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We present a general analytical result for the probability that a newly introduced pathogen will evolve

adaptations that allow it to maintain itself within any novel host population, as a function of disease life-

history parameters. We demonstrate that this probability of ‘evolutionary emergence’ depends on two key

properties of the disease life history: (i) the basic reproduction number and (ii) the expected duration of an

infection. These parameters encapsulate all of the relevant information and can be combined in a very

simple expression, with estimates for the rates of adaptive mutation, to predict the probability of

emergence for any novel pathogen. In general, diseases that initially have a large reproductive number

and/or that cause relatively long infections are the most prone to evolutionary adaptation.
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1. INTRODUCTION
The majority of existing human infectious diseases have

originated from other animals, from the beginning of

domestication up until the present time (Diamond 1997;

Woolhouse 2002; e.g. influenza, plague, tuberculosis,

malaria, HIV, Ebola fever, SARS). In some instances,

ecological changes are sufficient to yield the entry and

maintenance of a novel pathogen in the human population

(sedentary lifestyles, animal domestication, urbanization;

Schrag & Wiener 1995). In other instances, however, the

zoonotic pathogen causes only sporadic cases upon each

introduction but is unable to sustain itself in humans

without repeated introductions. The most familiar

examples involve the various strains of avian influenza

that have caused small clusters of infections in humans

(Webster et al. 1992; Earn et al. 2002). Such pathogens

nevertheless remain a serious public health threat because,

at some point, they might acquire specific adaptations that

allow them to spread from human to human more

effectively. For instance, SARS coronavirus has most

likely been unsuccessfully introduced several times in

humans, before provoking a significant epidemic (Peiris

et al. 2004). The eventual epidemic then became possible,

presumably because of the adaptation of viruses to

humans (The Chinese SARS Molecular Epidemiology

Consortium 2004).

Our aim here is to provide a very general analysis of the

risk of pathogen adaptation and emergence as a function

of differences in disease life histories. By disease life history

we mean the temporal pattern of transmission, mortality

and/or recovery that occurs during an infection (Day

2003). For example, suppose there are two different novel

pathogens that might accidentally be introduced into the

human population. One of these is not transmitted in the

beginning of infection but only after a certain amount

of time (e.g. SARS viruses are weakly transmitted in the

first five days of infection), whereas the other has its
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transmission spread more evenly all along the infection,

but provokes shorter infections. Which of these pathogens

is more prone to evolving adaptations that will allow it to

persist in the human population? It is this type of question

that our analysis will answer, in terms of very general

disease life-history parameters.

Consider a pathogen, newly introduced into humans,

but unable to sustain itself. This pathogen might generate

some new infections in humans, causing a cluster of cases

of some size, but it will eventually die out owing to its poor

overall transmissibility from human to human. One can

describe the life history of an infection caused by this

pathogen using various parameters, including its trans-

mission rate, pathogen-induced mortality rate and clear-

ance rate during each stage of infection, as well as its

expected duration and/or the total number of new

infections generated. It is not immediately obvious which

of these pieces of information will be most important for

determining the risk of pathogen adaptation, or whether a

combination of them is required.

The most widely quantified single descriptor of disease

life histories is the reproductive number, R0, which is

essentially the number of new infections that are generated

over the course of a single infection (Anderson & May

1991). By definition, if the pathogen is originally unable to

persist in humans, then its reproductive number is less

than one. An interesting recent paper by Antia et al. (2003)

demonstrates that this reproductive number also contains

important information about the risk of pathogen

adaptation as well. In particular, they show that novel

pathogens with reproductive numbers closer to one (in the

human population) pose a greater risk of adaptation

because they can remain within the population for

substantially longer periods of time after each occasional

entrance, and this will, therefore, increase the probability

that adaptation occurs before extinction.

