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Abstract. Models of Fisher’s runaway process show that if there is a cost to female preference, no preference or male
trait exaggeration will evolve. Surprisingly, this is true no matter how small the cost, which reveals that these models of
Fisher’s process are structurally unstable (Bulmer 1989). Here a model of Fisher’s runaway process is presented to dem-
onstrate that costly female preference evolves very easily when space is explicitly included in the model. The only requirement
is that the optimal male phenotype changes across the species’ range. The model shows that the spatial average of the
female preference and male trait reach an evolutionary equilibrium that is identical to those of nonspatial models, but that
the preference and male trait can deviate greatly from these averages at any point in space. For example, if random mating
results in the lowest cost to females, then at equilibrium the spatial average preference will be zero. Nevertheless, there
will be some locations at which females prefer males with larger ornaments and others where they prefer males with smaller
ornaments. Results also show that the structural instability of nonspatial models of Fisher’s process is less of a problem
in spatial models. In particular, many of the main qualitative features of cost-free spatial models of Fisher’s process remain
valid even when there are small costs of female preference. Finally, the model shows that abrupt changes in the optimal
male phenotype across space can result in an amplification of this pattern when preference has a small cost, but it can also
result in a pattern similar to reproductive character displacement. Which of these occurs depends on the magnitude of the
cost of female preference. This suggests that some patterns of reproductive character displacement in nature might be
explained simply by sexual selection rather than by hybrid dysgenesis and reinforcement.
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In many sexual species males exhibit conspicuous traits
such as bright coloration, greatly exaggerated morphological
characters, or complex display behaviors and song (Anders-
son 1994). Although some such features might confer a sur-
vival advantage and therefore might have evolved through
natural selection, it seems unlikely that this is universally
true. In fact, as Darwin (1871) recognized, many of these
conspicuous traits probably confer a survival disadvantage
to those that bear them. Therefore, explaining the existence
of these traits poses a difficult problem. Darwin proposed a
solution with the theory of sexual selection. If males that
exhibit these conspicuous traits are more successful in ob-
taining a mate, then these traits might evolve through what
he termed sexual selection in spite of the fact that they result
in a survival disadvantage. Darwin’s idea rests upon the pre-
mise that females will prefer to mate with conspicuous males
and that such males will thereby have a higher mating suc-
cess. Both of these premises have now been abundantly cor-
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roborated in natural systems lending support to Darwin’s
theory (Andersson 1994).

Although Darwin’s theory of sexual selection provided a
powerful explanation for the existence of many conspicuous
traits, one difficulty still remained. Why is it that females
exhibit a preference for such exaggerated traits when they
must often come at a cost to males? An answer to this ques-
tion was provided by Fisher (1958) in his verbal model of
the self-reinforcing evolution of male trait and female pref-
erence (this idea was actually first suggested as a joke by
Morgan 1903; for an interesting discussion, see Andersson
1994, p. 24). This has come to be known as Fisher’s runaway
process, and it postulates that a positive genetic correlation
between female preference and male trait builds up as a result
of any initial female preference. Therefore, females choosing
conspicuous males are incidentally also choosing males that
carry (unexpressed) genes for the female preference. Each
generation this process reinforces itself and thereby causes
the runaway evolution of both the male trait and the female
preference. The end result is that the male trait evolves to a
maladapted state from the perspective of survival, but this
fitness penalty is paid for by enhanced mating success. Al-
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though Fisher’s runaway evolution requires some initial fe-
male preference to set the process in motion, zero preference
is an unstable state. A number of authors have now dem-
onstrated the validity of Fisher’s hypothesis using explicit
mathematical models (O’Donald 1980; Lande 1981; Kirk-
patrick 1982; Seger 1985), and there is now evidence that a
positive genetic correlation exists between male trait and fe-
male preference in many species as well (Bakker 1993; Wil-
kinson and Reillo 1994; also see Andersson 1994, ch. 2).

In addition to Fisher’s idea, several alternative hypotheses
have been put forward to explain the evolution of female
preference for conspicuous traits. One idea is that conspic-
uous traits function as indicators of some form of male quality
that enhances a female’s fitness or the fitness of her offspring
(Zahavi 1975, 1977; Grafen 1990a,b; Kirkpatrick and Ryan
1991; Price et al. 1993). Another is that the sensory system
of females is predisposed to prefer certain traits, because it
is has evolved to serve other functions (Ryan 1990; Kirk-
patrick and Ryan 1991; Ryan and Keddy-Hector 1992). For
example, preference for extreme traits might occur as a by-
product of the female’s sensory system being adapted to for-
aging in certain habitats. One advantage that both of these
alternatives appear to have over Fisher’s hypothesis is their
ability to operate in the face of costs to female preference.
Choosy females might pay a cost through increased predation
risk and/or loss of time and energy (Pomiankowski 1987;
Reynolds and Gross 1990; Andersson 1994). Models of Fish-
er’s runaway process have shown that when such costs exist,
the reinforcing evolution of trait and preference usually can-
not occur (Lande 1980; Kirkpatrick 1985; Pomiankowski
1987; Bulmer 1989; Maynard Smith 1991; Pomiankowski et
al. 1991). Selection against female preference counteracts the
tendency for runaway evolution, and this results in the cost
of preference being minimized at equilibrium and males ex-
hibit no trait exaggeration. This suggests that Fisher’s hy-
pothesis cannot provide an explanation for the existence of
costly female preference.

A dismissal of Fisher’s hypothesis for the maintenance of
costly female preference is premature, however, because
Pomiankowski et al. (1991) have demonstrated how muta-
tional bias in the male trait can result in nonzero preference
evolving (also see Bulmer 1989). If mutational bias results
in a decrease in the average male phenotype, then directional
selection on the male trait toward the optimum can cause a
correlated response in the female preference. As a result,
female preference is positive at equilibrium.

Although mutational bias is one way in which costly fe-
male preference can be maintained, most models that dem-
onstrate how costs prevent the evolution of female preference
have neglected one very important factor—space. Lande
(1982) presented the first spatial model of Fisher’s hypoth-
esis, but he assumed that female preference was cost-free.
He found that sexual selection can greatly amplify geographic
clines in the optimal male phenotype, and thus female pref-
erence and male trait can evolve to become extremely dif-
ferent on each side of the cline. Payne and Krakauer (1997)
have also analyzed a spatial model of Fisher’s process in
which female preference is cost-free. They demonstrated that
spontaneous spatial patterns in male trait exaggeration and
female preference can evolve in the absence of clinal vari-

ation in the optimal male phenotype when male dispersal rate
depends in mating success. In this paper a model is presented
to show that costly female preference can also evolve very
easily when space is explicitly considered. The only require-
ment is that the optimal male phenotype changes across
space. The model also shows that costly female preference
can cause the evolution of spatial patterns in mating that are
very similar to reproductive character displacement.

THE MODEL

I use a continuous-time spatial version of the quantita-
tive-genetic model presented by Pomiankowski et al.
(1991). The model considers the evolution of a single quan-
titative male trait (denoted by z) under sexual and natural
selection and a single quantitative female preference level
for this trait (denoted by p) under natural selection. I also
make the assumption that the phenotypic distributions of
these two traits are adequately characterized by their
means, z̄ and p̄. Therefore, following standard quantitative
genetic models (Lande 1979, 1980), the evolutionary dy-
namics of z̄ and p̄ are given by

dz̄
5 G b 1 Bb and (1)z z pdt

dp̄
5 Bb 1 G b , (2)z p pdt

where Gz and Gp are the additive genetic variances of trait z
and preference p, and B is the additive genetic covariance
between the two. I assume that the genetic covariance be-
tween the male trait and female preference is smaller than
the genetic variance in both the male trait and the female
preference (i.e., B , Gz and B , Gp). bz and bp are the
selection gradients acting on the male trait and female pref-
erence, respectively. The first term of equation (1) represents
the change in the male trait due to direct natural and sexual
selection on the trait. It is large when the strength of selection
on the trait bz and/or the genetic variance of the trait Gz is
large. The male trait also changes due to selection on the
female preference because the two are genetically correlated.
This effect is given by the second term of equation (1) and
it is large when the strength of selection on the preference
bp and/or the genetic covariance B is large. Similar consid-
erations hold for equation (2).

