). So, by Theorem 9, N − du2 can be written as

x2 + y2 + z2, that is

N = x2 + y2 + z2 + du2.

Thus, in any of these cases N can be written as x2 + y2 + z2 + du2 for 1 ≤ d ≤ 7.

Consider Case 1b as before.

We have to show that any integer N can be expressed as N = x2 + y2 + 2z2 + du2,

2 ≤ d ≤ 14.

If N is not of the form 4λ(16µ + 14), then N can be written as x2 + y2 + 2z2 by Theorem

9. So we take u = 0 for 2 ≤ d ≤ 14 and N of that form. Then N can be written as

x2 + y2 + 2z2 + du2.

Let N be of the form 4λ(16µ + 14).

When d = 2, 3, ..., 9, 11, 12, 13, taking u = 2λ, we get that,

N − du2 = 4λ(16µ + 14− d)

which is not of the form 4λ(16µ + 14). So, by Theorem 9, N − du2 can be written as

x2 + y2 + 2z2, that is

N = x2 + y2 + 2z2 + du2.

When d = 10 and µ = 0, taking u = 2λ, we get that,

N − du2 = 4λ+1

which is not of the form 4λ(16µ + 14). So, by Theorem 9, N − du2 can be written as

x2 + y2 + 2z2, that is

N = x2 + y2 + 2z2 + du2.

When d = 10 and µ ≥ 1, taking u = 2λ+1, we get that ,

N − du2 = 4λ(16µ + 4)

which is not of the form 4λ(16µ + 14). So, by Theorem 9, N − du2 can be written as

x2 + y2 + 2z2, that is

N = x2 + y2 + 2z2 + du2.

When d = 14 and µ = 0, 1, taking u = 2λ, we get that,

N − du2 = 0, 4λ+2

17



none of which is of the form 4λ(16µ + 14). So, by Theorem 9, N − du2 can be written

as x2 + y2 + 2z2, that is

N = x2 + y2 + 2z2 + du2.

When d = 14 and µ ≥ 2, taking u = 2λ+1, we get that,

N − du2 = 4λ(16µ− 10)

which is not of the form 4λ(16µ + 14). So, by Theorem 9, N − du2 can be written as

x2 + y2 + 2z2, that is

N = x2 + y2 + 2z2 + du2.

Thus, in any of these cases N can be written as x2 + y2 + 2z2 + du2 for 2 ≤ d ≤ 14.

Now we consider Case 1c as before.

We have to show that any integer N can be expressed as N = x2 + y2 + 3z2 + du2,

3 ≤ d ≤ 6.

If N is not of the form 9λ(9µ+ 6), then N can be written as x2 + y2 + 3z2 by Theorem

9. So we take u = 0 for 3 ≤ d ≤ 6. Then N can be written as x2 + y2 + 3z2 + du2.

Let N be of the form 9λ(9µ + 6).

When d = 4, 5, taking u = 3λ, we get that,

N − du2 = 9λ(9µ + 6− d)

which is not of the form 9λ(9µ + 6). So, by Theorem 9, N − du2 can be written as

x2 + y2 + 3z2, that is

N = x2 + y2 + 3z2 + du2.

When d = 3 and µ = 0, taking u = 3λ, we get that,

N − du2 = 9λ+1

which is not of the form 9λ(9µ + 6). So, by Theorem 9, N − du2 can be written as

x2 + y2 + 3z2, that is

N = x2 + y2 + 3z2 + du2.

When d = 3 and µ ≥ 1, taking u = 3λ, we get that,

N − du2 = 9λ(9µ + 3)
18



which is not of the form 9λ(9µ + 6). So, by Theorem 9, N − du2 can be written as

x2 + y2 + 3z2, that is

N = x2 + y2 + 3z2 + du2.

When d = 6 and µ ≥ 0, taking u = 3λ, we get that,

N − du2 = 9λ+1µ

which is not of the form 9λ(9µ + 6). So, by Theorem 9, N − du2 can be written as

x2 + y2 + 3z2, that is

N = x2 + y2 + 3z2 + du2.

Thus, in any of these cases N can be written as x2 + y2 + 3z2 + du2 for 3 ≤ d ≤ 6.

Consider Case 2a as before.

We have to show that any integer N can be expressed as N = x2 + 2y2 + 2z2 + du2,

2 ≤ d ≤ 7.

If N is not of the form 4λ(8µ + 7), then N can be written as x2 + 2y2 + 2z2 by Theo-

rem 9. So we take u = 0 for 2 ≤ d ≤ 7. Then N can be written as x2 + 2y2 + 2z2 + du2.

Let N be of the form 4λ(8µ + 7).

When d = 2, 4, 5, 6, taking u = 2λ, we get that,

N − du2 = 4λ(8µ + 7− d)

which is not of the form 4λ(8µ + 7). So, by Theorem 9, N − du2 can be written as

x2 + 2y2 + 2z2, that is

N = x2 + 2y2 + 2z2 + du2.

When d = 3 and µ = 0, taking u = 2λ, we get that,

N − du2 = 4λ+1

which is not of the form 4λ(8µ + 7). So, by Theorem 9, N − du2 can be written as

x2 + 2y2 + 2z2, that is

N = x2 + 2y2 + 2z2 + du2.

When d = 3 and µ ≥ 1, taking u = 2λ+1, we get that,

N − du2 = 4λ(8µ− 5)
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which is not of the form 4λ(8µ + 7). So, by Theorem 9, N − du2 can be written as

x2 + 2y2 + 2z2, that is

N = x2 + 2y2 + 2z2 + du2.

When d = 7 and µ = 0, 1, 2, taking u = 2λ, we get that,

N − du2 = 0, (2× 4λ+1), 4λ+2

none of which is of the form 4λ(8µ + 7). So, by Theorem 9, N − du2 can be written as

x2 + 2y2 + 2z2, that is

N = x2 + 2y2 + 2z2 + du2.

When d = 7 and µ ≥ 3, taking u = 2λ+1, we get that,

N − du2 = 4λ(8µ− 21)

which is not of the form 4λ(8µ + 7). So, by Theorem 9, N − du2 can be written as

x2 + 2y2 + 2z2, that is

N = x2 + 2y2 + 2z2 + du2.

Thus, in any of these cases N can be written as x2 + 2y2 + 2z2 + du2 for 2 ≤ d ≤ 7.

Consider Case 2b as before.

We have to show that any integer N can be expressed as N = x2 + 2y2 + 3z2 + du2,

3 ≤ d ≤ 10.

If N is not of the form 4λ(16µ + 10), then N can be written as x2 + 2y2 + 3z2 by

Theorem 9. So we take u = 0 for 3 ≤ d ≤ 10. Then N can be written as x2 + 2y2 + 3z2 +

du2. Let N be of the form 4λ(16µ + 10).

When d = 3, 4, 5, 7, 8, 9, taking u = 2λ, we get that,

N − du2 = 4λ(16µ + 10− d)

which is not of the form 4λ(16µ + 10). So, by Theorem 9, N − du2 can be written as

x2 + 2y2 + 3z2, that is

N = x2 + 2y2 + 3z2 + du2.

When d = 6 and µ = 0, taking u = 2λ, we get that,

N − du2 = 4λ+1
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which is not of the form 4λ(16µ + 10). So, by Theorem 9, N − du2 can be written as

x2 + 2y2 + 3z2, that is

N = x2 + 2y2 + 3z2 + du2.

When d = 6 and µ ≥ 1, taking u = 2λ+1, we get that,

N − du2 = 4λ(16µ− 14)

which is not of the form 4λ(16µ + 10). So, by Theorem 9, N − du2 can be written as

x2 + 2y2 + 3z2, that is

N = x2 + 2y2 + 3z2 + du2.

When d = 10 and µ = 0, 1, 2, taking u = 2λ, we get that,

N − du2 = 0, 4λ+2, (2× 4λ+2)

none of which is of the form 4λ(16µ + 10). So, by Theorem 9, N − du2 can be written

as x2 + 2y2 + 3z2, that is

N = x2 + 2y2 + 3z2 + du2.