The results of Antia et al. (2003) should prove to be

extremely useful for identifying potentially threatening

pathogens, but they also lead one to ask if there might be
q 2005 The Royal Society
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other important attributes of disease life histories that

affect the likelihood of adaptation. In the models

developed below we demonstrate that there are, in fact,

other crucial disease life-history parameters. This is done

by first examining two relatively simple but specific

models. From there we then derive some very general

results that encompass arbitrary pathogen life histories,

and we show that the crucial disease life-history attributes

affecting the likelihood of adaptation can be summarized

with two intuitive quantities: (i) the reproductive number

of the disease and (ii) the expected duration of an

infection. Diseases with large reproductive numbers and/

or long infections are the most prone to adaptation in

novel hosts and both of these factors can have substantial

effects. In terms of their relative effects, our results also

suggest that the expected duration of an infection is often

likely to be a more important determinant of the

probability of evolutionary emergence than is the repro-

ductive number of the disease. In these circumstances,

introduced diseases that cause few but long infections in

humans are more apt to evolve adaptation than those that

cause many short infections.
2. MODELS AND ANALYSES
Our aim is to calculate the probability that an introduced

pathogen, originally maladapted to humans, generates

adaptive mutation(s) before extinction, and therefore

eventually invades the host population (see also Antia

et al. 2003; Iwasa et al. 2004). In contrast with Antia et al.

(2003) who consider discrete generations, we model the

life cycle of infections in continuous-time, and begin with

two simple models.

(a) One-stage disease life history

Suppose that infections by the introduced pathogen can be

characterized by a single stage such that they generate

secondary infections (by transmission to susceptible hosts)

at a constant rate b over the entire duration of infection.

An infection might also end at any time owing to host

death or clearance by the immune system, and we suppose

that these combined events happen at an overall fixed per

capita rate of d throughout the entire infection. The

expected length of an infection by the introduced strain is,

therefore, LZ1/d, and the pathogen’s reproductive

number (i.e. the expected number of new infections

caused by a single infected individual) is R0Zb/d.

Immediately following an introduction, the pathogen is

assumed to be maladapted to humans and thus its rate of

production of new infections is lower than the rate at

which infections end (i.e. b!d ). As a result, in the absence

of evolution, extinction will eventually occur (figure 1a,b).

Furthermore, we assume that the total outbreak size, in

the absence of evolution, is small enough that it does not

cause an appreciable decline in the number of susceptible

individuals.

During the period of time in which the introduced

pathogen remains extant within the human population,

adaptive mutations will occasionally appear (figure 1c),

and we need to specify the mechanism by which this takes

place. Mutations are generated at low frequency within

infections, owing to errors in the replication of the

pathogen. But the benefit of an adaptive mutation is to

improve the infections’ R0, and hence it can be expressed
Proc. R. Soc. B (2005)
only if that mutation reaches a large frequency within an

infection. This within-host fixation might occur through

two distinct mechanisms (figure 1c). First, the adaptive

mutation might fix by chance within a secondary infection

owing to a transmission bottleneck. Second, the mutation

might be favoured in local competition between individual

pathogens within a host, and hence directly reach a large

frequency within the infection where it first appeared.

Indeed, for pathogens that are recently introduced into a

new host, it is likely that at least a fraction of beneficial

mutations that might occur will represent basic adap-

tations (e.g. better resistance to immunity, improved

affinity for host tissues), and therefore will be beneficial

both to microbes in local competition within a host and to

the entire infection.

Mathematically, we model these mechanisms with two

distinct parameters. First, at each transmission event, the

secondary infection has an overall probability, u, of being

fixed for an adaptive mutation (i.e. the first pathway in

figure 1c). Second, each infection can change in genotype

at any time owing to the fixation of an adaptive mutation

through within-host mechanisms. We assume that this

occurs at an overall rate m (i.e. the second pathway in

figure 1c). If only a single adaptive mutation is required to

allow the pathogen to persist within the human popu-

lation, then the probability of evolutionary emergence

from an initially maladapted pathogen is approximately

(Appendix A)

Pz
1

1KR0

½uR0 CmL�Pa; ð2:1Þ

where (1/(1KR0))[uR0CmL] is the probability that an

appropriate adaptation occurs, and Pa is the probability of

an epidemic, given that the adaptation has occurred,

which is equal to PaZ1K1/R*, where R* is the

reproductive number of the adapted pathogen (which is

greater than one by definition). Note that equation (2.1) is

derived from the exact expression of the probability of

emergence (equation (A 3)), as a first-order approxi-

mation, assuming small mutation rates. Also recall that

R0Zb/d is the reproductive number of the maladapted

pathogen and LZ1/d is the expected duration of infections

that it causes.