As in Pomiankowski et al. (1991), the genetic parameters
are assumed to change on a time scale much longer than that
of the traits and therefore they are treated as positive con-
stants. The covariance B is assumed to be positive because
assortative mating between females and males will tend to
generate a positive genetic covariance (Lande 1981; Kirk-
patrick 1982; Seger 1985). The validity of treating these ge-
netic parameters as constants is considered more fully in the
discussion (also see Rowe and Houle 1996).

The first step in providing explicit expressions for the dy-
namics, equations (1) and (2), is to specify male and female
fitness functions, Wm and Wf. I use the same formulations as
Pomiankowski et al. (1991), modified for continuous time:

2W (z; z̄, p̄) 5 ap̄(z 2 z̄) 2 c(z 2 u) and (3)m

2W (p) 5 2bp . (4)f
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Expression (3) gives the fitness of a male with phenotype z
in a population with mean trait and preference, z̄ and p̄. The
first term is the effect of sexual selection. If p̄ is positive,
then males with trait values larger than average are favored
by sexual selection and vice versa. The positive parameter a
determines the strength of this effect. The second term in
equation (3) is the effect of natural selection favoring a male
trait value of u. The strength of this effect is determined by
the positive parameter c. Expression (4) is the effect of natural
selection against female preference, and the positive param-
eter b determines the strength of this effect. This form of Wf

assumes that natural selection favors females that mate ran-
domly.

To gain an intuition for these fitness functions, one inter-
pretation of the variables z and p is that z represents the size
or intensity of a male character and p represents the amount
of time a female spends searching for a mate. Positive values
of p might imply time spent searching for a male with a
larger than average trait, whereas negative values represent
time spent searching for a male with a smaller than average
trait. Alternative forms of Wm and Wf are considered in Ap-
pendix 4.

Taking into account the fact that the fitnesses, equations
(3) and (4), are both sex limited (which will halve the overall
selection gradients), the selection gradients can be approxi-
mated as (Iwasa et al. 1991; Abrams et al. 1993; Taylor 1996)

]Wmb 5 (5)z )]z ¯z5z

1
5 [ap̄ 2 2c(z̄ 2 u)] (6)

2

and

]Wf
b 5 (7)p )]p ¯p5p

5 2bp̄. (8)

Expressions (5) and (7) give the rate at which fitness changes
with an increase in trait value for males and females respec-
tively when the population has mean values z̄ and p̄. The
selection gradient for males is the same as Lande’s (1982)
psychophysical model of mate choice. A version of his ab-
solute preference model is presented in Appendix 4.

Models of sexual selection such as system (1, 2) do not
usually treat population dynamics explicitly. Rather, there is
an implicit assumption that either the population is growing
in a density-independent manner or that density regulation
occurs by a mechanism that is independent of the traits being
modeled. Although it is not really necessary to choose be-
tween these two alternatives in nonspatial models, the spatial
model developed below allows for the effects of differences
in population density across space, and therefore it is the
second interpretation that I choose.

Using a discrete-time version of system (1, 2), Pomian-
kowski et al. (1991) showed that the only equilibrium is ẑ
5 0 and p̂ 5 0. This demonstrates that when there is a cost
to female preference, no preference will evolve. They then
showed that by introducing a mutational bias that tends to
decrease the mean male phenotype, nonzero female prefer-

ence can evolve. It turns out that explicitly incorporating
space into the model has the same qualitative effect. It arises
because of what might be termed migration bias; the move-
ment of individuals causes a net change in the average local
phenotype as a result of gene flow.

To build space into the model, I consider movement along
a single continuous spatial dimension. Although most spatial
distributions of organisms are at least two dimensional, my
results remain qualitatively valid in such cases if the relevant
geographic variation occurs primarily in one dimension.
There are a number of ways to model movement, and in
Appendix 1 a model is presented that assumes each individual
has the same probability of movement in any small interval
of time, and if an individual does move, then the distance
moved is drawn from some probability distribution (termed
the dispersal kernel). If the variance of the dispersal kernel
is small, then movement is reasonably modeled using dif-
fusion (Murray 1993; Appendix 1). I make this assumption
below, but the results of Appendix 1 provide a starting point
for exploring more general dispersal patterns.

With movement modeled by diffusion we get a system that
is identical to (1, 2), but with additional terms added to each
equation that reflect the influence of individual movement on
the mean trait values at each location in space (Nagylaki
1975; Pease et al. 1989):

2]z̄ ] z̄ d ln n ]z̄
5 D 1 2D 2 G c[z̄ 2 u(x)]z2]t ]x dx ]x

G az1 2 Bb p̄ (9)1 22

and

2]p̄ ] p̄ d ln n ]p̄
5 D 1 2D 2 Bc[z̄ 2 u(x)]

2]t ]x dx ]x

Ba
1 2 G b p̄. (10)p1 22

In these equations, z̄(x, t) and p̄(x, t) are now both functions
of space, x, and time, t, and the optimal male phenotype u(x)
is allowed to vary across space. The last two terms of equa-
tions (9) and (10) are simply the two terms of equations (1)
and (2) evaluated explicitly using the selection gradients (5)
and (7). In both equations, D is 1/2 times the average squared
dispersal distance per unit time, and therefore measures the
dispersal rate; n(x) is the population density at location x,
and it is assumed to be positive for all x within the species’
range.

The first two terms of equation (9) represent two different
ways in which individual movement can affect the mean male
phenotype at location x. First, ignoring spatial variation in
population density n(x), random movement of individuals
causes the mean phenotype at a given location to become more
similar to those nearby. As an example, if the mean male
phenotype changes linearly through space, then mathemati-
cally we have ]2z̄/]x2 5 0. In this case the dispersal of indi-
viduals will not change the mean male phenotype because the
mean phenotype of individuals immigrating from one side is
exactly compensated for by the mean phenotype of individuals
immigrating from the other. Therefore, the dispersal of indi-
viduals changes the mean phenotype at a given location only
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if the mean male phenotype varies nonlinearly throughout
space, and this effect is given by the first term in equation (9).
Spatial variation in population density can also cause the mean
male phenotype at a given location to change, however, no
matter how the male phenotype varies in space. For example,
if both the mean male phenotype and the population density
increase linearly through space, then random movement of
individuals will cause the mean male phenotype at a given
location to increase because most immigrants will come from
the right where the mean phenotype is higher. This effect is
given by the second term of equation (9). Of course, the same
holds true for the first two terms of equation (10) as well.

In general there is a third partial differential equation (PDE)
that describes the population dynamics throughout space as
well. As mentioned earlier, I assume that the population den-
sity has reached a stable equilibrium that is determined by
factors other than the traits modeled here. An interesting ex-
tension of the present model would be to allow the male trait
and female preference to affect the population dynamics.

To completely specify the model it is also necessary to make
some assumption about the way individuals move at the bound-
aries of the geographic region and to specify initial conditions.
I assume that the boundaries are reflecting, which means that
individuals do not move across them. This assumption is rea-
sonable whenever a species’ range has boundaries that are dic-
tated by the environment. Under these conditions, z̄ and p̄ must
satisfy reflecting boundary conditions (Appendix 1):

]z̄
5 0 and (11)

]x

]p̄
5 0 (12)

]x

at the boundaries. In fact, z̄ and p̄ must satisfy these boundary
conditions for a much broader class of boundary conditions
on individual movement (Appendix 1). I leave the initial
conditions, z̄(x, 0) and p̄(x, 0) arbitrary.

Before analyzing the above pair of PDEs it is useful to
nondimensionalize them. Doing so reduces the number of
parameters and it also provides more insight into the model’s
behavior. Using a subscript s to denote nondimensional (i.e.,
scaled) variables, I write z̄ 5 z̃z̄s, p̄ 5 p̃p̄s, t 5 t̃ts, and x 5
x̃xs, where z̃, p̃, t̃, and x̃ are constants that involve the di-
mensions. By choosing z̃ 5 1, p̃ 5 z̃B/Gz, t̃ 5 x̃2/D, and x̃ 5
1, system (9, 10) becomes

2]z̄ ] z̄ d ln n ]z̄s s s5 1 2 1 a [z̄ 2 u(x)] 1 a p̄ and (13)1 s 2 s2]t ]x dx ]x

2]p̄ ] p̄ d ln n ]p̄s s s5 1 2 1 a [z̄ 2 u(x)] 1 a p̄ , (14)1 s 3 s2]t ]x dx ]x

where

G cza 5 2 , (15)1 D

2G aB Bza 5 2 b , and (16)2 21 2D 2G Gz z

GG aB pza 5 2 b . (17)3 1 2D 2G Gz z

The boundary conditions remain unchanged. This formula-
tion allows the model to be directly compared to that of Lande
(1982). In particular, with cost-free preference, b 5 0, and
therefore a2 5 a3. As a result, equations (13) and (14) show
that the dynamics of z̄s and p̄s are described by the same
equation. This results because female preference evolves
solely as a correlated response to selection on the male trait
when preference is cost-free. When there is a cost to female
preference, however, a2 ± a3 and female preference evolves
in part through a correlated response to selection on the male
trait and in part through direct natural selection against the
preference itself. In nonspatial models, the only equilibrium
in cases with costly female preference is no preference. When
space is explicitly included, however, the following results
demonstrate that female preference will usually be nonzero
at equilibrium. Appendix 4 presents analogous results for
alternative forms of sexual selection.