When d = 10 and µ ≥ 3, taking u = 2λ+1, we get that,

N − du2 = 4λ(16µ + 14)

which is not of the form 4λ(16µ + 10). So, by Theorem 9, N − du2 can be written as

x2 + 2y2 + 3z2, that is

N = x2 + 2y2 + 3z2 + du2.

Thus, in any of these cases N can be written as x2 + 2y2 + 3z2 + du2 for 3 ≤ d ≤ 10.

Consider Case 2c as before.

We have to show that any integer N can be expressed as N = x2 + 2y2 + 4z2 + du2,

4 ≤ d ≤ 14.

If N is not of the form 4λ(16µ + 14), then N can be written as x2 + 2y2 + 4z2 by

Theorem 9. So we take u = 0 for 4 ≤ d ≤ 14. Then N can be written as x2 + 2y2 + 4z2 +

du2.

Let N be of the form 4λ(16µ + 14).
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When d = 4, 5, 6, 7, 8, 9, 11, 12, 13, taking u = 2λ, we get that,

N − du2 = 4λ(16µ + 14− d)

which is not of the form 4λ(16µ + 14). So, by Theorem 9, N − du2 can be written as

x2 + 2y2 + 4z2, that is

N = x2 + 2y2 + 4z2 + du2.

When d = 10 and µ = 0, taking u = 2λ, we get that,

N − du2 = 4λ+1

which is not of the form 4λ(16µ + 14). So, by Theorem 9, N − du2 can be written as

x2 + 2y2 + 4z2, that is

N = x2 + 2y2 + 4z2 + du2.

When d = 10 and µ ≥ 1, taking u = 2λ+1, we get that,

N − du2 = 4λ(16µ− 6)

which is not of the form 4λ(16µ + 14). So, by Theorem 9, N − du2 can be written as

x2 + 2y2 + 4z2, that is

N = x2 + 2y2 + 4z2 + du2.

When d = 14 and µ = 0, 1, 2, taking u = 2λ, we get that,

N − du2 = 0, 4λ+2, (2× 4λ+2)

none of which is of the form 4λ(16µ + 14). So, by Theorem 9, N − du2 can be written

as x2 + 2y2 + 4z2, that is

N = x2 + 2y2 + 4z2 + du2.

When d = 14 and µ ≥ 3, taking u = 2λ+1, we get that,

N − du2 = 4λ(16µ− 14)

which is not of the form 4λ(16µ + 14). So, by Theorem 9, N − du2 can be written as

x2 + 2y2 + 4z2, that is

N = x2 + 2y2 + 4z2 + du2.

Thus, in any of these cases N can be written as x2 + 2y2 + 4z2 + du2 for 4 ≤ d ≤ 14.

Similarly, Case 2d can also be considered as before.
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Thus we have succeeded in summarising the fact that any integer can be expressed

as ax2 + by2 + cz2 + du2 for the 55 4-tuples shown in the table earlier.

REMARK 1. A form is said to be universal if it represents every positive integer. If a form

is not universal, then its truant is defined to be the smallest positive integer not represented by

it.

In 1993, Conway and Schneeberger announced the following remarkable result:

THEOREM 10 (The Fifteen Theorem). If a positive-definite quadratic form having integer

matrix represents every positive integer upto 15, then it represents every positive integer.

The original proof of this theorem was never published, perhaps because several of the cases

involved rather intricate arguments. But in [3], Manjul Bhargava gives a very simple proof of

the 15-theorem and derives the complete list of universal quaternaries. In fact in the remarks

section of the paper, Bhargava proves the following theorem:

THEOREM 11. If a positive definite quadratic form having integer matrix represents the

nine critical numbers 1, 2, 3, 5, 6, 7, 10, 14, and 15, then it represents every positive integer.

(Equivalently, the truant of any non-universal form must be one of these nine numbers).

However, he also proves this another slight strengthened version of the fifteen theorem which

shows that the number 15 is really special:

THEOREM 12. If a positive definite quadratic form having integer matrix represents every

number below 15, then it represents every number above 15.

This result leads to Ramanujan’s assertion to be corrected slightly that there are 54, not 55

universal diagonal quaternary quadratic forms. This is because the form x2 + 2y2 + 5z2 + 5u2

is not universal as it does not represent 15.
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CHAPTER 3

PRELIMINARIES ON MODULAR FORMS

In this chapter, we give a short review of the basic theory of modular forms. We

refer the reader to [5], [9], [10], [13], [14], [16], [17] and [18] for further details.

3.1. The Modular Group

SL2(Z) =


 a b

c d

 : a, b, c, d ∈ Z, ad− bc = 1


is called the (full) modular group and it plays a pivotal role in the theory of modular

forms. It is generated by S =

 0 −1

1 0

 and T =

 1 1

0 1

 .

For each natural number N, the principal congruence subgroup of level N denotes

Γ(N) is the group
 a b

c d

 ∈ SL2(Z) :

 a b

c d

 ≡
 1 0

0 1

 (mod N)

 .

In particular, Γ(1) = SL2(Z). Γ(N) is a normal subgroup of SL2(Z) of finite index. In

particular,

[SL2(Z) : Γ(N)] = N3 ∏
p|N

(1− 1
p2 )

where [A : B] denotes the index of B in A.

A subgroup Γ ⊂ SL2(Z) is called a congruence subgroup if Γ(N) ⊂ Γ for some N.

Since Γ(N) is of finite index in SL2(Z), it follows that any congruence subgroup is also

of finite index in SL2(Z). In the theory of modular forms, congruence subgroups will

play a dominant role. If Γ is a congruence subgroup, the smallest N such that Γ(N) ⊂ Γ

is called the level of Γ.
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The Hecke subgroups are denoted Γ0(N) and defined by

Γ0(N) =


 a b

c d

 ∈ SL2(Z) : c ≡ 0 mod N)

 .

It is easy to see that this is a group. Clearly, Γ(N) ⊂ Γ0(N) and so these are congruence

subgroups.

Consider the map

Γ0(N)→ (Z/NZ)∗

given by  a b

c d

 7→ d(mod N).

It is clearly a surjective homomorphism. This is because if we consider d ∈ (Z/NZ)∗,

then gcd(d, N) = 1. So, ∃ a, b ∈ Z, such that ad− Nb = 1. So,

 a b

N d

 maps to d.

The kernel denoted by Γ1(N) is given by

Γ1(N) =


 a b

c d

 ∈ SL2(Z) : c ≡ 0 (mod N), d ≡ 1 (mod N)

 .

Thus we have

Γ(N) ⊂ Γ1(N) ⊂ Γ0(N) ⊂ SL2(Z).

3.2. The Upper Half Plane

Let H denote the upper half plane,

H = {z ∈ C : Im (z) > 0}

viewed as open subset of C with usual topology. We define an action of the group

GL+
2 (R) =


 a b

c d

 : a, b, c, d ∈ R, ad− bc > 0


on H via the formula  a b

c d

 z =
az + b
cz + d

.

It can be shown that this indeed defines an action of GL+
2 (R) on H. The transformations

z→ az + b
cz + d
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are called fractional linear transformations or Mobius transformations.

DEFINITION 3. Let G be a group and X a topological space. Then for the G−action on X,

two elements x, y ∈ X are called G-equivalent if there is a g ∈ G such that gx = y.

DEFINITION 4. If Γ is a subgroup of SL2(Z) and F ⊂ H is a closed set with connected

interior, we say that F is a fundamental domain for Γ if

• any z ∈ H is Γ−equivalent to a point in F .

• no two interior points of F are Γ−equivalent.

• the boundary of F is a finite union of smooth curves.

Let F = {z ∈ H : |Re(z)| ≤ 1
2 , |z| ≥ 1}. Then F is a fundamental domain for the

action of SL2(Z) on H. We now define the extended upper half plane H∗ as

H∗ = H∪Q∪ {i∞},

that is, H∗ is obtained by adjoining all the rational numbers and i∞ called the cusps

(which should be visualised as adding the point at infinity far up the positive imagi-

nary axis and all the rational numbers on the real axis ). It is easy to see that SL2(Z)

permutes the cusps transitively when it acts on H∗ via the formula a b

c d

 z =
az + b
cz + d

for z ∈ H.