In the case where m adaptive mutations are needed for

adaptation to humans, and assuming that all not-yet-

adapted strains have the same life-history traits, b and d,

the probability of emergence of the pathogen can be

derived by recurrence as (see Appendix A)

Pz
1

ð1KR0Þ
m
½uR0 CmL�mPa; ð2:2Þ

where all higher order terms of mutation rates have been

dropped. Note that all the effects of mutation rates of

order lower than m are nil, because at least m mutation

events must occur for emergence to take place. As a result,

equation (2.2) is an mth order approximation.

Figure 2 plots the exact expression of the probability of

emergence (equation (A 3)), as a function of the

reproductive number and the expected duration of an

infection. From equations (2.1) and (2.2), we can see that

both parameters affect the probability of emergence

positively, and figure 2 illustrates that either of them

alone can have a substantial effect. The introduced
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Figure 1. Schematic of the transmission chain and emergence of an infectious disease. Introductions from the reservoir are
followed by survival, transmission and death in the human population. In (a) and (c) the course of infections is symbolized by
dotted lines; infections can reproduce at any time by transmission to susceptible hosts (right or left arrows), or die owing to
immune clearance or host mortality (crosses). The introduced strain (open circles) is unable to spread because its reproduction
rate, b, is lower than its death rate, d. (b) is a generation-based equivalent of (a), constructed in the same manner as fig. 1 of Antia
et al. (2003). This is constructed by following the introduced infection of (a), and counting the total number of secondary
infections that it generates (R0 in expectation). These are then noted as offspring in the next generation and the procedure is
repeated for each infection that is generated. The total number of reproduction events in the chain of transmission of the
introduced pathogen, B, can be obtained graphically from (a), by considering one introduction event and counting the overall
number of horizontal links in the arborescence generated. It can also be obtained from (b) by counting the number of links
between two infections. The cumulative length of introduced infections, T, can be also obtained graphically from (a) by
considering one introduction event and counting the overall length of vertical links in the transmission chain. T cannot be
measured from (b) (nor from fig. 1 of Antia et al. 2003), because it lacks information relative to time. In (c) adaptation can occur;
a single mutation (affecting b and/or d ) is able to bring the pathogen above the epidemic threshold (baOda). The adaptive
mutation can occur along two pathways: first, at each transmission event, the new infection can carry the mutation with a
probability u (first adaptation pathway); second, the mutation can reach fixation during the course of an infection, at a rate m per
unit of time (second adaptation pathway). The infections caused by the evolved strain (filled circles) can go on to cause an
epidemic (emergence).
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Figure 2. Probability of emergence in the single-stage model, plotted as a function of the reproductive number (R0Zb/d ) and
expected length (LZ1/d ) of introduced infections (equation (A 3)). The probability for a secondary infection to carry an
adaptive mutation (first adaptation pathway) is uZ10K3; the rate of adaptation in the course of infection (second pathway) is
mZ10K6; the probability of emergence of adapted strains is PaZ0.5 We could also estimate the probability of emergence of
pathogens from Monte Carlo simulations, which confirmed the validity of our analytical model (not shown).
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pathogen is more likely to generate adaptations when its

infections are long-lived and/or well transmitted.

In order to understand the role of each adaptation

pathway in more detail, we can directly interpret the

simple mathematical expression given in equation (2.1).

The two terms in brackets measure the contribution of

each type of mutation process to emergence. The first

term is the contribution of adaptive mutations occurring

at transmission (happening with probability, u). Bringing

the denominator inside the parenthesis, we can see that

the magnitude of this effect is proportional to the ratio BZ
R0/(1KR0). This quantity is simply the expected number

of transmission events that occur prior to extinction. In

particular, this can be directly calculated as
PCN

iZ1ðR0Þ
i,

which simplifies to R0/(1KR0)ZB (see also figure 1a,b for

a graphical interpretation of B). In a situation where

adaptations occur at the moment of transmission, the risk

of emergence depends on the total number of transmission

events in the life of the introduced strain.