RESULTS

Of primary interest are the equilibria and stability prop-
erties of system (13, 14). I first present two qualitative pre-
dictions of the model. Following that I present some quan-
titative results that demonstrate when the equilibria of the
model are stable and that shed light on the mechanism driving
the equilibrium patterns of male phenotype and female pref-
erence. This is followed by some numerical results. In what
follows, equilibria will be denoted by a ‘‘hat’’ (e.g., ẑs and
p̂s).

Qualitative Results

Result I. The incorporation of space generally leads to the
evolution of costly female preference provided that the op-
timal male phenotype changes across space. This is most
easily demonstrated by showing that p̂s [ 0 (uniform zero
preference across space) is not an equilibrium. In particular,
p̂s [ 0 is never an equilibrium when the boundary conditions
hold; moreover, a very precise relationship must hold be-
tween n(x) and u(x) for p̂s [ 0 to be an equilibrium even if
the boundary conditions are neglected.

With equation (14) set to zero, we can see that if p̂s [ 0
then we must also have ẑs 5 u(x) (note that the boundary
conditions on p̄s will also be satisfied when p̂s [ 0) . Using
these in equation (13) shows that if p̂s [ 0 is an equilibrium,
then we must also have that

2d u d ln n̂ du
0 5 1 2 . (18)

2dx dx dx

Thus, if an equilibrium of identically zero female preference
is to exist, the optimal male phenotype must satisfy equation
(18). The general solution of (18) is

x ] ln n̂
u(x) 5 C 1 C exp 22 ds dx, (19)1 2 E E5 6)]x x5s

where C1 and C2 are constants. Additionally, because ẑs 5
u(x), we also require that u satisfies boundary condition (11).
From equation (19) it can be seen that the only choice of
constants that also satisfy boundary condition (11) are C2 5
0, which gives u 5 C1. Therefore, female preference cannot
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be zero everywhere unless the optimal male phenotype does
not change across space. The reason is simple. For the female
preference to be zero everywhere at equilibrium, it must also
be the case that the male trait is optimally adapted every-
where. Otherwise selection on the male trait would cause a
correlated response in the female preference. But gene flow
prevents males from being optimally adapted as long as the
optimum changes across space.

In some instances it is of interest to consider evolution on
a spatial domain that is large enough to ignore any effects
of the boundaries. In this case it is possible for there to be
an equilibrium with zero female preference everywhere (with
males being optimally adapted) and for which the optimal
male phenotype changes across space. For this to occur, the
optimal male phenotype must be of the precise form given
in equation (19). For example, when the population density
is uniform across space we have that d ln n̂/dx 5 0, and
therefore u(x) must be linear in x. As another example, if
population density is proportional to a Gaussian curve (e.g.,
n } e , then we must have22x )

22xu(x) 5 C 1 C e dx.1 2 E
Result II. The equilibrium pattern of female preference

across space always involves both positive preferences and
negative preferences: in particular, the average female pref-
erence across space, weighted by the local population density
squared, is zero. In other words, there are always locations
where females prefer males with larger than average traits
and other locations where females prefer males with smaller
than average traits. To see this simply set equations (13) and
(14) to zero, multiply by n2, and integrate over x. This gives

2 20 5 a [ẑ 2 u(x)]n dx 1 a p̂ n dx and (20)1 E s 2 E s
Y Y

2 20 5 a [ẑ 2 u(x)]n dx 1 a p̂ n dx. (21)1 E s 3 E s
Y Y

where Y denotes the spatial domain. Assuming b ± 0 (and
therefore a2 ± a3), these two equations imply

2p̂ n dx 5 0 and (22)E s
Y

2[ẑ 2 u(x)]n dx 5 0. (23)E s
Y

Both equalities (22) and (23) also hold after multiplication
by a constant. Therefore, multiplying each by 1/# n2 dx shows
that the average female preference across space, weighted by
the squared local population density, is zero. Similarly, the
average deviation of the mean male trait from the optimum,
weighted by the squared population density, is also zero.
Appendix 4 presents the analogous results for a different form
of sexual selection.

The above results reveal an interesting feature of the evo-
lution of costly female preferences in space. The evolution
of the spatial average female preference and the spatial av-

erage male maladaptation follows the dynamics of nonspatial
models; for example system (1, 2). The difference between
the spatial and nonspatial models is that, although the equi-
librium spatial average female preference and male malad-
aptation are both zero, they are not identically zero through-
out space.

Quantitative Results

The above analysis demonstrates some qualitative features
of the equilibrium pattern of female preference and male
phenotype. Of course these predictions are relevant only if
such patterns represent a stable equilibrium. Therefore the
first quantitative issue of interest is to determine the condi-
tions for stability. Following this, some quantitative results
are presented for the equilibrium female preference and male
phenotype.

Stability of equilibria

Provided that selection against female preference is weak
(i.e., b is small), the equilibrium described above is locally
stable if B/Gz , 2c/a (Appendix 2). This inequality states
that the ratio of the genetic covariance to the genetic variance
in the male trait must fall below a threshold that is itself a
ratio of the strength of natural selection to the strength of
sexual selection on males. The ratio B/Gz measures how tight-
ly coupled the evolution of the two traits is, and stability
requires that this coupling be very weak if the strength of
sexual selection is very large and/or the strength of natural
selection is very small. This inequality has appeared previ-
ously as the stability condition in other models of Fisher’s
runaway process where there was no cost to female preference
(e.g., Lande 1981; Pomiankowski et al. 1991). In those mod-
els, this inequality is both necessary and sufficient for sta-
bility, but here the conditions for stability are slightly broad-
er. The inequality is sufficient for stability, but it is possible
that stability occurs when this inequality is not satisfied.
Thus, if a cost-free model such as Lande’s (1982) has a stable
equilibrium, then including a small cost to preference will
not alter this stability. A general condition for stability with
any strength of selection against female preference is given
in Appendix 2.

The equilibrium pattern of female preference

Given a stable equilibrium, insight into how such costly
female preference is maintained can be gained by deriving
an expression for the equilibrium female preference across
space in terms of the equilibrium male phenotype. I focus
on the case where population density is uniform across space
because it admits analytical solutions, and including popu-
lation density variation tends only to alter predictions slightly
(unpubl. numerical results). The equilibrium female prefer-
ence across space is given by (Appendix 3)

v2

p̂ (x) 5 ẑ (x) 2 c(j, x)ẑ (j) dj, (24)s s E s
v1

where ẑs(x) is the equilibrium male phenotype, v1 and v2 are
the lower and upper boundaries of the spatial axis, and c(j,
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FIG. 1. An illustration of why female preference cannot be zero
everywhere at equilibrium. Suppose that female preference starts
at zero everywhere. The figure focuses on a particular spatial lo-
cation, and u represents the optimal male phenotype at this location.
(a) The ellipse marked R represents the distribution of breeding
values for male phenotype and female preference at a particular
spatial location termed the ‘‘resident.’’ Its major axis has positive
slope reflecting a positive genetic covariance. The distribution of
breeding values of the immigrants to this location is represented
by the ellipse marked I. In this example, immigrants have a lower
mean breeding value for the male trait but the mean breeding value
for the female preference is zero everywhere. (b) The breeding value
distribution at the resident location after dispersal. The mean breed-
ing value for the male trait has decreased but that of the female
preference remains unchanged. (c) The distribution of breeding val-
ues after selection. Directional selection for a larger male trait caus-
es a correlated response in the female preference taking its mean
value away from zero. Selection on the preference cannot keep it
at zero because selection acts against both males and females in
the lower left of the distribution in (b), but it acts against females
and in favor of males in the upper right of the distribution.