For cusps Q∪ i∞, we identify i∞ with 1
0 and define a b

c d

 r
s
=

ar + bs
cr + ds

.

We extend the usual topology on H to H∪ {i∞} as follows. First, a fundamental system

of open neighbourhoods of i∞ is NC = {z ∈ H : Im(z) > C} ∪ {i∞} for any C > 0.

Note that if we map H to the punctured open unit disc by sending

z 7→ q = e2πiz

and if we agree to take the point {i∞} ∈ H∗ to the origin under this map, then NC is

the inverse image of the open disc of radius e−2πC centered at the origin and we have

defined our topology on H∪ {i∞} so as to make z 7→ q = e2πiz continuous.

The change of variables from z to q plays a basic role in the theory of modular

functions. We use it to define an analytic structure on H∪ {i∞}. In other words, given
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a function on H, we say that it is meromorphic at i∞ if it can be expressed as a power

series in the variable q having at most finitely many negative terms, that is, it has a

Fourier expansion of the form

f (z) = ∑
n∈Z

ane2πinz = ∑
n∈Z

anqn

in which an = 0 for n� 0.

We say that f (z) is holomorphic at i∞ if an = 0 for all negative n and we say that f (z)

vanishes at i∞ if a0 = 0. More generally, if f (z) has period N, then we use the map

z 7→ qN = e2πiz/N

to map H ∪ {i∞} to the open unit disc. We can then express f (z) as a series in qN, and

say that it is meromorphic at i∞ if an = 0 for n� 0.

Next, for a cusp a/c ∈ Q ⊂ H∗, we define a fundamental system of open neigh-

bourhoods by completing a, c to a matrix α =

 a b

c d

 ∈ SL2(Z) and using α to

transport the NC to discs which are tangent to the real axis at a/c. In other words, with

this topology, to say that a sequence zj approaches a/c means that α−1zj approaches

i∞.

3.3. Modular forms for SL2(Z)

DEFINITION 5. Let f (z) be a meromorphic function on the upper half plane H and let k be

an integer. Suppose that f (z) satisfies the relation

f (γz) = (cz + d)k f (z), ∀γ =

 a b

c d

 ∈ SL2(Z).

In particular, for elements T =

 1 1

0 1

 and S =

 0 −1

1 0

 ,

f (z + 1) = f (z)

and

f (−1
z
) = (−z)k f (z).

Also suppose f (z) is meromorphic at infinity, that is, the Fourier series

f (z) = ∑
n∈Z

anqn, q = e2πiz
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has at most finitely many non-zero an with n < 0. Then f (z) is called a modular function of

weight k for SL2(Z). If, in addition, f (z) is actually holomorphic on H and at infinity (i.e.

an = 0 ∀n < 0), then f (z) is called a modular form of weight k for SL2(Z). The set of such

functions is denoted Mk(SL2(Z)). If we further have a0 = 0, i.e. the modular form vanishes

at infinity, then f (z) is called a cusp form of weight k for SL2(Z). The set of such functions is

denoted Sk(SL2(Z)). Finally, the expansion f (z) = ∑n∈Z anqn is called its q-expansion.

Remark :

• If k is odd, there are no non-zero modular functions of weight k for Γ. If I

denotes the identity matrix of SL2(Z), then for a modular function f , we have

f ((−I)z) = (−1)k f (z). Since k is odd, this implies that f (z) = − f (z). Thus,

f = 0.

• The conditions for a function to be a modular form are preserved under ad-

dition and scalar multiplication, that is, the set of modular functions, forms

and cusp forms of some fixed weight are complex vector spaces. In addition,

the product of a modular function (form) of weight k1 and modular function

(form) of weight k2 is a modular function (form) of weight k1 + k2 and the quo-

tient of a modular function (form) of weight k1 by a non-zero modular function

(form) of weight k2 is a modular function of weight k1 − k2. In particular, the

set of modular functions of weight 0 is a field.

3.4. Eisenstein Series

Let k be an even integer greater than 2. For z ∈ H, we define

Gk(z) = ∑
m,n

′ 1
(mz + n)k

where the sum is over pairs of integers m, n not both zero.

Because k is at least 4, Gk(z) is absolutely convergent and uniformly convergent in

any compact subset of H. Hence Gk(z) is a holomorphic function on H. It is also obvi-

ous that Gk(z) = Gk(z + 1) and that the Fourier expansion for Gk(z) has no negative

terms because Gk(z) approaches a finite limit as z→ i∞:

lim
z→i∞

∑
m,n

′ 1
(mz + n)k = ∑

n 6=0

1
nk = 2ζ(k).
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Finally we can also check that

z−kGk(−
1
z
) = ∑

m,n

′ 1
(−m + nz)k = Gk(z).

Thus we have proved the following proposition.

LEMMA 5. Gk ∈ Mk(SL2(Z)).

We now compute the q−expansion coefficients for Gk. It turns out that these coeffi-

cients are essentially the arithmetic functions,

σk−1(n) = ∑
d|n

dk−1.

LEMMA 6. Let k be an even integer greater than 2, and let z ∈ H. Then the modular form

Gk(z) defined earlier has q−expansion

Gk(z) = 2ζ(k)(1− 2k
Bk

)
∞

∑
n=1

σk−1(n)qn,

where q = e2πiz, and the Bernoulli numbers Bk are defined by setting

x
ex − 1

=
∞

∑
k=0

Bk
xk

k!
.

Because of this proposition, we could define the “normalised Eisenstein series” as

Ek(z) =
1

2ζ(k)
Gk(z) = 1− 2k

Bk

∞

∑
n=1

σk−1(n)qn.

An alternate way of defining the normalised Eisenstein series is to sum only over rela-

tively prime pairs m, n, that is,

Ek(z) =
1
2 ∑
(m,n)=1

1
(−m + nz)k .

Thus, Ek(z) is defined so as to have rational q−expansion coefficients. Here are some

examples :

E4(z) = 1 + 240
∞

∑
n=1

σ3(n)qn;

E6(z) = 1− 504
∞

∑
n=1

σ5(n)qn;

E8(z) = 1 + 480
∞

∑
n=1

σ7(n)qn;

E10(z) = 1− 264
∞

∑
n=1

σ9(n)qn;
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E12(z) = 1 +
65520
691

∞

∑
n=1

σ11(n)qn;

E14(z) = 1− 24
∞

∑
n=1

σ13(n)qn.

Thus, in fact, we have the following result.

LEMMA 7. For every even k ≥ 4, Ek(z) is a modular form of weight k for the full modular

group SL2(Z) satisfying Ek(i∞) = 1.

THEOREM 13. ∀k ≥ 4, Mk(SL2(Z)) = CEk ⊕ Sk(SL2(Z)).

PROOF. Let f ∈ Mk(SL2(Z)). Let λ = f (i∞) denote the constant term in the

Fourier expansion. Then clearly,

f = λEk + ( f − λEk)

where ( f − λEk) ∈ Sk(SL2(Z)) since it vanishes at cusp i∞. Thus the result follows.

�

We see that we get Eisenstein series for every even weight greater than 2. It turns

out that the normalised Eisenstein series E2 is not a modular form. We use the same

definition as for other Ek, except that the double sum when k = 2 is not absolutely

convergent, so we need to take care of the order of summation. Thus we define

E2(z) =
1

2ζ(2)

∞

∑
m=−∞

∞

∑′

n=−∞

1
(mz + n)2

where the primed summation means that n 6= 0 if m = 0. A small computation gives

that

E2(z) = 1− 24
∞

∑
n=1

σ1(n)qn

where q = e2πiz and σ1(n) = ∑d|n d. For a proof see, [14].

3.5. Modular Forms for Congruence Subgroups

Let Γ be a congruence subgroup of SL2(Z) of level N. We saw that H∗ is the ex-

tended upper half plane :

H∗ = H∪Q∪ {i∞}.

Modular forms for congruence subgroups are holomorphic functions f (z) : H→ C for

which

f (γz) = (cz + d)k f (z), ∀γ =

 a b

c d

 ∈ Γ. (3.1)
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The punctured fundamental neighbourhood

UC = {z ∈ H : Im (z) > C}

of i∞ is mapped via z 7→ e2πiz/N onto the punctured disc centered at zero, of radius

e−2πC/N.We might write q1/N = e−2πC/N for a typical point on the punctured disc.

