Quantum groups and liberation of orthogonal matrix groups

Roland Speicher Queen's University Kingston

joint work with Teodor Banica

Liberation

group \longrightarrow quantum group

Liberation

group \longrightarrow quantum group

orthogonal group \longrightarrow quantum orthogonal group

permutation group \longrightarrow quantum permutation group

Liberation

group	\longrightarrow	quantum group
orthogonal group	\longrightarrow	quantum orthogonal group
???	\longrightarrow	quantum ???
permutation group	\longrightarrow	quantum permutation group

Orthogonal Hopf Algebra

is a C^* -algebra A, given with a system of n^2 self-adjoint generators $u_{ij} \in A$ (i, j = 1, ..., n), subject to the following conditions:

- The inverse of $u = (u_{ij})$ is the transpose matrix $u^t = (u_{ji})$.
- $\Delta(u_{ij}) = \Sigma_k u_{ik} \otimes u_{kj}$ defines a morphism $\Delta : A \to A \otimes A$.
- $\varepsilon(u_{ij}) = \delta_{ij}$ defines a morphism $\varepsilon : A \to \mathbb{C}$.
- $S(u_{ij}) = u_{ji}$ defines a morphism $S : A \to A^{op}$.

These are compact quantum groups in the sense of Woronowicz.

Quantum Orthogonal Group (Wang 1995)

The quantum orthogonal group $A_o(n)$ is the universal unital C^* algebra generated by u_{ij} (i, j = 1, ..., n) subject to the relation

•
$$u = (u_{ij})_{i,j=1}^n$$
 is an orthogonal matrix

This means: for all i, j we have

$$\sum_{k=1}^{n} u_{ik} u_{jk} = \delta_{ij} \qquad \text{and} \qquad$$

$$\sum_{k=1}^{n} u_{ki} u_{kj} = \delta_{ij}$$

Quantum Permutation Group (Wang 1998)

The quantum permutation group $A_s(n)$ is the universal unital C^* algebra generated by u_{ij} (i, j = 1, ..., n) subject to the relations

•
$$u_{ij}^2 = u_{ij} = u_{ij}^*$$
 for all $i, j = 1, ..., n$

• each row and column of $u = (u_{ij})_{i,j=1}^n$ is a partition of unity:

$$\sum_{j=1}^{n} u_{ij} = 1 \qquad \sum_{i=1}^{n} u_{ij} = 1$$

(this will feature prominently in the talk of Claus Koestler!)

How can we describe and understand intermediate quantum groups, sitting between these two cases:

$$A_o(n) \to \mathbf{A} \to A_s(n)$$

How can we describe and understand intermediate quantum groups, sitting between these two cases:

$$A_o(n) \to \mathbf{A} \to A_s(n)$$

Deal with quantum groups by looking on their representations!!!

Spaces of Intertwiners

Associated to an orthogonal Hopf algebra $(A, (u_{ij})_{i,j=1}^n)$ are the spaces of intertwiners:

$$C_a(k,l) = \{T : (\mathbb{C}^n)^{\otimes k} \to (\mathbb{C}^n)^{\otimes l} \mid Tu^{\otimes k} = u^{\otimes l}T\}$$

where $u^{\otimes k}$ is the $n^k \times n^k$ matrix $(u_{i_1j_1} \dots u_{i_kj_k})_{i_1 \dots i_k, j_1 \dots j_k}$.

$$u \in M_n(A)$$
 $u : \mathbb{C}^n \to \mathbb{C}^n \otimes A$

$$u^{\otimes k}: (\mathbb{C}^n)^{\otimes k} \to (\mathbb{C}^n)^{\otimes k} \otimes A^{\otimes k} \cong (\mathbb{C}^n)^{\otimes k} \otimes A$$

Tensor Category with Duals

The collection of vector spaces $C_a(k, l)$ has the following properties:

- $T, T' \in C_a$ implies $T \otimes T' \in C_a$.
- If $T, T' \in C_a$ are composable, then $TT' \in C_a$.
- $T \in C_a$ implies $T^* \in C_a$.
- id(x) = x is in $C_a(1, 1)$.
- $\xi = \sum e_i \otimes e_i$ is in $C_a(0,2)$.