x) is a probability distribution in j (i.e., # c(j, x) dj 5 1v2
v1

for each x) that weights the influence of male phenotypes at
other locations on location x. Here j is a dummy variable of
integration. A general expression for c is given by equation
(A36) in Appendix 3, but considering the case where the
boundaries are far away provides the most insight. In this
case we have (Appendix 3)

Ïk exp(2Ïk zx 2 jz)
c(j, x) ø , (25)

2

where k is a positive constant given by

2GG Bpzk 5 2 b.
21 2D G Gz z

Expression (24) reveals that the equilibrium preference at a
given location is simply the difference between the mean
male phenotype at that location and the spatial average of
the mean male phenotype at nearby locations. This spatial
average in the second term of equation (24) weights locations
less with increasing distance and represents the average male
phenotype of immigrants to location x. This reflects the mech-
anism by which nonzero female preference is maintained. In
particular, female preference at location x will be positive if
the mean male phenotype at that location is, on average,
larger than the mean male phenotype of immigrants. The
reason is that, in such cases, the dispersal of individuals tends
to reduce the mean male phenotype at that location. Con-
sequently, the selection gradient on the male phenotype at
that location must be positive to maintain the male trait value
at ẑs(x). Because female preference is genetically correlated,
the preference gets dragged along and is therefore positive
(Fig. 1). This reasoning suggests that, roughly speaking,
where the equilibrium male phenotypic pattern is concave
down, the female preference will be positive and vice versa.
Notice that this effect of the dispersal is qualitatively similar
to the effect of mutational bias in males as presented by
Pomiankowski et al. (1991), and might be termed migration
bias.

Expression (25) also shows that is a measure of spa-1/Ïk
tial neighborhood over which the male phenotype is averaged.
This is sometimes referred to as the characteristic length, and
it is the spatial scale on which migration tends to overwhelm
selection (Slatkin 1978; Lande 1982). Therefore, for a fixed
equilibrium pattern of male phenotype, if dispersal rate D is
low, the genetic covariance B is low, the cost of preference
b is high, or the genetic variance in female preference Gp is
high, then the averaging in equation (24) is taken over a very
small, local neighborhood. In other words, the spatial scale
on which migration tends to overwhelm selection is very
small. As a result the average difference in male trait value
on this scale will be nearly zero and therefore, from (24), the
local female preference will also be nearly zero. Biologically
this occurs because reduced dispersal and reduced genetic
covariance will both decrease the correlated response to se-
lection that the female preference undergoes. Similarly, in-
creased cost of preference and increased genetic variance for
preference will both enhance the evolutionary change in pref-
erence toward zero through the direct effects of selection.
However, I stress that the above considerations assume a
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fixed ẑs(x). But changing the values of these parameters might
also change ẑs(x,) and it is necessary to consider this as well
when determining how female preference will change overall.
This is illustrated in the numerical examples below.

One other feature of equation (24) worth noting is that the
relationship between female preference and the spatial pattern
of male phenotype at equilibrium is independent of both a
and c. Therefore, although these parameters will influence
the equilibrium pattern in the male phenotype, they do not
influence the relationship between that and the equilibrium
female preference.

The equilibrium pattern of male phenotype

The above results reveal how costly female preference is
maintained at equilibrium, but to understand what this spatial
pattern will actually look like in any given instance, it is
necessary to determine the equilibrium pattern of male phe-
notype across space. Although it is possible to obtain a gen-
eral expression for the equilibrium male phenotype (unpubl.
data), it is quite complicated. It is relatively easy, however,
to guess its qualitative features for some regions of parameter
space. For instance, whenever the strength of natural selec-
tion on the male trait outweighs the strength of sexual se-
lection, the male phenotype will evolve to an equilibrium
that is largely determined by natural selection. This will be
true whenever the cost to preference b is high and/or its
genetic variance Gp is also high because little preference will
then evolve. It will also be true if the cost to males of being
maladapted is high, the strength of sexual selection is low
and/or the genetic correlation between male trait and female
preference is low. In all such cases the equilibrium male
phenotype will tend to be a spatial averaging of the optimal
male phenotype across space (Slatkin 1978). Given this male
equilibrium, we can then use equation (24) to understand the
equilibrium female preference.

It becomes more difficult to guess the pattern of male phe-
notype when the cost of preference is small. Nonspatial mod-
els exhibit a form of structural instability whereby substantial
female preference and maladaptation of male phenotype can
evolve when there is zero cost to preference, but female pref-
erence evolves to zero and the male trait reaches its optimum
when any amount of cost is introduced, no matter how small.
As a result, cost-free models and models with very small
costs give qualitatively different predictions. The derivations
below show that, although an analogous form of structural
instability occurs here as well, it is less of a problem. In
particular, when there is a small cost of female preference,
the major features of Lande’s (1982) cost-free model remain
unchanged. All results presented here assume that the pop-
ulation density is uniform across space.

First, define
v21

z* 5 ẑ (j) dj, (26)s E sv 2 v2 1 v1

v21
p* 5 p̂ (j) dj, and (27)s E sv 2 v2 1 v1

v21
u* 5 u(j) dj, (28)Ev 2 v2 1 v1

as the (unweighted) spatial averages of the male trait, female
preference, and the optimal male trait, respectively. When
the cost of female preference becomes small (i.e., b becomes
small), c(j, x) converges to 1/(v2 2 v1). As a result, from
equation (24) we have that . Moreover,p̂ (x) ø ẑ (x) 2 z*s s s

equation (23) shows that , and therefore this can bez* 5 u*s

rewritten as p̂s(x) ø ẑs(x) 2 u*. From this, a differential
equation for the equilibrium spatial pattern of male phenotype
(when b becomes small) can be obtained by substituting this
expression into equation (13) and setting ]z̄s/]t to zero. This
equation is approximate, but it becomes increasingly accurate
as b gets smaller. Now, by defining as the deviation ofũ(x)
the optimal male phenotype from its spatial average (i.e.,

, calculations analogous to those of Ap-u(x) 5 u* 1 ũ[x])
pendix 3 to show that

v2G czẑ (x) ø c̃(j, x)ũ(j) dj 1 u*, (29)s EaB
v1G c 2z 2

where is given by equation (A36), but with k 5 1/c̃(j, x)
D(Gzc 2(aB/2)). Again, this is an approximation that be-
comes increasingly accurate as the cost of preference, b, gets
smaller. Therefore, when the cost of preference is small, the
equilibrium male phenotype at any location is approximately
equal to the average optimal male phenotype, u*, plus a quan-
tity proportional to the spatial average of the deviations in
the optimum male phenotype from u*, where each spatial
location is weighted less with increasing distance. The con-
stant of proportionality, Gzc/[Gzc 2 aB/2], has been referred
to as an ‘‘amplification factor’’ by Lande (1982) because it
is greater than one and therefore tends to amplify the pattern
in the optimal male phenotype, . In this case, the equi-ũ(x)
librium female preference is simply the first term of expres-
sion (29):

v2G czp̂ (x) ø c̃(j, x)ũ(j) dj. (30)s EaB
v1G c 2z 2

Assuming the boundaries of the spatial domain are far enough
away that they have no effect (as in Lande 1982), c can be
approximated by expression (25). In this case, expression
(29) is identical to Lande’s result, but with one qualitative
difference. In his result u* is replaced by an essentially ar-
bitrary constant. Here u* is determined by the clinal pattern
in optimal male phenotype and is therefore fixed. This is an
analogue, for spatial models of Fisher’s process, of the struc-
tural instability found in nonspatial models (Pomiankowski
1987; Bulmer 1989; Barton and Turelli 1991). Nonspatial
models have a neutral line of equilibria along which a pop-
ulation can drift when there are no costs to preference. When
there are costs, however, this line collapses to a single point
equilibrium no matter how small the cost. In Lande’s (1982)
spatial model, he found a single equilibrium spatial pattern
of male phenotype that was neutrally stable to changes in the
spatial average male phenotype. In other words, the spatial
pattern of male phenotype was neutrally stable with respect
to vertical shifts in the entire curve. The present results dem-
onstrate that, with any nonzero cost to female preference, this
neutral stability disappears and the equilibrium spatial pattern
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FIG. 2. Numerical results when the optimal male phenotype changes linearly across space. Parameter values Gz 5 Gp 5 1, B 5 0.1, c
5 1/30, and u(x) 5 5 1 5x. Graphs depict two values of the dispersal rate, D. Dotted line is the optimal male phenotype. In panels (a)
and (b), a 5 0.1 and b 5 1/300, whereas in panels (c) and (d), the effect of sexual selection on male fitness is greater (a 5 0.5) and
selection against female preference is weaker (b 5 1/3000).

of male phenotype is instead anchored at a point where the
spatial average male phenotype is equal to u*. The important
point, however, is that this structural instability does not
affect one of the primary findings of Lande’s model—sexual
selection can greatly amplify geographic patterns in the op-
timal male phenotype across space. More specifically, as the
cost of female preference decreases, the spatial pattern of
male phenotype (and female preference) converges to the
pattern found by Lande (1982) when preference is cost-free.