Let h be the least positive integer such that

 1 h

0 1

 ∈ Γ. Since Γ is of level N, we

have h ≤ N. For any function satisfying (3.1), we have f (z+ h) = f (z). Hence we have

a well-defined map, which we also call f , from the unit disc to C :

q1/h 7→ f (z)

where z ∈ H is any point such that q1/h = e2πiz/h. If f (z) : H→ C is holomorphic, then

f (q1/h) will be holomorphic on the punctured unit disc and hence will have a Laurent

expansion centered at q1/h = 0,

f (q1/h) =
∞

∑
n=−∞

anqn/h.

We call

f (z) =
∞

∑
n=−∞

ane2πizn/h

a Fourier series at i∞. More generally, for any γ =

 r s

t u

 ∈ SL2(Z), the function

( f |γ)(z) = (tz + u)−k f (
rz + s
tz + u

)

will be holomorphic on H and will be modular under γ−1Γγ. Since Γ(N) is normal in

SL2(Z), the group γ−1Γγ will also be a level N congruence subgroup. Thus we let h be

the least positive integer such that

 1 h

0 1

 ∈ γ−1Γγ so that f |γ will be h− periodic:

( f |γ)(z + h) = ( f |γ)(z).

As before, we consider the holomorphic function on the unit disc given by

q1/h 7→ ( f |γ)(z)
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where z ∈ H is any point such that q1/h = e2πiz/h. Now ( f |γ) will have a Laurent

expansion

( f |γ)(q1/h) =
∞

∑
n=−∞

bnqn/h

centered at q1/h = 0. We say that

( f |γ)(z) =
∞

∑
n=−∞

bne2πizn/h

is a Fourier expansion of f at γ(i∞).

When

 −1 0

0 −1

 /∈ Γ, it is possible that there is some

 −1 h′

0 −1

 ∈ γ−1Γγ with

h′ ≥ 1 but

 1 h′

0 1

 /∈ γ−1Γγ. In this case, h = 2h′. The theory of Riemann surfaces

suggests that the Laurent series for f |γ be considered as an expansion in terms of

q1/h′ rather than q1/h. This leads to the possibility of half-integer orders at these so-

called irregular cusps. Therefore, we define the width of the cusp γ(i∞) to be the least

positive integer h′ such that at least one of 1 h′

0 1

 ∈ γ−1Γγ

or  −1 h′

0 −1

 ∈ γ−1Γγ

holds and the expansion of f |γ is written as

( f |γ)(z) =
∞

∑
n=−∞

cne2πizn/h′ .

Then the order of f at γ(i∞) is defined as

νγ(i∞)( f ) := inf {n ∈ 1
2

Z : cn 6= 0}.

If −∞ < νγ(i∞)( f ) < 0, then f is said to be meromorphic at γ(i∞) with a pole

of order |νγ(i∞)( f )|. If νγ(i∞)( f ) ≥ 0, then f is said to be holomorphic at γ(i∞). If

νγ(i∞)( f ) > 0, then f is said to vanish at γ(i∞) and has a zero of order νγ(i∞)( f ).

A modular form of weight k for Γ is a holomorphic function f : H→ C satisfying

f (γz) = (cz + d)k f (z), ∀γ =

 a b

c d

 ∈ Γ. (3.2)
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which is holomorphic at every cusp. We denote by Mk(Γ) the C−vector space of mod-

ular forms of weight k for Γ. If f ∈ Mk(Γ) is such that f vanishes at all the cusps, we

say that f is a cusp form of weight k for Γ and Sk(Γ) denotes the C−vector space of

such forms.

Let k ≥ 3 and N a natural number. Let g ∈ (Z/NZ)2. We define the Eisenstein

series

Gk,g(z) = ∑′

(m,n)≡g(mod N)

1
(mz + n)k , z ∈ H

where the summation is over all integers m, n satisfying the congruence condition

(m, n) ≡ g(mod N) and the dash on the summation means we exclude (m, n) = (0, 0).

For any γ ∈ SL2(Z), it can be shown that Gk,g ∈ Mk(Γ(N)). Note that if k is odd and

2g ≡ (0, 0)(mod N), then Gk,g = 0 since Gk,g = (−1)kGk,−g and g ≡ −g (mod N).

If we let g = (a1, a2) ∈ (Z/NZ)2, then we can get the q−expansion of Gk,g(z)

which is given as follows:

Gk,g(z) = bk,g(0) +
∞

∑
n=1

bk,g(n)e2πinz/N

where the Fourier coefficients bk,g(n) are given as follows :

bk,g(0) =

 0 if a1 6≡ 0(mod N)

∑m≡a2(mod N) m−k if a1 ≡ 0(mod N)

and

bk,g(n) =
(−2πi)k

Nk(k− 1)! ∑
d|n

n/d≡a1(mod N)

dk−1(sgn d)e2πia2d/N

where the summation is over all divisors of n (positive and negative) and

sgn d =

 +1 if d > 0

−1 if d < 0

It can be shown that if

E2,N(z) := E2(z)− NE2(Nz),

then E2,N ∈ M2(Γ0(N)).
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3.6. The Valence and Dimension Formulas

Given a meromorphic function f : H→ C, not identically zero, and z0 ∈ H, there is

a unique integer n such that f (z)
(z−z0)n is holomorphic and non-zero at z0. We say n is the

order of f at z0 and denote it by νz0( f ). If f is holomorphic, then νz0( f ) is the order of

the zero of f at z0.

If f is a modular form of weight k for the full modular group, then νzo( f ) depends

only on the orbit of z0 under SL2(Z) so we need only study νz( f ) for z in the funda-

mental domain of SL2(Z). νi∞( f ) is defined to be the order of the zero at q = 0 in the

q− expansion

f (z) =
∞

∑
n=0

anqn.

i.e. νi∞( f ) is the smallest value of n such that an 6= 0.

Note that f ∈ Mk(SL2(Z)) has only finite number of zeroes in the standard fun-

damental domain F because f being holomorphic on H implies that the zeroes are

isolated. Moreover, for some c > 0, the region {z ∈ F : Im (z) > c} ∪ {i∞}, being a

fundamental neighbourhood of i∞, contains no zero of f except possibly i∞. All other

zeroes are contained in the compact region {z ∈ F : Im (z) ≤ c} and this number is

finite.

We now state the valence and dimension formulas. For a proof, see [14].

THEOREM 14. (The valence formula for SL2(Z)) Let f be a modular form, not identically

zero, of weight k for the full modular group SL2(Z). Then

νi∞( f ) +
1
2

νi( f ) +
1
3

νρ2( f ) + ∑′

z 6=i,ρ2

z∈F

νz( f ) =
k

12
,

where the primed summation excludes points with Re(z) = 1
2 and points with both |z| = 1 and

Re(z) > 0. Here i =
√
−1 and ρ = e

2πi
3 .

THEOREM 15. (The dimension formula for SL2(Z)) For k ≥ 0,

dim Mk(SL2(Z)) =

 b k
12c if k ≡ 2(mod 12)

b k
12c+ 1 if k 6≡ 2(mod 12)
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and for k ≥ 4,

dim Sk(SL2(Z)) =

 b k
12c − 1 if k ≡ 2(mod 12)

b k
12c if k 6≡ 2(mod 12)

One can also derive analogs of the valence and dimension formula for any congru-

ence subgroup Γ of SL2(Z). The general method used to derive these formulas is via

the Riemann-Roch theorem, so we will content ourselves by merely stating the results.

We first need to define elliptic points. A point z ∈ H is called an elliptic point for

Γ if {±I}Γz is strictly larger than {±}, where Γz = {γ ∈ Γ : γz = z} is the stabiliser

subgroup of z. In other words, z is an elliptic point for Γ if and only if {±I}Γz 6= {±I}.
We define the order of an elliptic point to be | {±I}Γz

{±I} |.