Quantum Groups \leftrightarrow **Intertwiners**

The compact quantum group A can actually be rediscovered from its space of interwiners:

There is a one-to-one correspondence between:

- orthogonal Hopf algebras $A_o(n) \rightarrow \mathbf{A} \rightarrow A_s(n)$
- tensor categories with duals $C_{ao} \subset \mathbf{C}_{\mathbf{a}} \subset C_{as}$.

We denote by P(k, l) the set of partitions of the set with repetitions $\{1, \ldots, k, 1, \ldots, l\}$. Such a partition will be pictured as

$$p = \begin{cases} 1 \dots k \\ \mathcal{P} \\ 1 \dots l \end{cases}$$

where $\ensuremath{\mathcal{P}}$ is a diagram joining the elements in the same block of the partition.

Example in P(5, 1):

Associated to any partition $p \in P(k, l)$ is the linear map

$$T_p: (\mathbb{C}^n)^{\otimes k} \to (\mathbb{C}^n)^{\otimes l}$$

given by

$$T_p(e_{i_1} \otimes \ldots \otimes e_{i_k}) = \sum_{j_1 \dots j_l} \delta_p(i, j) e_{j_1} \otimes \ldots \otimes e_{j_l}$$

where e_1, \ldots, e_n is the standard basis of \mathbb{C}^n .

$$T_{-}\left\{ \left| \right. \right| \right\} (e_a \otimes e_b) = e_a \otimes e_b$$

$$T_{-}\left\{\left| -\right|\right\} (e_a \otimes e_b) = \delta_{ab} e_a \otimes e_a$$

$$T_{-} \left\{ \begin{matrix} \sqcup \\ \mid \end{matrix} \right\} (e_a \otimes e_b) = \delta_{ab} \sum_{cd} e_c \otimes e_d$$

Intertwiners of Quantum Permutation and of Quantum Orthogonal Group

Let $NC(k, l) \subset P(k, l)$ be the subset of noncrossing partitions.

The tensor category of $A_s(n)$ is given by:

$$C_{as}(k,l) = \operatorname{span}(T_p | p \in NC(k,l))$$

The tensor category of $A_o(n)$ is given by:

 $C_{ao}(k,l) = \operatorname{span}(T_p | p \in NC_2(k,l))$

Free Quantum Groups

A quantum group $A_o(n) \rightarrow \mathbf{A} \rightarrow A_s(n)$ is called **free** when its associated tensor category is of the form

$$C_{as} = \operatorname{span}(T_p \mid p \in NC)$$

$$\cup$$

$$C_a \qquad \qquad \cup$$

$$C_{ao} = \operatorname{span}(T_p \mid p \in NC_2)$$

Free Quantum Groups

A quantum group $A_o(n) \rightarrow \mathbf{A} \rightarrow A_s(n)$ is called **free** when its associated tensor category is of the form

$$C_{as} = \operatorname{span}(T_p \mid p \in NC)$$

$$\cup$$

$$C_a = \operatorname{span}(T_p \mid p \in NC_a),$$

$$\cup$$

$$C_{ao} = \operatorname{span}(T_p \mid p \in NC_2)$$

for a certain collection of subsets $NC_a \subset NC$.

Category of Noncrossing Partitions

A category of noncrossing partitions is a collection of subsets $NC_x(k,l) \subset NC(k,l)$, subject to the following conditions:

- NC_x is stable by tensor product.
- NC_x is stable by composition.
- NC_x is stable by involution.
- NC_x contains the "unit" partition |.
- NC_x contains the "duality" partition \Box .

Category of Noncrossing Partitions ↔ Free Quantum Groups

Let NC_x be a category of noncrossing partitions, and $n \in \mathbb{N}$.