Numerical Examples

I now turn to some numerical examples to illustrate the
behavior of the model. All results below assume that pop-
ulation density is uniform throughout space, and combina-
tions of parameter values are chosen to result in a stable
equilibrium. Not too much attention should be paid to ab-
solute values on the axes because the spatial axis is scaled
to unity, and the scale of measurement of the male and female
traits are left unspecified.

The simplest case is when the optimal male phenotype
changes linearly through space. From expression (19) we can
see that if the spatial boundaries are very far away, then the
males evolve to be optimally adapted everywhere and female
preference is zero everywhere at equilibrium. When the
boundaries are explicitly accounted for this is no longer true
(Fig. 2a). The reason is that subpopulations near the left
boundary receive more immigrants from the right than from
the left, and therefore, the mean male phenotype tends to be

dragged upward. The reverse holds on the right boundary.
As a result, expression (24) shows that female preference
will be negative near the left-hand boundary and positive
near the right boundary (Fig. 2b). Interestingly, this pattern
of female preference actually causes the male phenotype in
these locations to be better adapted than would be the case
in the absence of sexual selection. Thus, when female pref-
erence is costly, runaway sexual selection can actually result
in the male phenotype being closer to its natural selection
optimum. Expressions (29) and (30) also show that, if the
cost of female preference is small enough, then sexual se-
lection will amplify the geographic pattern in the optimum.
This can be seen in Figures 2c, d (note the change in scale
on the vertical axes). Notice that, when the cost of preference
is small, the runaway evolution of negative female preference
near the left boundary drives the male phenotype past its
optimum, and the same is true near the right boundary. It is
also apparent that a large enough dispersal rate can reverse
this tendency of runaway sexual selection (Fig. 2c, D 5
0.005) , because gene flow then homogenizes the population.
Of course, in this case, a large dispersal rate also results in
a smaller amount of female preference evolving at equilib-
rium (Fig. 2d). In fact, in the limit as the dispersal rate be-
comes very large, the model reduces to a nonspatial model
with costly female preference, and therefore we expect no
preference to evolve under such conditions.

It is also interesting to ask what happens to the male phe-
notype and female preference if a barrier to gene flow arises
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FIG. 3. The effect of introducing a barrier to gene flow at some location in the species’ range, when the strength of selection against
female preference is very weak. Parameter values Gz 5 Gp 5 1, B 5 0.1, c 5 1/30, a 5 0.5, b 5 1/3000, D 5 0.001, and u(x) 5 5 1
5x. Dotted line is the optimal male phenotype. (a) The equilibrium male phenotype with no barrier to gene flow. (b) The equilibrium
female preference with no barrier to gene flow. (c) The equilibrium male phenotype when a barrier to gene flow is introduced near the
edge of the species’ range. (d) The equilibrium female preference when a barrier to gene flow is introduced near the edge of the species’
range. (e) The equilibrium male phenotype when a barrier to gene flow is introduced in the middle of the species’ range. (f) The
equilibrium female preference when a barrier to gene flow is introduced in the middle of the species’ range.

at some location in the species’ range (Endler 1977; Garcı́a-
Ramos and Kirkpatrick 1997). From the above considerations
we might expect rapid divergence in female preference be-
cause, with a linear cline, preference is always negative at
one end of the range and positive at the other. A barrier to
gene flow would effectively create two ranges side- by- side
and each would exhibit this pattern. Figure 3 shows that this

is exactly what happens. Furthermore, when the range is frag-
mented into a large and a small patch, gene flow across the
small patch can cause the males to exhibit essentially no
spatial variation in phenotype, and therefore very little pref-
erence evolves as well (Fig. 3c, d). In contrast, if the two
patches are of comparable size, then opposite female pref-
erences evolve on either side of the barrier (Fig. 3f). A coun-
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FIG. 4. The effect of changes in dispersal rate, D, when the optimal
male phenotype varies periodically in space. Parameter values Gz 5
Gp 5 1, B 5 0.1, a 5 0.1, b 5 1/300, c 5 1/30, and u(x) 5 5 cos(6px)
1 10. Dotted line is the optimal male phenotype. (a) The equilibrium
male phenotype across space. The plot for D 5 0.000001 is not shown
because it is indistinguishable from the optimum on this scale. (b)
The equilibrium female phenotype across space.

ter-intuitive finding is that, in this example, females to the
left of the barrier prefer large traits, whereas those to the
right prefer small traits even though the mean male trait is
larger to the right than to the left. Also notice that, initially
runaway sexual selection can amplify the geographic pattern
in the optimum (Fig. 3a), but after the range is fragmented,
the effect of sexual selection can be overwhelmed by gene
flow in one (Fig. 3c) or both (Fig. 3e) of the habitat patches.

Another situation of interest is where the optimal male
phenotype varies in a patchy way. This can be modeled using
a periodic function for the optimal male phenotype. As ex-
pected, increasing the dispersal rate in this example always
decreases the extent to which males are locally adapted (Fig.
4a). Interestingly though, it appears that the largest amount
of female preference evolves at an intermediate dispersal rate
(Fig. 4b). When the dispersal rate is very low, males are
locally well adapted, and therefore male phenotype changes
substantially across space. Nevertheless, because few indi-
viduals disperse from one location to another (and this drives
the evolution of female preference), very little preference
evolves. In contrast, when dispersal rates are large, there is
little change in male phenotype across space, and, again, very
little preference evolves because dispersers tend to have a
phenotype similar to that of the residents (Fig. 4).

Finally, one of the most interesting cases to explore is when
the optimal male phenotype changes abruptly from one value
to another across a relatively narrow zone (Fig. 5). In this

case, Lande (1982) found that, when preference is cost-free
sexual selection can greatly amplify this geographic cline in
the optimum. As a result, extremely different male pheno-
types and female preferences can evolve on either side of the
zone of transition, and this can result in reproductive isola-
tion. An important result of the present analysis is that this
conclusion remains valid, even when there is a small cost of
preference. In particular, with a small cost of preference,
expressions (29) and (30) hold, and they show that sexual
selection can amplify the cline. This is illustrated in Figures
5a, b. With a moderate cost of preference, however, this is
no longer true. Instead, at either end of the range the male
trait is well adapted. Therefore dispersal does not alter the
mean male phenotype much at these locations, and expression
(24) shows that female preference will be zero. In the tran-
sition zone, dispersal into regions just to the left of center
(Fig. 5c, d) cause the mean male phenotype in those regions
to increase, and directional selection is negative at equilib-
rium. This results in female preference being negative at
equilibrium as well. The reverse holds in regions just to the
right of center in the zone of transition. Interestingly, the
resulting overall pattern of preference is one very similar to
reproductive character displacement. Mating is random out-
side of the zone of transition, but female preferences appear
‘‘displaced’’ from random mating in the zone of transition.
Furthermore, female preference is displaced in such a way
as to promote assortative mating in this zone. Such patterns
are often thought to arise from selection for reduced hybrid-
ization between individuals from each end of the range if
hybrids suffer reduced fitness, but these results demonstrate
that such patterns of reproductive character displacement
might arise simply from sexual selection without requiring
any hybrid dysgenesis.

DISCUSSION

Although several previous models of sexual section have
shown that Fisher’s runaway process cannot result in the evo-
lution of costly female preference (Lande 1981; Pomiankowski
1987; Bulmer 1989; Pomiankowski et al. 1991), all of these
models have neglected the importance of the spatial distri-
bution of individuals and the effect of dispersal. The model
presented here demonstrates that, if the optimal male pheno-
type varies across space, then costly female preference evolves
very easily. Furthermore, the magnitude of the female pref-
erence that evolves depends on the magnitude of the cost of
preference. Costly female preference can evolve because gene
flow prevents males from being optimally adapted everywhere,
and therefore, directional selection on males at equilibrium
prevents the female preference from remaining at zero due to
its genetic correlation with the male trait (Fig. 1).