THEOREM 16. (The valence formula for congruence subgroup) Let Γ be a congruence sub-

group of SL2(Z) and 0 6= f ∈ Mk(Γ). Then

∑
z∈Γ\H∗

νz( f )
|Γz|

=
k
2
(

ε2

2
+

2ε3

3
+ ε∞ + 2g− 2),

where the sum is over Γ− equivalence classes of z ∈ H∗, νz( f ) denotes the order of f at z, Γz

is the stabiliser of z in {±I}Γz
{±I} , g is the genus of Γ \ H∗, ε2 is the number of elliptic points of

order 2 in the fundamental domain for Γ, ε3 is the number of elliptic points of order 3 in the

fundamental domain for Γ, and ε∞ is the number of Γ−inequivalent cusps in the fundamental

domain for Γ.

This analogously gives the dimension formula for congruence subgroup.

THEOREM 17. (The dimension formula for congruence subgroup) Let Γ be a congruence

subgroup of SL2(Z) and k an non-negative integer. Then

dim Mk(Γ) =

 (k− 1)(g− 1) + [ k
4 ]ε2 + [ k

3 ]ε3 +
k
2 ε∞ if k ≥ 2

1 if k = 0

and

dim Sk(Γ) =


dim Mk(Γ)− ε∞ if k ≥ 4

g if k = 2

0 if k = 0
where g, ε2, ε3, ε∞ are as in the previous theorem.
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THEOREM 18. (Sturm’s Bound) Let Γ be a congruence subgroup and f ∈ Mk(Γ). Let

r1, · · · , rt be the Γ− inequivalent cusps of Γ. If

t

∑
i=1

νri( f ) >
k[SL2(Z) : {±I}Γ]

12
,

then f = 0.

COROLLARY 1. For any congruence subgroup Γ of SL2(Z),

dim Mk(Γ) ≤
k

12
[SL2(Z) : {±I}Γ] + 1.

3.7. The Eta Function

For z ∈ H, we define the Dedekind η− function by

η(z) = e2πiz/24
∞

∏
n=1

(1− e2πinz).

THEOREM 19. For z ∈ H,

η(−1
z
) =

√
z
i
η(z),

where the square root is the branch with non-negative real part.

PROOF. The product defining η(z) clearly converges to a non-zero value for any

z ∈ H and thus defines a holomorphic function on H. Taking the logarithmic derivative,

we get
η′(z)
η(z)

=
πi
12

(1− 24
∞

∑
n=1

nqn

1− qn ),

where q = e2πiz. The right hand side is clearly πiE2(z)/12 since

qn

1− qn =
∞

∑
m=1

qmn

and

E2(z) = 1− 24
∞

∑
n=1

σ1(n)qn,

where q = e2πiz and σ1(n) = ∑d|n d. Therefore replacing z by −1
z , we get

η′(−1
z )

η(−1
z )

=
πi
12

E2(−
1
z
).

Now it can be shown easily that

E2(−
1
z
) = z2E2(z) +

6z
πi

.
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So, we obtain,
η′(−1

z )

η(−1
z )

.
1
z2 =

πiE2(z)
12

+
1
2z

so that
η′(−1

z )

η(−1
z )

.
1
z2 =

η′(z)
η(z)

+
1
2z

.

But the right hand side is now clearly the logarithmic derivative of
√

zη(z). Therefore,

η(−1
z ) = λ

√
zη(z) for some constant λ. Putting z = i shows that λ = 1√

i
. Finally since

z ∈ H, it is clear that
√

z√
i
=
√ z

i .

�

3.8. Nebentypus

A Dirichlet character of modulus N is a homomorphism

χ : (Z/NZ)∗ → C∗.

This implies that χ(1) = 1.

Let χ be a Dirichlet character of modulus N. For each γ =

 a b

c d

 ∈ Γ0(N), we

define ψ(γ) = χ(d). Then it can be shown that ψ(γ1γ2) = ψ(γ1)ψ(γ2).

The set of Dirichlet characters of modulus N forms a group of order φ(N) under

multiplication, where φ denotes the Euler function.

THEOREM 20. ∑χ χ(d) =

 φ(N) if d ≡ 1 (mod N).

0 otherwise

where the sum is over all Dirichlet characters modulo N.

PROOF. If d = 1, the result is clear since the set of Dirichlet characters modulo

N forms a group of order φ(N). Therefore suppose d 6≡ 1 (mod N). Then there is a

character ψ such that ψ(d) 6= 1. Thus

T = ∑
χ

χ(d) = ∑
χ

(χψ)(d) = ψ(d)T

because as χ ranges over all Dirichlet characters, so does χψ. Hence T = 0 since ψ(d) 6=
1.

�
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THEOREM 21. If χ 6= 1 is a Dirichlet character modulo N, then

∑
a∈(Z/NZ)∗

χ(a) = 0.

PROOF. Since χ is not trivial, there is a b 6= 1 such that χ(b) 6= 1 with (b, N) = 1.

Then,

S = ∑
a∈(Z/NZ)∗

χ(a) = ∑
a∈(Z/NZ)∗

χ(ab) = χ(b)S

because as a ranges over co-prime residue classes, so does ab. Therefore S = 0 since

χ(b) 6= 1.

�

For any Dirichlet character χ modulo N, we define the following vector subspace

of Mk(Γ1(N)) :

Mk(Γ0(N), χ) :=

 f ∈ Mk(Γ1(N)) : f |γ = χ(d) f , ∀γ =

 a b

c d

 ∈ Γ0(N)

 .

In other words, for a Dirichlet character χ modulo N, a holomorphic function f : H→
C is a modular form of weight k and nebentypus χ for Γ0(N) if

• f |γ = χ(d) f ∀γ ∈ Γ0(N),

• f |ξ(z) = ∑∞
n=0 aξ,nqn

N ∀ξ ∈ SL2(Z), qN = e2πiz/N.

If aξ,0 = 0 ∀ξ ∈ SL2(Z), then f is called a cusp form of weight k and nebentypus χ

for Γ0(N). We denote by Sk(Γ0(N), χ) the subspace of Mk(Γ0(N), χ) consisting of these

forms. The complement of Sk(Γ0(N), χ) in Mk(Γ0(N), χ) is the Eisenstein subspace and

denoted Ek(Γ0(N), χ). An element of the Eisenstein subspace is called the Eisenstein

series of weight k and nebentypus χ for Γ0(N). In particular, if χ is the trivial character,

then Mk(Γ0(N), χ) = Mk(Γ0(N)).
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CHAPTER 4

THE SUM OF FOUR SQUARES AND VARIATIONS

In this chapter, we first outline a proof of Jacobi’s four square theorem using mod-

ular forms and then sketch a general method for determining an explicit formula for

the number of ways of expressing any positive integer as a special value of a given

quaternary quadratic form, with positive integer coefficients.

4.1. Jacobi’s Four Square Theorem

Let θ(z) denote Ramanujan’s theta function defined by

θ(z) =
∞

∑
n=−∞

e2πin2z

for z ∈ H

The Dedekind eta function η(z) is the holomorphic function defined on the upper

half plane H = {z ∈ C|Im(z) > 0} by

η(z) = eπiz/12
∞

∏
n=1

(1− e2πinz).

If we take q = q(z) = e2πiz with z ∈ H and so |q| < 1, we get

η(z) = q1/24
∞

∏
n=1

(1− qn).

For a, b, c, d ∈N, n ∈N0, we define

N(a, b, c, d; n) = |{(x, y, z, w) ∈ Z4 : n = ax2 + by2 + cz2 + dw2}|

Now it is easy to see that for q ∈ C, writing q = e2πiz, we have

∞

∑
n=1

N(a, b, c, d; n)qn = θ(az)θ(bz)θ(cz)θ(dz),

where we define N(a, b, c, d; 0) = 1.

DEFINITION 6. An eta quotient is defined to be the finite product of the form

f (z) = ∏
δ

ηrδ(δz)
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where δ runs through a finite set of positive integers and rδ are non-zero integers.

The infinite product representation of θ(z) is given by the eta quotient

θ(z) =
η5(2z)

η2(z)η2(4z)
.

This can be proved easily by substituting x = 1 in Jacobi’s triple product identity for

|q| < 1 given by

∞

∏
n=0

(1− q2n+2)(1 + q2n+1x)(1 +
q2n+1

x
) =

∞

∑
n=−∞

qn2
xn.