The second term in the brackets of equation (2.3)

measures the contribution of adaptations occurring as a

result of within-host selection during the course of an

infection. The effect of the mutation rate along this

pathway (m) is proportional to the ratio TZL/(1KR0) or

equivalently TZ1/(dKb). This quantity is simply the sum

of the expected durations of all the infections generated

by the introduced pathogen. In particular, it can be

directly calculated as ð1=dÞ
PCN

iZ0ðR0Þ
i, which simplifies to

(1/d )[1/(1KR0)]Z1/(dKb)ZT (see also figure 1a for the

graphical interpretation of T ). In a situation where

adaptations can occur at any time during the course of

each infection, the risk of emergence depends on the

cumulative duration of all infections.
(b) Two-stage life history

The above results apply to a very simple disease life history

but how are they altered for more realistic situations? We

next go one step further in this direction and suppose that

the infection starts with an asymptomatic stage, during

which the pathogen is not transmitted (b1Z0) and the host

has a low mortality (d1 is low). The pathogen is

transmitted and impacts the host mortality only during
Proc. R. Soc. B (2005)
the second stage of infection (which is characterized by the

rates, b2 and d2). Infections progress from the first to the

second stage at a given ‘transition’ rate t. We assume that

the mutation rates along both pathways (u and m) are the

same in the two stages. We then use the same method as

above to derive a first-order approximation for the

probability of emergence of the pathogen, valid for low

mutation rates. It is again given by equation (2.1) but with

R0 Z
t

d1 Ct

b2

d2

and LZ
1

tCb1

C
t

tCb1

1

d2

: ð2:3Þ

In this more complex disease life history, we again see that

the probability of emergence of the pathogen can be

expressed with two components measuring the contri-

bution of each adaptation pathway (equations (2.1) and

(2.3)). And again R0 is the reproductive number and L is

the expected duration of an infection (which are now given

by the more complex expressions in equation (2.3)). As a

result, again the two mutation processes contribute to the

probability of emergence in a way that depends on the total

number of transmission events prior to extinction and the

cumulative duration of all infections prior to extinction

respectively. Therefore, in this case as well, the overall

consequences of these findings are that (i) introduced

pathogens are more dangerous when R0 is high, but (ii) for

a given R0, pathogens that provoke durable infections

(large L) are intrinsically more dangerous. Figure 3 plots

the exact expression of the probability of emergence, as a

function of the length of the symptomatic and asympto-

matic stages, keeping the overall pathogen reproductive

number constant. For a given reproductive number, the

introduced disease is more likely to emerge if it provokes

durable infections.
(c) General life histories

The correspondence between the results for two simple

disease life histories suggest that similar results might hold

for more complex life histories. Indeed, Appendix B

demonstrates that these results are extremely general.

Regardless of the pattern of transmission, death, and

clearance during an infection, equation (2.1) continues to

be valid. In other words, the transmission rate, death rate
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Figure 3. Probability of emergence in the two-stage model, plotted as a function of the expected length of the first and second
stage (1/t and 1/d2, respectively), the overall pathogen fitness (R0Zb2/d2) being kept constant. The pathogen is transmitted and
impacts host mortality only during the second stage (b1Z0 and d1Z0). All other parameters are as in figure 2.
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and clearance rate might change with infection age for

each infected individual, but it is still the disease

reproductive number and the expected duration of an

infection that govern the probability of evolutionary

emergence.

In fact, these results generalize even further to

situations in which the rate of within-host adaptation, m,

changes with infection age. This is probably often the case

as a result of changes in the within-host density and/or

replication rate of pathogens. For example, we might

expect that the rate at which strains arise via within-host

selection that have RO1 (i.e. m) increases with infection

age, owing to the accumulation of incremental adaptations

over time within a host. In this case, a slightly more general

form of equation (2.1) holds (Appendix B)

P Z
1

1KR0

ð �mðLÞLCuR0Þ: ð2:4Þ

Here, �mðLÞZ 1
L

Ð L
0 mðsÞ ds; is the average rate of within-host

adaptation for an infection of length L, and it will be a

strictly increasing function of L whenever m(s) increases

with infection age. This thereby imparts an additional risk

of having long infections; they have a higher average rate of

within-host adaptation.

Interestingly, in this more general context, it is no

longer solely the total cumulative duration of all infections

that determines the risk of within-host adaptation. Recall

that, when the rate of within-host adaptation, m, is

constant during an infection, having many very short

infections yields an equivalent risk of within-host adap-

tation as having few long infections (since the total

cumulative duration of all infections is the same in both

cases). When m(s) increases with infection age, however,

having many short-lived infections yields a lower prob-

ability of within-host adaptation than having a few long-

lived infections, because the latter suffer high average rates

of evolutionary adaptation (Appendix B).