Many authors have emphasized the role that sexual selec-
tion can play in the origin of species (e.g., Lande 1981, 1982;
West-Eberhard 1983; Deutsch 1997; Payne and Krakauer
1997). If sexual selection can result in large and somewhat
arbitrary evolutionary changes in mate recognition systems,
then isolated populations might often diverge with respect to
one another, resulting in the formation of new species. Lande
(1982) demonstrated that sexual selection across an abrupt
environmental cline in the optimal male phenotype can lead
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FIG. 5. The equilibrium pattern of male phenotype and female preference when the optimal male phenotype changes abruptly at a point
in the species’ range. Parameter values D 5 0.0001, Gz 5 Gp 5 1, B 5 0.08, c 5 1/30, and u(x) 5 5 tanh[(x 2 1/2)4p] 1 10. (a) and (b)
have a small cost of female preference (b 5 1/5000) and show the results for two strengths of sexual selection. In this case sexual selection
can greatly amplify the pattern in the optimal male phenotype. (c) and (d) have a moderate cost of female preference (b 5 1/80) and show
the results for two strengths of sexual selection. In both cases a pattern of reproductive character displacement results in the female preference.

to dramatic evolutionary changes in mate recognition systems
throughout a species’ range. Payne and Krakauer (1997) have
also shown that if male movement rate depends on mating
success, then such evolution of mate recognition systems can
occur, even in the absence of environmental clines. In some
organisms, however, environmental clines are associated with
divergent female mate preferences and/or male phenotypes
within the transition zone and little or no divergence in the
mate recognition system outside of this region (Howard
1993). Such reproductive character displacement is not pre-
dicted by models of sexual selection when mate preferences
are cost-free. Instead, these patterns are often thought to arise
from reinforcement (selection for reduced mating between
the two types of individuals found on either side of the en-
vironmental cline; Butlin 1987, 1989; Howard 1993). An
interesting finding here is that, when there is a moderate cost
of preference, patterns very similar to reproductive character
displacement are a common evolutionary outcome.

The fact that patterns similar to reproductive character dis-
placement can arise simply through sexual selection reveals
that such patterns in nature need not be explained by rein-
forcement. The extent to which sexually selected patterns of
reproductive character displacement occur in the wild however
is unclear. Many studies of ecological clines have been con-
ducted on hybrid zones between two genetically distinct pop-

ulations whose hybrids sometimes suffer a degree of reduced
fitness (Harrison 1990; Howard 1993). The model presented
here applies only to a single population distributed across an
ecological cline. Whether any of the putative examples of
reinforcement originated as a single population distributed
along a cline and which subsequently acquired the genetic
incompatibilities that now result in hybrid dysfunction is un-
known (Endler 1977). More studies of intraspecific variation
in mate preferences across a species’ range would be valuable
(e.g., Ryan and Wilczynski 1991; Ryan et al. 1992, 1996;
Arnegard et al. 1999) both for understanding hybrid zones and
for evaluating the extent to which patterns of reproductive
character displacement arise from sexual selection.

Of crucial importance to the models predictions is the as-
sumption that the genetic covariance between female pref-
erence and male phenotype is positive. At first glance, this
assumption appears circular. Female preference causes a pos-
itive genetic covariance yet the model shows that no female
preference can evolve without such a covariance being pre-
sent in the first place. The error in this logic is that the model
makes predictions about the mean preference and mean male
phenotype only. There will always be some variation in fe-
male preference even if the mean preference is zero. There-
fore a positive genetic covariance might still arise under these
conditions. Presumably the covariance would be larger when
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FIG. 6. An illustration of how natural selection and runaway sexual
selection interact to produce spatial patterns in male phenotype.
Dotted line is the optimal male phenotype. (a) Natural selection
alone results in the mean male phenotype at each spatial location
evolving until there is a balance between selection and gene flow.
Directional selection is continually pulling the mean male pheno-
type toward the optimum (indicated by the arrows), but this is
balanced by the immigration of individuals with maladapted phe-
notypes. (b) When sexual selection also operates but female pref-
erence has a moderate cost, preference evolves to be negative to
the left of the center of the range and positive to the right. This
preference acts, in conjunction with natural selection, to bring the
mean male phenotype closer to the optimum. (c) If the cost of
preference is small enough, sexual selection can actually drive the
mean male phenotype past the optimum. Note the change in scale.

the mean preference is nonzero, but enough covariance might
develop simply through variation in mate preference to set
the Fisher process in motion. Once the mean female pref-
erence evolves away from zero, the covariance might then
be expected to increase, thereby reinforcing further evolution
of the preference. These considerations suggest that an ex-
ploration of the evolutionary dynamics of the genetic co-
variance across a species’ range would be very useful.

Nonspatial models of Fisher’s runaway process exhibit a
form of structural instability (Bulmer 1989; Barton and Turelli
1991; Pomiankowski et al. 1991). Predictions of models with
cost-free preference often display a line of equilibria along
which the population can drift, but the incorporation of any
cost of preference, no matter how small, collapses this line of
equilibria to a single point at which no female preference or
male trait exaggeration is present. This calls into question the
validity of Fisher’s process because it seems likely that there
will often be some cost of preference, albeit sometimes small.
A significant finding of the present model is that this form of
structural instability is less significant in spatial models. In
particular, many of the interesting qualitative features of spa-
tial models of Fisher’s process remain valid even with a small
cost of preference. For example, Lande (1982) found that sex-
ual selection can greatly exaggerate environmental variation
when preference is cost-free. The present model shows that
this is also the case when there is a small cost of preference.
Spatial models do exhibit an analogous form of structural in-
stability, but it is an instability with respect to the spatial
average female preference and male phenotype. When pref-
erence is cost-free the spatial averages of these characters are
arbitrary and lie on a line of equilibria, whereas any cost of
preference causes the spatial average preference and male mal-
adaptation to both be zero. This instability is less of a problem
in spatial models because, although the spatial average pref-
erence and male maladaptation are zero, the male trait and
female preference can nevertheless deviate substantially from
these averages at locations throughout the species’ range.

The above considerations allow a relatively simple under-
standing of how costly female preference, runaway sexual
selection, and natural selection interact to produce spatial
patterns of male phenotype and female preference. First, sup-
pose that only natural selection is operating on males. Figure
6a depicts an example where the optimal male phenotype
changes abruptly at one location. In the absence of sexual
selection, we expect the mean male phenotype at each lo-
cation to reach an equilibrium at which natural selection is
balanced by gene flow (Slatkin 1978). Where the mean male
phenotype is larger than the optimum, directional selection
is continually pulling downward, but this is balanced by the
immigration of individuals with phenotypes that are too large
for that location. The reverse is true where the mean male
phenotype is too small. Now consider how the picture chang-
es when runaway sexual selection is allowed to occur between
the male phenotype and a costly female preference. At lo-
cations where the equilibrium male phenotype is too large,
female preference will be negative at equilibrium and vice
versa. Thus, runaway sexual selection enhances the local ad-
aptation of males by acting in concert with natural selection
to counteract the homogenizing effects of gene flow (Fig.
6b). The extent to which this runaway process alters the mean
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male phenotype depends on several factors, including the
strength of the genetic correlation, B, the strength of sexual
selection, a, and the cost of preference, b. In particular, as
the cost of preference decreases, greater female preference
will evolve and this results in a larger effect on the male
phenotype. As the cost of preference becomes small enough,
runaway sexual selection actually causes the mean male phe-
notype to surpass the optimum, and the geographic pattern
in the optimum is then amplified by sexual selection (Fig.
6c). Of course, these arguments apply for different patterns
of in the optimal male phenotype across space as well.

There are a number of extensions of the present model that
warrant consideration. A simplifying assumption made here
is that the population dynamics of the species are unaffected
by the distribution of male phenotypes and female prefer-
ences. It would be interesting to relax this assumption and
allow a feedback between the male and female characters and
the population dynamics. Such feedback can affect the size
of a species’ range (Garcı́a-Ramos and Kirkpatrick 1997;
Kirkpatrick and Barton 1997) and thereby affect the degree
of environmental variation experienced by the population.
Because this variation is what drives sexual selection in the
current model, this feedback process might have important
effects on sexual selection.

I have also assumed that the movement of individuals can
be adequately modeled using diffusion. This implicitly as-
sumes that movement is very local. Many species exhibit
occasional long-range dispersal (Endler 1977), and the effects
of this on the conclusions of the model are uncertain. The
results of Appendix 1 provide a starting point for exploring
such movement patterns.