For a proof, see page 81 of [14]. If we are interested in N(1, 1, 1, 1; n), we need to

consider θ4(z).

THEOREM 22. If

θ(z) =
∞

∑
n=−∞

e2πin2z,

then

θ(
z

4z + 1
) =
√

4z + 1θ(z),

where the branch of the square root is the principal branch (whose image is contained in the

right half plane).

PROOF. We saw that θ(z) can be written as

θ(z) =
η5(2z)

η2(z)η2(4z)

and from section 3.7, we have that

η(−1
z
) =

√
z
i
η(z).

It is immediate from the definition that

η(z + 1) = e
πi
12 η(z).
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Now,

η( 4z
4z+1) = η(− 1

4z+1 + 1)

= e
πi
12 η(− 1

4z+1)

= e
πi
12
√

4z+1
i η(4z + 1)

= e
πi
6
√

4z+1
i η(4z).

Also,

η( 2z
4z+1) = η(−(− 1

2z − 2)−1)

=
√

i 4z+1
2z η(− 1

2z − 2)

= e
−πi

6
√

i 4z+1
2z η(− 1

2z )

= e
−πi

6
√

i 4z+1
2z

√
2z
i η(2z).

Finally,

η( z
4z+1) = η(−(−1

z − 4)−1)

=
√

i 4z+1
z η(−1

z − 4)

= e
−πi

3
√

i 4z+1
z η(−1

z )

= e
−πi

3
√

i 4z+1
z

√
z
i η(z).

Putting everything together gives

θ( z
4z+1) =

√
4z + 1θ(z).

�

THEOREM 23. θ4 ∈ M2(Γ0(4)).

PROOF. Using the previous theorem, we get

θ4(
z

4z + 1
) = (4z + 1)2θ4(z).
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Since θ4(z + 1) = θ4(z) and since Γ0(4) is generated by

 1 1

0 1

 and

 1 0

4 1

 and

−I, we deduce that θ4 ∈ M2(Γ0(4)). �

THEOREM 24. dim M2(Γ0(4)) = 2 and {E2,2, E2,4} is a basis for M2(Γ0(4)).

PROOF. Using Corollary 2.1,

dim M2(Γ0(4)) ≤ 2.

Now, E2,2 and E2,4 ∈ M2(Γ0(4)). It is easy to check that

E2,2 = −1− 24q + · · ·

E2,4 = −3− 24q + · · ·

Clearly these elements are linearly independent over C. �

THEOREM 25. (Jacobi) With N(a, b, c, d; n) as defined above,

N(1, 1, 1, 1; n) = 8 ∑
d|n
4-d

d.

PROOF. We have θ4 ∈ M2(Γ0(4)). So, writing θ4 in terms of the basis elements, we

have

θ4 = aE2,2 + bE2,4.

A quick calculation comparing coefficients of q−expansions of both sides of this equa-

tion leads to

θ4 = −1
3

E2,4,

which leads to the formula

N(1, 1, 1, 1; n) = 8(σ(n)− 4σ(n/4)),

where σ(n/4) = 0 if 4 - n. If 4|n, we write n = 4n1 and 4σ(n1) is the sum of the divisors

d of n with 4|d. That leads to the desired formula.

�
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4.2. Sketch of the General Method

For q ∈ C and z ∈ H, writing q = e2πiz, we have

∞

∑
n=0

N(a, b, c, d; n)qn = θ(az)θ(bz)θ(cz)θ(dz),

where N(a, b, c, d; 0) = 1.

Since θ(z) has the following infinite product expansion

θ(z) =
η5(2z)

η2(z)η2(4z)
,

we see that ∑∞
n=0 N(a, b, c, d; n)qn is given by a certain eta quotient.

We will now use the following theorem to determine if certain eta quotients are

modular forms. For a proof, see pg.99 of [9]

THEOREM 26. (Ligozat’s Criteria) Let f (z) be an eta quotient given by

f (z) = ∏
δ

ηrδ(δz)

where δ runs through a finite set of positive integers and rδ are non-zero integers and there

existsa positive integer N which satisfy the following conditions :

(L1) ∑δ|N δ · rδ ≡ 0 (mod 24)

(L2) ∑δ|N
N
δ · rδ ≡ 0 (mod 24)

(L3) for each d|N, ∑δ|N
gcd(d,δ)2·rδ

δ ≥ 0.

Then, f (z) ∈ Mk(Γ0(N), χ) where the character χ(m) is given by(
(−1)ks

m

)
with weight k = 1

2 ∑δ|N rδ and s = ∏δ|N δrδ .

If (L3) is replaced by

(L4) for each d|N, ∑δ|N
gcd(d,δ)2·rδ

δ > 0,
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then f (z) ∈ Sk(Γ0(N), χ) where the character χ(m) is given by(
(−1)ks

m

)
with weight k = 1

2 ∑δ|N rδ and s = ∏δ|N δrδ .

Fix a positive integer N. Let ε be a Dirichlet character modulo N. To find the set

of canonical generators for the group (Z/NZ)∗, write N = ∏n
i=0 pei

i where p0 < p1 <

· · · < pn are the prime divisors of N. Each factor (Z/pei
i Z)∗ is a cyclic group Ci = 〈gi〉,

except if p0 = 2 and e0 ≥ 3, in which case (Z/pe0
0 Z)∗ is a product of the cyclic group

C0 = 〈−1〉 of order 2 with the cyclic subgroup C1 = 〈5〉. In all cases we have

(Z/NZ)∗ ∼= ∏
0≤i≤n

Ci.

For i such that pi > 2, choose the generator gi of Ci to be the element of {2, 3, · · · , pei
i −

1} that is smallest and generates Finally use the Chinese Remainder Theorem to lift

each gi to an element in (Z/NZ)∗, also denoted gi, that is modulo each p
ej
j for j 6= i.

Now we will describe how one can compute the conductor of a character. As a refer-

ence for these facts, see page 70 of [19].

The following is the algorithm for computing the order of a Dirichlet character.

ALGORITHM 1. (Order of Character) This algorithm computes the order of a Dirichlet

character ε modulo N.

• Compute the order ri of each ε(gi), for each minimal generator gi of (Z/NZ)∗. The

order of ε(gi) is a divisor of n = |(Z/pei
i Z)∗| so we can compute its order by consid-

ering the divisors of n.

• Compute and output the least common multiple of the integers ri.

The next algorithm factors a character ε as a product of “local” characters.

ALGORITHM 2. (Factorisation of Character)Given a Dirichlet character ε modulo N, with

N = ∏n
i=0 pei

i , this algorithm finds Dirichlet characters εi modulo pei
i , such that for all a ∈

(Z/NZ)∗,we have ε(a) = ∏ εi(a(mod pei
i )). If 2|N, the steps are as follows:

• Let gi be the minimal generators of (Z/NZ)∗, so ε is given by a list [ε(g0), · · · , ε(gn)]

• For i = 2, · · · , n, let εi be the character modulo pei
i defined by the singleton list [ε(gi)].

• Let ε1 be the character modulo 2e1 defined by the list [ε(g0), ε(g1)] of length 2. Output

the εi and terminate.
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If 2 6 |N, then omit the third step and include all i in the second step.

DEFINITION 7. (Conductor) The conductor of a Dirichlet character ε modulo N is the

smallest positive divisor c|N such that there is a character ε′ modulo c for which ε(a) = ε′(a)

for all a ∈ Z with (a, N) = 1. A Dirichlet character is primitive if its modulus equals its

conductor. The character ε′ associated to ε with modulus equal to the conductor of ε is called

the primitive character associated to ε.

ALGORITHM 3. (Conductor)The following algorithm computes the conductor of Dirichlet

character modulo N.

1. [Factor Conductor] Find characters χi whose product is χ.

2. [Computing order] Compute order ri for each χi.

3. [Conductor of factors] For each i, either set ci to be 1 if χi is the trivial character or set

ci = p
ordpi (ri)+1
i , where ordp(n) denotes the largest power of p that divides n.

4. [Finished] compute product of the ci.