- $C_x = \operatorname{span}(T_p | p \in NC_x)$ is a tensor category with duals.
- The associated quantum group $A_o(n) \rightarrow A \rightarrow A_s(n)$ is free.
- Any free quantum group appears in this way.

There are 6 Categories of Noncrossing Partitions:

$$\begin{cases} \text{singletons and} \\ \text{pairings} \end{cases} \supset \begin{cases} \text{singletons and} \\ \text{pairings (even part)} \end{cases} \supset \begin{cases} \text{all} \\ \text{pairings} \end{cases}$$
$$\cap \qquad \cap \qquad \\ \\ \begin{cases} \text{all} \\ \text{partitions} \end{cases} \supset \begin{cases} \text{all partitions} \\ (\text{even part)} \end{cases} \supset \begin{cases} \text{with blocks of} \\ \text{even size} \end{cases}$$

... and thus 6 free Quantum Groups:

$$egin{array}{rcl} A_b(n) &\leftarrow& A_{b'}(n) &\leftarrow& A_o(n) \ &\downarrow && \downarrow && \downarrow \ A_s(n) &\leftarrow& A_{s'}(n) &\leftarrow& A_h(n) \end{array}$$

- Orthogonal, if its entries are self-adjoint, and $uu^t = u^t u = 1$.
- *Magic*, if it is orthogonal, and its entries are projections.
- Cubic, if it is orthogonal, and $u_{ij}u_{ik} = u_{ji}u_{ki} = 0$, for $j \neq k$.
- Bistochastic, if it is orthogonal, and $\Sigma_j u_{ij} = \Sigma_j u_{ji} = 1$.
- *Magic'*, if it is cubic, with the same sum on rows and columns.
- *Bistochastic'*, if it is orthogonal, with the same sum on rows and columns.

More General Classification

 $A_o(n) \rightarrow A_{free} \rightarrow A_s(n)$ $\downarrow \qquad \qquad \downarrow$ $C(O_n) \rightarrow C(S_n)$

• There are exactly six free quantum groups $A_{free}!$

 $A_o(n) \rightarrow A_{free} \rightarrow A_s(n)$ $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$ $C(O_n) \rightarrow C(G_{easy}) \rightarrow C(S_n)$

- There are exactly six free quantum groups $A_{free}!$
- There are exactly six classical easy groups $G_{easy}!$

More General Classification

- There are exactly six free quantum groups $A_{free}!$
- There are exactly six classical easy groups $G_{easy}!$
- Can we have more easy quantum groups A_{easy}???

A quantum group satisfying $A_o(n) \rightarrow A \rightarrow C(S_n)$ is called **easy** when its associated tensor category of intertwiners is spanned by partitions. The corresponding **full category of partitions** $P_x \subset P$ must satisfy:

- P_x is stable by tensor product.
- P_x is stable by composition.
- P_x is stable by involution.
- P_x contains the "unit" partition |.
- P_x contains the "duality" partition \Box .

There are at least 3 more easy quantum groups

The following are full categories of partitions:

- P_o^* : the set of pairings having the property that each string has an even number of crossings.
- P_b^* : the set of singletons and pairings having the property that when removing the singletons, each string has an even number of crossings.
- $P_{b'}^*$: the even part of P_b^* , consisting of pairings having an even number of crossings, completed with an even number of singletons.

P_o^* is generated by

The algebras $A_o^*(n), A_b^*(n), A_{b'}^*(n)$ are respectively the quotients of the algebras $A_o(n), A_b(n), A_{b'}(n)$ by the collection of relations

$$abc = cba$$

one for each choice of a, b, c in the set $\{u_{ij} | i, j = 1, ..., n\}$.

Literature

T. Banica and R. Speicher: Liberation of orthogonal Lie groups. arXiv:0808.2628

T. Banica, S.T. Belinschi, M. Capitaine and B. Collins: Free Bessel laws. arXiv:0710.5931.

T. Banica, J. Bichon and B. Collins: The hyperoctahedral quantum group. J. Ramanujan Math. Soc. 22 (2007), 345384