In any case, the risk of adaptation posed by novel

pathogens can, quite generally, be characterized by two

simple indices of their life histories. Those diseases with

large reproduction numbers and/or long infections pose

the greatest threat of adaptation. Moreover, the signifi-

cance of each of these parameters depends on the extent to

which adaptation is likely to occur through mutations
Proc. R. Soc. B (2005)
arising at transmission versus arising as a result of within-

host competition during an infection. Both of these routes

are undoubtedly very important for pathogens that have

recently begun to exploit a new host.
3. DISCUSSION
When a novel pathogen is first introduced into the human

population it will be able to sustain itself only if its

reproductive number is larger than one (i.e. R0O1). In

this case, the pathogen is said to be above the epidemic

threshold, and this is clearly the worst situation from the

perspective of human health. Even if the pathogen’s

reproductive number is lower than one, however, the

pathogen might nevertheless eventually evolve to sustain

itself in the human population through the generation of

adaptive mutations. The aim of this paper is to provide a

very general analysis of the risk of pathogen adaptation

and emergence, as a function of disease life-history

parameters.

Our results demonstrate that the risk of pathogen

adaptation is largely determined by two simple disease life-

history parameters: (i) the basic reproduction number and

(ii) the expected duration of an infection. The first of these

parameters is exactly that identified by Antia et al. (2003)

as being an important determinant of disease emergence,

but the second represents an additional aspect of disease

life history that can have an equally, if not more significant,

effect on the probability of pathogen adaptation. We

discuss each of these in turn.

The effect of the reproductive number on the

probability of emergence arises from mutations that

reach fixation within a host as a result of a bottleneck

during the moment of transmission from one host to

another. In general, pathogens are less likely to adapt, and

thus emerge, if they initially have a reproductive number

that is far below the epidemic threshold (R0/1). From an

epidemiological standpoint this occurs because the

reproductive number of the pathogen (R0) determines

the expected number of times that it is transmitted from

one host to another prior to going extinct. Each

transmission event represents an opportunity for an

adaptive mutation to reach fixation, and hence adaptation

is more likely when R0 is close to one.
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The occurrence of mutations at the moment of

transmission is analogous to mutations occurring during

the reproduction of non-microbial invaders (e.g. invasive

plant species), where adaptive mutations actually occur at

the moment of reproduction. In the case of pathogens,

however, the situation is more subtle. Adaptive mutations

are initially generated randomly among individual

microbes within infections, which would be equivalent to

the generation of mutations among gametes in an invasive

animal or plant. These random modifications can then

reach fixation within a host during transmission bottle-

necks as discussed above, but they can also reach fixation

by rising in frequency directly within the host body over

the course of an infection itself. This alternate pathway,

called within-host adaptation, strongly affects the

likelihood of adaptation and emergence of an introduced

pathogen. In particular, for a given reproductive number,

R0, the risk of emergence is larger for pathogens that

provoke long-lasting infections (figure 2). Long infections

are intrinsically more prone to adaptive evolution because

the amount of time during which within-host selection can

operate is increased.

If the rate of occurrence of within-host adaptation

increases during the course of an infection (e.g. through an

increased rate of generation of appropriate mutations)

then long-lived infections exhibit an additional increase in

the likelihood of adaptive evolution, over and above the

simple effect due to the increased time available for

adaptation. In this case, long-lived infections also

experience a greater average rate of within-host adaptation

(see equation (2.4)). As a result, from the standpoint of

within-host evolution alone, having few long-lived infec-

tions is more dangerous in terms of evolutionary

emergence than having many short-lived infections.

The risk of emergence of a given introduced pathogen

is thus strongly affected by the actual mechanism of

adaptation available in this species, the key point being

whether adaptation can take place directly within each

host or not. We suggest that within-host adaptation might

be very significant in numerous cases, and that it might

often be even more important than transmission-depen-

dent mutations.

As an example, consider the adaptation of pathogens

that are being driven to extinction by antibiotics. The

above results can be readily applied to this situation.