Once we have computed the conductor of the character, we can use it to compute

the dimension of the space Mk(Γ0(N), χ).

The following theorem gives the formulae to compute the dimensions of Ek(Γ0(N), χ)

and Sk(Γ0(N), χ). See page 98 of [19].

THEOREM 27.

dimSk(Γ0(N), χ)− dimM2−k(Γ0(N), χ) =
k− 1

12
µ0(N)− 1/2 ∏

p|N
λ(p, N, νp(c))

+ γ4(k) ∑
x∈A4(N)

χ(x) + γ3(k) ∑
x∈A3(N)

χ(x) (4.1)

where

µ0(N) = ∏
p|N

(pνp(N) + pνp(N)−1)

and

A4(N) = {x ∈ Z/nZ : x2 + 1 = 0}

and

A3(N) = {x ∈ Z/nZ : x2 + x + 1 = 0}

and
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γ4(k) =


−1/4 if k ≡ 2 (mod 4)

1/4 if k ≡ 0 ( mod 4)

0 if k odd.
and

γ3(k) =


−1/3 if k ≡ 2 (mod 3)

1/3 if k ≡ 0 (mod 3)

0 if k ≡ 1 (mod 3.)

and for p|N, let r = νp(N). Then,

λ(p, N, νp(c)) =


pr/2 + pr/2−1 if 2 · νp(c) ≤ r, 2|r
2 · p(r−1)/2 if 2 · νp(c) ≤ r, 2 - r

2 · pr−νp(c) if 2 · νp(c) > r

Also,

dim Ek(Γ0(N), χ) = dim Mk(Γ0(N), χ)− dim Sk(Γ0(N), χ)

where

dimMk(Γ0(N), χ) = −(1− k
12

µ0(N)− 1/2 ∏
p|N

λ(p, N, νp(c))

+ γ4(2− k) ∑
x∈A4(N)

χ(x) + γ3(2− k) ∑
x∈A3(N)

χ(x)) (4.2)

Note: Here c denotes the conductor of χ.

Let χ and ψ be primitive Dirichlet characters with conductors L and R respectively.

Let

Ek,χ,ψ(z) = c0 + ∑
m≥1

(∑
n|m

ψ(n)χ(m/n)nk−1)e2πimz (4.3)

where

c0 =

 0 if L > 1

−Bk,ψ
2k if L = 1

When χ = ψ = 1, k ≥ 4, then Ek,χ,ψ = Ek.
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THEOREM 28. Let t > 0 be an integer and χ, ψ be as above, and let k be a positive integer

such that χ(−1)ψ(−1) = (−1)k. Except when k = 2 and χ = ψ = 1, the power series

Ek,χ,ψ(tz) defines an element of Mk(RLt, χ/ψ). If χ = ψ = 1, k = 2, t > 1, and E2(z) =

Ek,χ,ψ(z), then E2(z)− tE2(tz) is a modular form in M2(Γ0(t)).

THEOREM 29. The Eisenstein series in Mk(Γ0(N), ε) coming from the previous theorem

with RLt|N and χ/ψ = ε form a basis for Ek(Γ0(N), ε).

Once we have a basis for Ek(Γ0(N), χ), one can compute a basis of Sk(Γ0(N), χ)

using Ligozat’s criteria and combining the two, get a basis for Mk(Γ0(N), χ). This is

because it is known that

Mk(Γ0(N), χ) = Sk(Γ0(N), χ)⊕ Ek(Γ0(N), χ).

See [19]. Thus we can write ∑∞
n=0 N(a, b, c, d; n)qn in terms of the basis elements. Fi-

nally comparing coefficients of qn on both sides, we can derive an explicit formula for

N(a, b, c, d; n).
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CHAPTER 5

COMPUTING THE NUMBER OF REPRESENTATIONS OF AN

INTEGER AS x2 + y2 + z2 + 3u2

For a, b, c, d ∈N, n ∈N0, we defined

N(a, b, c, d; n) = |{(x, y, z, w) ∈ Z4 : n = ax2 + by2 + cz2 + dw2}|

In Chapter 2, we saw 54 4−tuples (a, b, c, d) so that there exists (x, y, z, w) ∈ Z4 such

that any positive integer can be written as ax2 + by2 + cz2 + dw2. We are interested in

determining explicit formula for the number of representations of a positive integer n

by quaternary quadratic forms with coefficients being one of those 55 4−tuples.

Out of those 55 4−tuples, formulas for a few are known. The following formula

N(1, 1, 1, 1; n) = 8σ(n)− 32σ(n/4)

where σ(n) = ∑m|n m is due to Jacobi. We outlined a proof of this in the previous

chapter. The formula

N(1, 1, 2, 2; n) = 4σ(n)− 4σ(n/2) + 8σ(n/4)− 32σ(n/8)

was stated by Liouville. Similarly, formulas for N(1, 1, 1, 2; n) and N(1, 2, 2, 2; n) were

also stated by Liouville. See [11] and [12].

In this chapter, we will determine a similar formula for N(1, 1, 1, 3; n) using the

theory of modular forms developed in Chapter 3 and 4.

We are interested in N(1, 1, 1, 3; n); thus we need to consider f (z) = θ3(z)θ(3z).

THEOREM 30. f (z) = θ3(z)θ(3z) ∈ M2(Γ0(12), χ) for χ(d) = (24.3
d ).

PROOF. Using the infinite product representation for θ(z), we get that

θ3(z)θ(3z) =
η15(2z)η5(6z)

η6(z)η6(4z)η2(3z)η2(12z)
.

Now, using Ligozat’s Criteria for N = 12 and f (z) = θ3(z)θ(3z), we get that

f (z) ∈ M2(Γ0(12), χ)

for χ(d) = (24·3
d ).
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Now our goal is to find a basis for M2(Γ0(12), χ) so that we can write f (z) =

θ3(z)θ(3z) in terms of the basis elements.

5.1. Computing Dimension of M2(Γ0(12), χ)

To apply the formula mentioned in Chapter 4, we first need to compute the con-

ductor of χ. Firstly, we see that χ(d) = (24.3
d ) is a character modulo 12.

d 0 1 2 3 4 5 6 7 8 9 10 11

χ(d) 0 1 0 0 0 -1 0 -1 0 0 0 1

Table 2: Table for values of χ.

To factorise χ, we do the following:

First we note that

(Z/12Z)∗ ∼= (Z/22Z)∗ × (Z/3Z)∗.

Since (Z/4Z)∗ is generated by {1, 3} and (Z/3Z)∗ is generated by {1, 2}, the

minimal generators for (Z/12Z)∗ are x1 and x2 such that x1 is the lift of (1, 2) ∈
(Z/22Z)∗ × (Z/3Z)∗ and x2 is the lift of (3, 1) ∈ (Z/22Z)∗ × (Z/3Z)∗ respectively

to (Z/12Z)∗. Using the Chinese remainder Theorem, we get that x1 = 5 and x2 = 7.

Now we use the algorithm from Chapter 4 and note that χ(5) = −1 has order 2 in

(Z/3Z)∗ and χ(7) = −1 has order 2 in (Z/4Z)∗.

Thus,

c1 = 2ord2(2)+1 = 4

c2 = 3ord3(2)+1 = 3.

Thus we get that the conductor of χ is 12.

µ0(12) = 12.

λ(2, 12, ν2(12)) = 2.

λ(3, 12, ν3(12)) = 2.

A4(12) = ∅.
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A3(12) = ∅.

Since dim M0(Γ0(12), χ) = 0, applying the formulas for dimension, we get that

dim S2(Γ0(12), χ) = 0

and

dim E2(Γ0(12), χ) = 4.

Thus,

dim M2(Γ0(12), χ) = 4.

5.2. Computing a Basis for M2(Γ0(N), χ)

We will use the machinery developed in Chapter 4 to construct a basis for E2(Γ0(12), χ).