Finally, the model presented here also assumes the dispersal
behavior of both sexes is the same. In some species, however,
it is likely that males and females exhibit different patterns of
movement. Payne and Krakauer (1997) have examined the
effects of such sex-dependent dispersal on Fisher’s runaway
process by supposing that male dispersal rate increases when
mating success is low. Under these conditions, spontaneous
spatial patterns of mate preference evolve, even in the absence
of environmental heterogeneity. Also, males with different
phenotypes become localized in different regions of space due
to independent, spatially localized runaway processes. This
suggests that a much smaller degree of environmental hetero-
geneity is required to produce substantial changes in mate
preference under such conditions than is required when male
and female dispersal behavior is the same. It would be inter-
esting to determine if such factors can enhance the level of
costly female preference that evolves as well.
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APPENDIX 1

Here I derive the movement terms of equations (9) and (10). Similar
equations have been presented before by several authors (Pease et
al. 1989; Garcı́a-Ramos and Kirkpatrick 1997; Kirkpatrick and Barton
1997) and are based on the results of Nagylaki (1975). Nagylaki
provides the only published derivation that I know of and, because
it is mathematically rigorous, it is difficult to read. My intention here
is to provide a less rigorous but hopefully more user-friendly deri-
vation. This derivation also provides a starting point for modeling
alternative forms of individual movement in addition to diffusion.

Consider a one-dimensional spatial axis, x. Define k(y) to be the

dispersal kernel; k(y)Dy is the probability that a dispersing individual
moves a distance y. I assume that this kernel is identical for both
sexes and that it is independent of the spatial location of individuals.
I will consider the effect of movement on the mean value of the male
phenotype only because the effect on female preference will be iden-
tical. Letting m be the probability that an individual disperses in a
small interval of time and c(z, x, t) be the density of individuals with
trait value z at location x at time t (i.e., c(z, x, t)Dx is the number of
such individuals between x and x 1 Dx), we have

]c
5 m k(y)[c(z, x 2 y, t) 2 c(z, x, t)] dy, (A1)E]t Y

where Y is the spatial domain (Murray 1993). With this I define the
total density of individuals at location x at time t, n(x, t), as

n(x, t) 5 c(z, x, t) dz, (A2)E
Z

where Z is the domain of the phenotypic axis. It satisfies differential
equation

]n
5 m k(y)[c(x 2 z, y, t) 2 c(z, x, t)] dy dzE E]t Z Y

5 m k(y)[n(x 2 y, t) 2 n(x, t)] dy. (A3)E
Y

This gives an equation for the population dynamics in models
where it is necessary to keep track of both the phenotypes as well
as the population density. Now I define the probability density of
trait z at location x and time t as

c(z, x, t)
q(z, x, t) 5 . (A4)

n(x, t)

It obeys the differential equation

]q(z, x, t) ]c(z, x, t) 1 ]n(x, t) 1
5 2 q(z, x, t)

]t ]t n(x, t) ]t n(x, t)

1
5 m k(y)[c(z, x 2 y, t) 2 c(z, x, t)] dyE5 6n(x, t) Y

q(z, x, t)
2 m k(y)[n(x 2 y, t) 2 n(x, t)] dyE5 6n(x, t) Y

c(z, x 2 y, t) n(x 2 y, t)
5 m k(y) 2 q(z, x, t) dyE [ ]n(x 2 y, t) n(x, t)Y

n(x 2 y, t)
2 m k(y)q(z, x, t) 2 1 dyE [ ]n(x, t)Y

n(x 2 y, t) n(x 2 y, t)
5 m k(y) q(z, x 2 y, t) 2 q(z, x, t) dyE [ ]n(x, t) n(x, t)Y

n(x 2 y, t)
5 m k(y) [q(z, x 2 y, t) 2 q(z, x, t)] dy.E n(x, t)Y (A5)

Because z̄(x, t) 5 # q(z, x, t)z dz, an equation for the time dynamics
of z̄(x, t) is then obtained as

]z̄ ]
5 q(z, x, t)z dzE]t ]t Z

n(x 2 y, t)
5 m k(y) [q(z, x 2 y, t) 2 q(z, x, t)] dyz dzE E n(x, t)Z Y

n(x 2 y, t)
5 m k(y) [z̄(x 2 y, t) 2 z̄(x, t)] dy. (A6)E n(x, t)Y

The description of movement embodied in equations (9) and (10)
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assumes that the dispersal kernel in (A1) corresponds to diffusion.
This will be true whenever the dispersal kernel has a small variance.
In this case, expanding in[n(x 2 y, t)]/[n(x, t)] [z̄(x 2 y, t) 2 z̄(x, t)]
equation (A6) in powers of y around y 5 0 and neglecting terms of
order 3 and higher gives the movement terms in equations (9) and
(10), with D equal to m/2 times the variance of the dispersal kernel.

To determine the boundary conditions, first calculate ]q/]x at the
boundaries;

]q ]c 1 ]n c
5 2 (A7)

2]x ]x n ]x n

]c /]x ]n /]x
5 q 2 . (A8)1 2c n

In the text I assume that the flux of individuals across the boundaries
is zero and therefore both terms in the parentheses of (A8) are zero
at the boundaries. As a result ]q/]x 5 0 at the boundaries. Notice
however that this will also be true whenever (]c/]x)/c 5 (]n/]x)/n
at the boundaries. In either case, the boundary conditions on z̄ are

]z̄ ]
5 q(z, x, t)zdz (A9)E]x ]x Z

]z̄ ]q
5 zdz (A10)E]x ]xZ

]z̄
5 0 (A11)

]x

at the boundaries.

APPENDIX 2
Here I derive local stability conditions for the equilibrium. Be-

cause the system of PDEs is linear, it is also possible to obtain a
formal solution (e.g., using techniques such as separation of vari-
ables; Boyce and DiPrima 1986). The solution does not provide
any more insight into the model’s behavior though (unpubl. results),
and therefore I present only the local stability analysis.

Suppose ẑs(x) and p̂s(x) are equilibrium spatial patterns of male
trait and female preference. Consider the dynamics of a small spatial
perturbation to both ẑs(x) and p̂s(x) denoted by ez(x, t) and ep(x, t).
From system (13) and (14) we have that z̄s(x, t) 5 ẑs(x) 1 ez(x, t)
and p̄s(x, t) 5 p̂s(x) 1 ep(x, t) satisfy

2](ẑ 1 e ) ] (ẑ 1 e ) d ln n ](ẑ 1 e )s z s z s z5 1 2
2]t ]x dx ]x

1 a [(ẑ 1 e ) 2 u(x)] 1 a ( p̂ 1 e ) and (A12)1 s z 2 s p

2]( p̂ 1 e ) ] ( p̂ 1 e ) ]( p̂ 1 e )d ln ns p s p s p
5 1 2

2]t ]x dx ]x

1 a [(ẑ 1 e ) 2 u(x)] 1 a ( p̂ 1 e ), (A13)1 x z 3 s p

which simplify to
2]e ] e d ln n ]ez z z5 1 2 1 a e 1 a e and (A14)1 z 2 p2]t ]x dx ]x

2]e ] e ]ed ln np p p
5 1 2 1 a e 1 a e . (A15)1 z 3 p2]t ]x dx ]x

Letting be a vector of the male and fe-Te(x, t) 5 [e (x, t), e (x, t)]z p
male perturbations (T denotes transpose), equations (A14) and
(A15) can be written as

]e
5 L[ e ] 1 Ae , (A16)

]t

where

a a1 2
A 5 (A17)[ ]a a1 3

and L[·] is the linear differential operator

2] y d ln n ]y
L[y] 5 1 2 . (A18)

2]x dx ]x

If the equilibrium is locally stable, then the perturbation vector e
must decay as t → ` The fate of can be determined by solvinge
the system of PDEs (eq. A16)

The boundary value problem defined by

L[f(x)] 5 lf(x), (A19)

where l is a constant, together with zero-flux boundary conditions,
is a Sturm-Liouville eigenvalue problem (Birkhoff and Rota 1989).
Writing it in Sturm-Liouville form gives

d df
2 2n 5 ln f. (A20)[ ]dx dx

Therefore, all eigenvalues of the operator L[·] are real and discrete
and they form an infinite sequence (Birkhoff and Rota 1989). Thus,
a formal solution to equation (A16) has the form

`

e(x, t) 5 y (t)f (x), (A21)O j j
j50

where fj(x) and lj are the eigenfunctions and eigenvalues of the
operator (A18) (i.e., they satisfy A19), and is a time-dependenty (t)j
vector satisfying

dy j
5 (A 1 l I)y . (A22)j jdt

Therefore, from equation (A21), the equilibrium will be stable to all
small perturbations if and only if all of the functions decay to zero.yj
For this to happen, we require that the largest eigenvalue of the matrix
A 1 ljI (denoted ) has negative real part for each j. To obtainr*j
simple conditions under which this will be true, I first show that l
5 0 is the largest eigenvalue of the differential operator (A19). There-
fore, we simply require that the largest eigenvalue of A has negative
real part to guarantee stability against all small perturbations.