Antibiotic resistance is probably most likely to occur by

mutation (or recombination with other bacterial species)

and then fixation within an infection owing to local

selection imposed by the antibiotic. Indeed it is probably

unreasonable to think that antibiotic resistance reaches

fixation only by chance at the time of transmission to a

new host. The same reasoning applies to the evolution of

escape mutants in the presence of vaccine use as well. As a

consequence, the key parameters that treatments should

control are not only the reproductive number of an

infection but its duration as well. In other words,

antibiotics and other medical interventions should be

used in a way that rapidly clears infections rather than

simply reduces their transmissibility.

In the context of novel pathogens, when a pathogen is

first introduced into a new host species, a large fraction of

the initial beneficial mutations will likely represent basic

adaptations to this new host, such as better resistance to

immunity or improved affinity for host tissues (see Webby
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et al. 2004). In other words, pathogen adaptation is likely

to be characterized by an increase of its replication ability

within the host body. For instance, in the case of influenza,

viruses that are adapted to birds have been shown to

replicate poorly in humans, and vice versa (Webby et al.

2004). Therefore, in addition to being favourable to the

infection as a whole, a large fraction of the initial

adaptations occurring in a novel pathogen are probably

beneficial to microbes in local competition within a host as

well. Moreover, the large population size and short

generation time of microbes within a host should also

enhance the importance of this process since within-host

populations can then ‘test’ numerous mutations. This

contrasts with the adaptive mutations that are not

favoured locally and that can fix only by chance at

transmission. Mutations fixing at transmission are a

somewhat random subset of all the mutations that have

occurred, and many of these are likely to be deleterious or

neutral to the infection.

Further, processes other than those explicitly modelled

here can also take place during the course of infections and

can influence the probability of emergence. For instance, if

transmission bottlenecks are important, then newly

established infections carry very few neutral polymorph-

isms. In this case, neutral polymorphism increases during

the course of an infection owing to de novo mutations. As a

result, even in the absence of within-host adaptation per se,

the probability of adaptation at transmission, u, is

expected to be an increasing function of the length of

infection, again suggesting that long-lasting infections

should be more dangerous. Second, mutation is not the

only source of adaptation, but rather recombination

and/or reassortment between pathogen strains within a

host can also occur. For instance in the case of influenza,

reassortment between an avian strain and a human strain

is thought to be the decisive event leading to the

emergence of influenza pandemics, and this event is all

the more likely to occur for avian influenza strains that

provoke long infections in each human that they

accidentally infect.

We close by making a few remarks about the simplifying

assumptions that have been used in the analysis. First we

assumed that each infection is established by a single

pathogen genotype. Therefore, any new infection that is

generated is either a wild-type infection (with a probability

1Ku) or a mutant infection (with a probability u), and

cannot be made up of an intermediate frequency of both

types (see also Antia et al. 2003). Second, and more

importantly for the present paper, we considerably

simplified the process of within-host adaptation. We

assumed that the predominant genotype of an infection

could change instantaneously (at a rate m(s) where s is

infection age) into a mutant infection owing to ‘within-

host adaptation’. In other words, once an adaptive

mutation has appeared within an infection, its reaches

fixation effectively instantaneously. This assumption is

very useful for simplifying the mathematical analysis;

however, it has the dangerous side effect of providing a

somewhat caricatured image of within-host adaptation. It

is very likely that within-host selection is not strong

enough in many instances to yield the complete fixation of

adaptive mutants within the course of a single infection.

Instead, within-host selection might only yield an increase

in the frequency of adaptive mutants during each
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infection. Even in this case, however, within-host selection

(and all other within-host processes) will boost the

probability of emergence in long-lasting infections by

increasing the probability of an adaptive mutation being

transmitted to susceptible hosts. Thus the qualitative

conclusions reached here should nevertheless be quite

robust.

We thank R. Antia and C. Bergstrom for discussions that
motivated us to seek generalizations of our initial results. We
also thank S. Gandon, A. André, and three anonymous
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APPENDIX A. BRANCHING PROCESS AND
PROBABILITY OF EMERGENCE
Consider an infection caused by a novel pathogen that is

initially unable to spread in the human population (i.e. its

birth rate is lower than its death rate, b!d ). Suppose

that a single mutation is sufficient for adaptation such that

baOda, where the subscript a refers to the adapted

pathogen. In order to calculate the probability of

emergence, we first derive the probability, Q(t), that an

introduced pathogen, present in the population at time t,

ultimately goes extinct. Let us also define Qa(t) as the

probability that an adapted pathogen, present in the

population at time t, ultimately goes extinct. Equations for

Q(t) and Qa(t) can be derived by considering all the events

that might occur during an infinitesimal period dt

QðtÞZbð1KuÞdtðQðtCdtÞÞ2CbudtQðtCdtÞQaðtCdtÞ

CmdtQaðtCdtÞCd dtCQðtCdtÞ

!½1KbdtKd dtKmdt�;