Since |(Z/12Z)∗| = 4, there are 4 Dirichlet characters of modulus 12 over R. Also

since we know that {5, 7}is the set of minimal generators for (Z/12Z)∗, the Dirichlet

characters modulo 12 are given by ε1 = χ, ε2, ε3 and ε4 which are defined as follows :

• ε1(5) = −1, ε1(7) = −1

• ε2(5) = 1, ε2(7) = 1

• ε3(5) = −1, ε3(7) = 1

• ε4(5) = 1, ε4(7) = −1

Evaluating the conductors of these characters as before, we get that ε2, ε3, ε4 has

conductors 1, 3, 4 respectively. Thus, ε2, ε3, ε4 are primitive Dirichlet characters modulo

1, 3, 4 respectively.

THEOREM 31. Let χ and ψ be Dirichlet characters. For n ∈N, we define σχ,ψ(n) by

σχ,ψ(n) = ∑
1≤m,m|N

ψ(m)χ(n/m)m.

For ε1, ε2, ε3, ε4 as defined earlier, we define the following power series :

Eε1,ε2(z) =
∞

∑
n=1

σε1,ε2(n)e
2πinz,

Eε2,ε1(z) =
∞

∑
n=1

σε2,ε1(n)e
2πinz,

Eε4,ε3(z) =
∞

∑
n=1

σε4,ε3(n)e
2πinz,
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Eε3,ε4(z) =
∞

∑
n=1

σε3,ε4(n)e
2πinz.

Then these forms Eε1,ε2(z), Eε2,ε1(z), Eε3,ε4(z) and Eε4,ε3(z) form a basis for E2(Γ0(12), χ)

for χ(d) = (24.3
d ).

PROOF. First, write q = e2πiz. Then, we consider the following 4 cases :

Case 1: For χ = ε1
ε2

. R = 1, L = 12, t = 1, k = 2,

E2,ε1,ε2(z) = c0 + ∑
m≥1

(∑
n|m

ε2(n)ε1(m/n)n)qm

= q + 2q2 + 3q3 + 4q4 + · · ·

Case 2: For χ = ε2
ε1

. R = 12, L = 1, t = 1, k = 2,

E2,ε2,ε1(z) = c0 + ∑
m≥1

(∑
n|m

ε1(n)ε2(m/n)n)qm

= −1 + q + q2 + q3 + q4 + · · ·

Case 3: For χ = ε4
ε3

. R = 3, L = 4, t = 1, k = 2,

E2,ε4,ε3(z) = c0 + ∑
m≥1

(∑
n|m

ε3(n)ε4(m/n)n)qm

= q− 2q2 − q3 + 4q4 + · · ·

Case 4: For χ = ε3
ε4

. R = 4, L = 3, t = 1, k = 2,

E2,ε3,ε4(z) = c0 + ∑
m≥1

(∑
n|m

ε4(n)ε3(m/n)n)qm

= q− q2 − 3q3 + q4 + · · ·

Then using Theorem 26, theses four forms form a basis for E2(Γ0(12), χ) for χ(d) =

(24.3
d ). �

COROLLARY 2. Let χ and ψ be Dirichlet characters. For z ∈ H, write q = e2πiz. For

n ∈N, we define σχ,ψ(n) by

σχ,ψ(n) = ∑
1≤m,m|n

ψ(m)χ(n/m)m.

For ε1, ε2, ε3, ε4 as defined earlier, we define the following power series:

Eε1,ε2(z) =
∞

∑
n=1

σε1,ε2(n)e
2πinz,
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Eε2,ε1(z) =
∞

∑
n=1

σε2,ε1(n)e
2πinz,

Eε4,ε3(z) =
∞

∑
n=1

σε4,ε3(n)e
2πinz,

Eε3,ε4(z) =
∞

∑
n=1

σε3,ε4(n)e
2πinz.

Then these forms form a basis for M2(Γ0(12), χ) for χ(d) = (24.3
d ).

PROOF. Since

dimS2(Γ0(12), χ) = 0,

and

Mk(Γ0(N), χ) = Ek(Γ0(N), χ)⊕ Sk(Γ0(N), χ),

we have that

dimM2(Γ0(12), χ) = dimE2(Γ0(12), χ) = 4.

Thus using the previous theorem, the result follows. �

5.3. Computing N(1, 1, 1, 3; n)

THEOREM 32. f (z) = θ3(z)θ(3z) = 6Eε1,ε2(z)− Eε2,ε1(z)− 2Eε4,ε3(z) + 3Eε3,ε4(z).

PROOF.

f (z) = θ3(z)θ(3z)

= (
∞

∑
n=−∞

e2πin2z)3(
∞

∑
n=−∞

e2πi3n2z)

= (1 + 2 ∑
n≥1

e2πin2z)3(1 + 2 ∑
n≥1

e2πi3n2z).

Say this is equal to

aEε1,ε2(z) + bEε2,ε1(z) + cEε4,ε3(z) + dEε3,ε4(z)

Then writing q = e2πiz and from the proof of Theorem 28, comparing coefficients of

q0, q1, q2 and q3 on both sides of the equality, we get that,

−b = 1 =⇒ b = −1,

a + b + c + d = 6,

2a + b− 2c− d = 12,

3a + b− c− 3d = 10.
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Solving for a, b, c, d using these equations we get that a = 6, b = −1, c = −2 and d = 3

which proves the theorem.

�

COROLLARY 3.

N(1, 1, 1, 3; n) = 6σε1,ε2(n)− σε2,ε1(n)− 2σε4,ε3(n) + 3σε3,ε4(n).

PROOF. Since for q = e2πiz, we have

∞

∑
N=1

N(1, 1, 1, 3; n)qn = θ(z)3θ(3z)

and using Theorem 29, we have

θ3(z)θ(3z) = 6Eε1,ε2(z)− Eε2,ε1(z)− 2Eε4,ε3(z) + 3Eε3,ε4(z),

the result follows. �

Now, let us illustrate in an example that the formula indeed works. Consider the

case when n = 10. Let us try to compute N(1, 1, 1, 3; 10).

σε1,ε2(10) = ε2(1)ε1(10) · 1 + ε2(2)ε1(5) · 2 + ε2(5)ε1(2) · 5 + ε2(10)ε1(1) · 10

= 8.

σε2,ε1(10) = ε1(1)ε2(10) · 1 + ε1(2)ε2(5) · 2 + ε1(5)ε2(2) · 5 + ε1(10)ε2(1) · 10

= −4.

σε4,ε3(10) = ε3(1)ε4(10) · 1 + ε3(2)ε4(5) · 2 + ε3(5)ε4(2) · 5 + ε3(10)ε4(1) · 10

= 8.

σε3,ε4(10) = ε4(1)ε3(10) · 1 + ε4(2)ε3(5) · 2 + ε4(5)ε3(2) · 5 + ε4(10)ε3(1) · 10

= −4.

Then, by Theorem 31,

N(1, 1, 1, 3; 10) = (6 · 8)− (−4)− (2 · 8) + (3 · (−4))

= 24.
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Now let us explicitly write down the representations of 10 as x2 + y2 + z2 + 3u2.

Firstly, note that u = 0. This is because u cannot be greater than equal to 2. If u = 1, then

7 must be written as a sum of three squares which is not possible. Thus, the possibil-

ities are (x, y, z, u) = (0, 1, 3, 0), (x, y, z, u) = (0,−1, 3, 0), (x, y, z, u) = (0, 1,−3, 0) and

(x, y, z, u) = (0,−1,−3, 0). But also, since u remains fixed, the values of x, y, z can be

permuted in 3! ways. Thus, total number of representations of 10 as x2 + y2 + z2 + 3u2

is 4 · (3!) which equals 24 which is what we got using Theorem 31.

5.4. Conclusion and Further Work

In this thesis we have determined formulae for the number of representations of

positive integers by quaternary quadratic forms by using a modular form approach.

We have sketched a general method which can be employed to find the number of

ways in which an integer can be written as ax2 + by2 + cz2 + du2. Then, we have il-

lustrated it in the case when a = 1, b = 1, c = 1, d = 3. It would be natural to

use this general method to compute the number of representations of an integer as

ax2 + by2 + cz2 + du2 where (a, b, c, d) is any of the 55-tuples computed by Ramanujan.

That would require some tedious work but we believe it can be done.

Finally, it would also be interesting to extend this work to find the number of rep-

resentations of positive integers by quadratic forms with 5 or more variables. These

questions will comprise the theme of future work.
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