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Orthogonal Hopf Algebra

is a C∗-algebra A, given with a system of n2 self-adjoint genera-

tors uij ∈ A (i, j = 1, . . . , n), subject to the following conditions:

• The inverse of u = (uij) is the transpose matrix ut = (uji).

• ∆(uij) = Σk uik ⊗ ukj defines a morphism ∆ : A→ A⊗A.

• ε(uij) = δij defines a morphism ε : A→ C.

• S(uij) = uji defines a morphism S : A→ Aop.

These are compact quantum groups in the sense of Woronowicz.



Quantum Orthogonal Group (Wang 1995)

The quantum orthogonal group Ao(n) is the universal unital C∗-

algebra generated by uij (i, j = 1, . . . , n) subject to the relation

• u = (uij)
n
i,j=1 is an orthogonal matrix

This means: for all i, j we have

n
∑

k=1

uikujk = δij and
n

∑

k=1

ukiukj = δij



Quantum Permutation Group (Wang 1998)

The quantum permutation group As(n) is the universal unital C∗-

algebra generated by uij (i, j = 1, . . . , n) subject to the relations

• u2
ij = uij = u∗ij for all i, j = 1, . . . , n

• each row and column of u = (uij)
n
i,j=1 is a partition of unity:

n
∑

j=1

uij = 1
n

∑

i=1

uij = 1

(this will feature prominently in the talk of Claus Koestler!)
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these two cases:

Ao(n)→ A→ As(n)

Deal with quantum groups by looking on their
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Spaces of Intertwiners

Associated to an orthogonal Hopf algebra (A, (uij)
n
i,j=1) are the

spaces of intertwiners:

Ca(k, l) = {T : (Cn)⊗k → (Cn)⊗l | Tu⊗k = u⊗lT}

where u⊗k is the nk × nk matrix (ui1j1 . . . uikjk
)i1...ik,j1...jk

.

u ∈Mn(A) u : C
n → C

n ⊗A

u⊗k : (Cn)⊗k → (Cn)⊗k ⊗A⊗k ∼= (Cn)⊗k ⊗A



Tensor Category with Duals

The collection of vector spaces Ca(k, l) has the following prop-
erties:

• T, T ′ ∈ Ca implies T ⊗ T ′ ∈ Ca.

• If T, T ′ ∈ Ca are composable, then TT ′ ∈ Ca.

• T ∈ Ca implies T ∗ ∈ Ca.

• id(x) = x is in Ca(1,1).

• ξ =
∑

ei ⊗ ei is in Ca(0,2).



Quantum Groups ↔ Intertwiners

The compact quantum group A can actually be rediscovered

from its space of interwiners:

There is a one-to-one correspondence between:

• orthogonal Hopf algebras Ao(n)→ A→ As(n)

• tensor categories with duals Cao ⊂ Ca ⊂ Cas.



We denote by P(k, l) the set of partitions of the set with repe-

titions {1, . . . , k,1, . . . , l}. Such a partition will be pictured as

p =
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where P is a diagram joining the elements in the same block of

the partition.

Example in P(5, 1):






















1 2 34 5
|
−−−−
| t
−−−−−−−

|

|

1

























Associated to any partition p ∈ P(k, l) is the linear map

Tp : (Cn)⊗k → (Cn)⊗l

given by

Tp(ei1 ⊗ . . .⊗ eik
) =

∑

j1...jl

δp(i, j) ej1 ⊗ . . .⊗ ejl

where e1, . . . , en is the standard basis of Cn.

T
{
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∣
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∣

∣

∣

}

(ea ⊗ eb) = ea ⊗ eb

T
{
∣

∣

∣−
∣

∣

∣

}

(ea ⊗ eb) = δab ea ⊗ ea

T

{

t

| |

}

(ea ⊗ eb) = δab

∑

cd

ec ⊗ ed



Intertwiners of Quantum Permutation and of

Quantum Orthogonal Group

Let NC(k, l) ⊂ P(k, l) be the subset of noncrossing partitions.

The tensor category of As(n) is given by:

Cas(k, l) = span(Tp|p ∈ NC(k, l))

The tensor category of Ao(n) is given by:

Cao(k, l) = span(Tp|p ∈ NC2(k, l))



Free Quantum Groups

A quantum group Ao(n) → A → As(n) is called free when its

associated tensor category is of the form

Cas = span(Tp | p ∈ NC)

∪

Ca= span(Tp | p ∈ NCa),

∪

Cao = span(Tp | p ∈ NC2)

for a certain collection of subsets NCa ⊂ NC.
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Category of Noncrossing Partitions

A category of noncrossing partitions is a collection of subsets

NCx(k, l) ⊂ NC(k, l), subject to the following conditions:

• NCx is stable by tensor product.

• NCx is stable by composition.

• NCx is stable by involution.

• NCx contains the “unit” partition |.

• NCx contains the “duality” partition u.



Category of Noncrossing Partitions

↔ Free Quantum Groups

Let NCx be a category of noncrossing partitions, and n ∈ N.

• Cx = span(Tp|p ∈ NCx) is a tensor category with duals.

• The associated quantum group Ao(n)→ A→ As(n) is free.

• Any free quantum group appears in this way.



There are 6 Categories of Noncrossing

Partitions:

{

singletons and
pairings

}

⊃

{

singletons and
pairings (even part)

}

⊃

{

all
pairings

}

∩ ∩ ∩

{

all
partitions

}

⊃

{

all partitions
(even part)

}

⊃

{

with blocks of
even size

}



... and thus 6 free Quantum Groups:

Ab(n) ← Ab′(n) ← Ao(n)

↓ ↓ ↓

As(n) ← As′(n) ← Ah(n)



• Orthogonal, if its entries are self-adjoint, and uut = utu = 1.

• Magic, if it is orthogonal, and its entries are projections.

• Cubic, if it is orthogonal, and uijuik = ujiuki = 0, for j 6= k.

• Bistochastic, if it is orthogonal, and Σj uij = Σjuji = 1.

• Magic’, if it is cubic, with the same sum on rows and columns.

• Bistochastic’, if it is orthogonal, with the same sum on rows

and columns.



More General Classification

Ao(n) → → → As(n)
↘

↓ C(Geasy) ↓

↘
C(On) →) → → C(Sn)

There are exactly six free quantum groups Afree!

There are exactly six classical easy groups Geasy!

Can we have more easy quantum groups Aeasy???
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A quantum group satisfying Ao(n) → A → C(Sn) is called easy
when its associated tensor category of intertwiners is spanned
by partitions. The corresponding full category of partitions
Px ⊂ P must satisfy:

• Px is stable by tensor product.

• Px is stable by composition.

• Px is stable by involution.

• Px contains the “unit” partition |.

• Px contains the “duality” partition u.



There are at least 3 more easy quantum groups

The following are full categories of partitions:

• P ∗o : the set of pairings having the property that each string

has an even number of crossings.

• P ∗b : the set of singletons and pairings having the property

that when removing the singletons, each string has an even

number of crossings.

• P ∗
b′
: the even part of P ∗b , consisting of pairings having an

even number of crossings, completed with an even number

of singletons.



P ∗o is generated by

1 2 3 4 5 6
or �

�
�

��

@
@

@
@@

1 2 3

1 2 3

The algebras A∗o(n), A∗b(n), A∗
b′
(n) are respectively the quotients

of the algebras Ao(n), Ab(n), Ab′(n) by the collection of relations

abc = cba

one for each choice of a, b, c in the set {uij|i, j = 1, . . . , n}.
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