QaðtÞZba dtðQaðtCdtÞÞ2Cda dt

CQaðtCdtÞ½1Kba dtKda dt�:

9>>>>>>>=
>>>>>>>;

ðA 1Þ

First, the maladapted strain might give rise toa new infection

(with probability bdt) in which case this infection will also be

maladapted with probability (1Ku) and it will have mutated

to the adapted strain with probability u. In these cases, the

probability of ultimate extinction is Q(tCdt)2 and Q(tCdt)

Qa(tCdt), respectively. Second, the infection can give rise to

an adaptive mutation as a result of within-host processes

with probability mdt, in which case extinction occurs with

probability Qa(tCdt). Finally, the infection itself ends and

extinction occurs with probability ddt. Similar consider-

ations hold for the equation for Qa(t).

Equation (A 1) assumes that the introduced strain

never attains high prevalence and, therefore, does not

affect the density of susceptible hosts. In contrast, the

evolved strain is assumed to be very efficient (ba[da).

Therefore, its fate is decided while it is still at very low

frequency. As a result, the density of susceptible hosts can

be assumed constant (n) during the whole stochastic

process, and the rates at which both genotypes produce

new infections (bZbn and baZban) are therefore also

constant. Accordingly, the probabilities of ultimate loss (Q

and Qa) can be derived by modeling the demography of

the strains as a branching process (Fisher 1922, 1930

pp. 73–83; Haldane 1927; Antia et al. 2003), i.e. a single
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copy of each strain, present at time t, has the same

probability of being lost as a copy present at tCdt.

Therefore, Q and Qa are independent of time and

equation (A 1) yield

bð1KuÞðQÞ2 CbuQQa CmQa CdKQðbCdCmÞZ0;

baðQaÞ
2 Cda KQaðba CdaÞZ 0:

)

ðA 2Þ

The second equation in (A 2)canbesolved togiveQaZda/ba,

and this can then be used to calculate Q, and correspond-

ingly the probability of emergence PZ1KQ, as

P Z ððbCdCmKbuQaÞ
2 K4bð1KuÞðdCmQaÞÞ

1=2
�
KdKmCbð1Kuð2KQaÞÞ

�
=ð2bð1KuÞÞ: (A 3)

Finally, developing P in a Taylor series to the first-order in

the mutation parameters (u and m) yields equation (2.1) in

the text.

In the case where m adaptive mutations are required for

adaptation, the equivalent of equation (A 1) can be written

as a system of m equations

bið1KuÞðQiÞ
2 CbiuQiQiC1 CmQiC1

Cdi KQiðbi Cdi CmÞZ 0; c i2½0;mK1�;

bmðQmÞ
2 Cdm KQmðbm CdmÞZ 0;

9>=
>;

ðA 4Þ

where the subscript i indicates the number of adaptive

mutations carried by the genotype and Qi is the probability

that a given pathogen is ultimately lost, conditional on

the fact that this pathogen carries i adaptive mutations.

This system can be solved step-by-step, from QmZdm/bm

to QmK1, . ,QmKj. down to Q0ZQ and finally to

PZ1KQ. In the analysis presented here, we assume a

simple scenario, the jackpot model (Antia et al. 2003),

where the life-history traits (bi and di) of the pathogens with

intermediate number of mutations (i!m) are identical to

that of the initial pathogen (equal to b and d ). The

properties of the adapted strain are bmZba and dmZda.

One can then use a recurrence reasoning. The

probability that an introduced pathogen generates one

adaptive mutation and ultimately emerges is the prob-

ability of emergence P as given by equation (A 3), except

that Qa must be replaced by Q1 the probability of ultimate

loss for a pathogen carrying one adaptive mutation.