First, multiply both sides of equation (A20) by f and integrate
over the spatial domain to get

2v v2 2df
2 2 22 n dx 5 l n f dx. (A23)E E1 2dx

v v1 1

Because the integral on the right side of (A23) is positive and that
on the left side is nonnegative, the largest eigenvalue of the operator
(A19) must be zero (and its eigenfunction is a constant). The re-
maining eigenvalues are negative, and therefore, all the eigenvalues
can be ordered as · · · lj , · · · l1 , l0 5 0. Consequently, r*0
(which is the largest eigenvalue of the matrix A) is the largest
eigenvalue all the A 1 ljI. This means that the equilibrium will be
stable to all small spatial perturbations if and only if has negativer*0
real part. This eigenvalue is given by

1
2r* 5 (a 1 a 1 Ï(a 2 a ) 1 4a a ). (A24)0 1 3 1 3 1 22

What is of most interest is the case where b is small because se-
lection against the female preference is likely to be weak. In this
case a first-order approximation of equation (A24) shows that ẑs,
p̂s is a stable equilibrium if B/Gz , 2c/a.

APPENDIX 3
Here I derive equation (24) of the text. At equilibrium and with

uniform population density, equation (13) can be subtracted from
equation (14) to give

2 2d p̂ d ẑs s2 (a 2 a )p̂ (x) 5 . (A25)2 3 s2 2dx dx

We can multiply both sides of (A25) by any function and integrate
while still retaining the equality, and therefore

v v2 22 2d p̂ d ẑs s2 (a 2 a )p̂ (j) g(j, x) dj 5 g(j, x) dj. (A26)E 2 3 s E2 25 6dj dj
v v1 1
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Here the integration is over the spatial domain, the dummy variable
of integration is j, and g(j, x) is a two-variable function that will
be chosen in such a way as to give a useful result. To simplify
notation, define

k 5 a 2 a (A27)2 3

2GG Bpzk 5 2 b, (A28)
21 2D G Gz z

which is positive. Before choosing g(j, x), I first evaluate equation
(A26) more explicitly by integrating by parts and using the bound-
ary conditions to get

v vv v1 12 22 2]g ] g ]g ] g
2p̂ 1 2 kg p̂ dj 5 2ẑ 1 ẑ dj.s E s s E s2 25 6) )]j ]j ]j ]j

v vv v1 11 1 (A29)

Now if we choose g(j, x) so that it satisfies both

]g
5 0, and (A30))]j v ,v1 2

2] g
2 kg 5 d(j 2 x), (A31)

2]j

where d(j 2 x) is the Dirac delta function, (A29) then becomes
(Greenberg 1971):

v2

p̂ (x) 5 {d(j 2 x) 1 kg}ẑ dj (A32)s E s
v1

v2

p̂ (x) 5 ẑ (x) 1 k g(j, x)ẑ (j) dj. (A33)s s E s
v1

Therefore, to get equation (24) of the text, we simply need to cal-
culate g(j, x) and show that c(j, x) 5 2k · g(j, x) is a probability
density.

The function g(j, x) is found by treating the cases j , x and x
, j separately, and requiring that g(j, x) be continuous in j at j 5
x. The boundary conditions (A30) along with this continuity con-
dition at j 5 x determine three of the four constants of integration.
The fourth constant is determined by integrating equation (A31)
from ‘‘just below’’, to ‘‘just above’’ x:

x10 x102] g
2 kg dj 5 d(j 2 x) dj. (A34)E E25 6]jx20 x20

‘‘Just below’’ (i.e., x 2 0) and ‘‘just above’’ (i.e., x 1 0) mean the
limit as j → x from below and from above. Using the fact that g
is continuous at j 5 x, equation (A34) evaluates to

x10
]g

5 1, (A35))]j x20

which gives the fourth condition required to determine g. Multi-
plying by 2k then gives c:

2Ïk(x2j) 2Ïk(v 2j) 2v Ïk 2xÏk1 2Ïke (e 1 1)(e 1 e )
if j , x

2v Ïk 2v Ïk 2 12 e 2 e
c(j, x) 5

2Ïk(j2x) 2Ïk(v 2x) 2v Ïk 2jÏk1 2Ïke (e 1 1)(e 1 e ) if x , j
2v Ïk 2v Ïk2 12 e 2 e (A36)

It is easiest to interpret these expressions in the case where the
boundaries are far enough apart that they do not have any effect
(v1 → 2` and v2 → `). In this case we get

Ïk exp(2Ïk zx 2 jz)
c(j, x) ø . (A37)

2

APPENDIX 4
The particular form of sexual selection used in the text is one

of several possibilities. Here I consider two alternatives and dem-

onstrate that most of the conclusions of the paper remain un-
changed.

The model of the text assumes that the optimal female preference
is zero. In many species it is probably more reasonable to assume
that the female’s sensory system is such that the optimum preference
is nonzero (Kirkpatrick and Ryan 1991). This can be modeled by
changing equation (4) to

2W (p) 5 2b(p 2 g) ,f (A38)

where g is the optimal female preference resulting from natural
selection. The selection gradient is then

2b(p̄ 2 g). (A39)

Using this it can be shown that system (13, 14) is unaltered except
that a4 is added to equation (13) and a5 is added to equation (14),
where

a 5 bBg /D and (A40)4

a 5 bG G g /DB. (A41)5 p z

Using these equations it can shown that there is no u(x) for which
the equilibrium female preference is optimal everywhere (p̄s is never
identically equal to g). Also, the average preference over space at
equilibrium (in terms of the nondimensional variables) is now (a5
2 a4)/(a2 2 a3) 5 Gzg/B, and the average male maladaptation is
(a3a4 2 a2a5)/(a1a2 2 a1a3) 5 ag/2c. The stability conditions for
equilibrium remain unchanged. Lastly, we can calculate the ex-
pression for the equilibrium female preference. In terms of the
nondimensional variables, it is

v2Gzp̂ (x) 2 g 5 ẑ (x) 2 c(j, x)ẑ (j) dj. (A42)s s E sB
v1

This shows that the quantitative conclusions of the text remain valid
if the equilibrium female preference is measured as a deviation
from its optimum. Notice, however, that the equilibrium male trait
will now be different due to the additional strength of sexual se-
lection that results from the females having a nonzero optimal pref-
erence. Consequently, although the relationship between female
preference and male trait are the same (when preference is measured
as a deviation from the optimum), the absolute pattern of preference
may now be different. In particular, for small cost of female pref-
erence, expressions (29) and (30) are now

v2G c azẑ (x) ø c̃(j, x)ũ(j) dj 1 u* 1 g and (A43)s EaB 2c
v1G c 2z 2

v2G c Gz zp̂ (x) ø c̃(j, x)ũ(j) dj 1 g. (A44)s EaB B
v1G c 2z 2

The model of the text also assumes an open-ended preference for
more extreme traits. An alternative scenario is that there is an ab-
solute preference by the females and that males that deviate from
this phenotype do less well in the competition for mates. This can
be modeled by changing equation (3) to

2 2W (z; z̄, p̄) 5 2a(z 2 p̄) 2 c(z 2 u) .m (A45)

The selection gradient is then

2a(z̄ 2 p̄) 2 c(z̄ 2 u). (A46)

In this case it is possible to show that the system of PDEs has the
exact same form as equations (9) and (10), except with c replaced
by c̄, a replaced by ã, and u(x) replaced by , whereũ(x)

c̃ 5 c 1 a, (A47)

ã 5 2a, and (A48)

c
ũ(x) 5 u(x). (A49)

c 1 a

Therefore, all conclusions remain the same, but with altered pa-
rameter values. It is possible to construct a model with both of the
above alterations as well.