Assuming that the opposite probability P1Z1KQ1 is low

(which is reasonable as more than one adaptive mutation

is required to spread), the probability of emergence can be

expressed by a Taylor development to the first-order on P1

and on mutation parameters as PZ[BuCTmCo(u)Co(m)]

P1Co(P1), where TZL/(1KR0) and BZR0/(1KR0).

The probability of emergence of the strain with one

mutation can in turn be expressed as P1Z[BuCTmC
o(u)Co(m)]P2Co(P2), assuming that P2 is low. Therefore,

the probability of emergence gives approximately

Pz[BuCTm]2P2. This can be repeated m times to yield

the probability of emergence Pz[BuCTm]mPa, which is

equation (2.2) of the text. This derivation assumes that the

probability of emergence of all non-adapted strains

(Pi,ci!m) are low but it does not make any assumption

about the probability of emergence of the adapted strain

(PaZPm).
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APPENDIX B. PROBABILITY OF EMERGENCE
IN THE GENERAL CASE
To derive general results for pathogens with arbitrary life

histories we need to take a different approach. Suppose

that a novel pathogen is introduced into the human

population. We would like to calculate the probability that

at least one adaptive mutation occurs prior to the

pathogen lineage going extinct. First let’s condition on

the total number of transmission events, t, that occur

before the pathogen dies out, as well as the realized

durations of all of the tC1 infections (denoted by L1,

L2, ., LtC1). For maximum generality, we allow the rate

at which adaptation occurs via with-host processes (i.e. m)

to change with infection age. For example, we might

sometimes expect that the rate at which adaptation occurs

during an infection is higher later in an infection. In this

case, the probability that at least one adaptive mutation

occurs during the entire outbreak is one minus the

probability that no mutations occur: 1K ð1KuÞt

e
K
Ð L1

0
mðsÞds

e
K
Ð L2

0
mðsÞds.e

K
Ð LtC1

0
mðsÞds

. This can be written

as 1K ð1KuÞtexpðK�mðL1ÞL1K �mðL2ÞL2/K�mðLtC1ÞLtC1Þ,

where �mðLÞZ 1
L

Ð L
0 mðsÞds is the average rate of within-host

adaptation over an infection of length L. We then need to

un-condition the variables t and ÐLhðL1;L2; . ;LtC1Þ to

obtain the probability of emergence

P ZE
t

E
ÐL

1K ð1KuÞtexp K�mðL1ÞL1

���
K �mðL2ÞL2

/K�mðLtC1ÞLtC1

�
jt
��
: ðA 5Þ

Equation (A 5) is exact, but the mutation rates will typically

be small and therefore u and the functionm(s) will be of small

magnitude. This can be formalized by viewing u as being

composed of some underlying constantmultiplied bya small

factor, 3. Similarly, we can view the function m(s) as being

composed of some underlying (bounded) function of L

multiplied by the same small factor, 3. Then we can expand

expression (A 5) in a Taylor series with respect to 3 to first-

order, giving

PZE
t

E
ÐL

1Kð1KuÞtexpðK �mðL1ÞL1

��

K �mðL2ÞL2/K �mðLtC1ÞLtC1Þjt�

�

ZE
t

E
ÐL
½ �mðL1ÞL1C �mðL2ÞL2/C �mðLtC1ÞLtC1Cutjt�

� �
Coð3Þ

ZE
t

ðtC1ÞE
ÐL
½ �mðLÞL�Cut

� �
Coð3Þ

Zð�tC1ÞE
ÐL
½ �mðLÞL�Cu�tCoð3Þ; (A 6)

where �t is the expected number of transmission events.

Standard results from stochastic models of epidemics show

that, regardless of the distribution of number of new

infections generated by each infected individuals, the

expected number of transmission events is �tZR0=ð1KR0Þ.
Proc. R. Soc. B (2005)
Consequently, we have Pzð1=ð1KR0ÞÞðE
ÐL
½ �mðLÞL�CuR0Þ.

If we make the further assumption that there is not much

variation in the length of an infection, then this can be further

approximated by Pzð1=ð1KR0ÞÞð �mðLÞLCuR0Þ where L is

now the typical, average length of an infection. Notice that

this result is extremely general, applying to any disease

regardless of the pattern of mortality, clearance and

transmission during an infection (i.e. it does not rely on the

assumption that the transmission and death/clearance rates,

b and d respectively, are constant as models 1 and 3 in the

text do).
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