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1. Introduction

The basic reproduction number, denoted by R0, is one of the most important
quantities in epidemiological theory ([11], [23]). It is defined as the expected num-
ber of new infections generated by an infected individual in an otherwise wholly
susceptible population ([2], [12], [23]). Part of the reason why R0 plays such a
central role in this body of theory undoubtedly stems from its relatively simple
and intuitively sensible interpretation as a measure of pathogen reproduction. If
R0 is less than unity then we expect the pathogen to die out since each infected
individual fails to generate at least one other infection during the lifetime of the
infection.

Given that R0 is a measure of pathogen reproductive success, it is not surprising
that this quantity has also come to form the basis of most evolutionary considera-
tions of host-pathogen interactions ([1], [18]). For example, mathematical models
for numerous epidemiological settings have been used to demonstrate that natural
selection is often expected to favour the pathogen strain that results in the largest
value of R0 ([6], [18]). In more complex epidemiological settings such optimiza-
tion criteria typically cannot be derived and instead a game-theoretic approach is
taken ([5]). In this context a measure of the fitness of a rare mutant pathogen
strain is used to characterize the evolutionarily stable strain (i.e., the strain that,
if present within the population in sufficient numbers, cannot be displaced by any
mutant strain that arises). Typically R0 again plays a central role as the measure
of mutant fitness in such invasion analyses ([10], [18], [30]).

In this chapter we consider an alternative approach for developing theory in
evolutionary epidemiology. Rather than using the total number of new infections
generated by an infected individual (i.e., R0) as a measure of pathogen fitness we
use the instantaneous rate of change of the number of infected hosts instead (see
also [3], [18]). This shifts the focus from a consideration of pathogen reproductive
success per generation to pathogen reproductive success per unit time. One very
useful result of this change in focus is that we can then model the time dynamics of
evolutionary change in the pathogen population simultaneously with the epidemi-
ological dynamics, rather than simply characterizing the evolutionary equilibria
that are expected. Even more importantly, however, this seemingly slight change
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in perspective can lead to a very different interpretation of what drives pathogen
evolution than has been obtained from theory based on R0. Our contention is thus
that this alternative perspective provides a useful complement to theory based on
R0 and that can sometimes yield fresh insights into old questions regarding the
evolution of host-pathogen interactions.

Our approach is closely related to that of Day and Proulx ([10]) who de-
veloped theory based on the assumption that there is a continuum of pathogen
strains. In that publication Day and Proulx likened their approach to quantitative
genetic models. Here, however, we assume that there are a finite number of discrete
pathogen strains in the population. This provides a much simpler and more general
theoretical framework and it allows us to readily extend the approach to models
for the evolution of multiple pathogen traits, as well as models for pathogens that
can infect multiple host types. This discrete strain approach also provides a simple
framework in which models of virulence evolution as well as models of antigenic
site evolution and host immunity can be combined ([22]).

2. Price’s equation

Price’s equation has been used extensively in evolutionary biology to model
the dynamics of allele frequencies ([7], [17], [28], [29]). Although the original
version of this equation was presented in discrete-time, here we provide a simple
and very general continuous-time derivation of Price’s equation that also accounts
for mutation from one type to another. Similar derivations can be conducted in
discrete-time. We then extend these results to allow for multiple habitats.

2.1. Mathematics of selection and mutation. Let’s put all epidemiolog-
ical considerations aside for the moment, and consider a population of asexual
individuals of which there are n distinct strains. For example, these might be bac-
terial strains, asexual Daphnia clones, or strains of any other asexual species. Our
goal here is derive an equation for the rate of change of the frequency of each strain
under the action of natural selection and mutation, in the form of Price’s equa-
tion. The rate of change of the number of individuals of strain i is assumed to be
governed by the following equation:

(2.1) Ṅi = riNi − µNi + µ

n∑

j=1

mjiNj ,

where ri is the per capita rate of change of strain i (sometimes referred to as its
fitness), µ is the mutation rate for all strains, and mji is the probability that,
if a mutation occurs in an individual of strain j, it mutates to an individual of
strain i. Although equations (2.1) are perfectly fine descriptions of the evolutionary
dynamics of this system, evolutionary biologists are often more interested in the
frequency of different strains rather than their absolute numbers since evolutionary
change is defined as a change in the frequency of different alleles. Equation (2.1)
can be readily used to derive an equation for the rate of change of the frequency of
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strain i, defined as qi = Ni/NT where NT =
∑n

i=1 Ni. We have

q̇i =
Ṅi

NT
− qi

ṄT

NT

= qi (ri − r̄)− µqi + µ

n∑

j=1

mjiqj

(2.2)

where r̄ =
∑n

j=1 rjqj is the average rate of change (i.e., average fitness) of all strains
in the population.

Equation (2.2) is the fundamental equation for the rate of change of strain
frequencies. Now suppose that we are interested in the evolution of a particular
trait, x. An equation for the rate of evolutionary change in the average value of x
can be derived as

(2.3) ˙̄x =
n∑

i=1

xiq̇i,

which, using equation (2.2) gives

˙̄x =

(
n∑

i=1

qixiri − r̄x̄

)
− µ


x̄−

∑

i,j

ximjiqj




= cov (x, r)− µ (x̄− x̄m) .

(2.4)

In equations (2.4) cov(x, r) is the covariance between x and r across all strains, and
x̄m =

∑
i,j ximjiqj , which is the average trait value of all of mutations that arise.

Equation (2.4) is Price’s equation with mutation, and it (or its extension: see next
section) is the central equation of interest in this chapter.

Price’s equation (2.4) has a simple and informative interpretation. The average
trait value in the population changes as a result of two different processes. First, the
average trait value changes in a direction given by the sign of the covariance between
the trait and fitness; if strains with large values of x also have a large fitness, r,
then this covariance will be positive and natural selection drives the average of x
to higher values. Second, the average trait value changes in a direction governed
by any mutational bias that might occur (the second term in (2.4)). Specifically, if
the average trait value of mutants that arise is larger than that of the population
as a whole at any given time, then the second term in (2.4) will be positive, leading
to an evolutionary increase in x̄ through mutational bias.

It is only when the average value of the mutants that arise is the same as that
of the population that mutation has no directional effect on evolution. Although
this is a theoretical possibility, in reality some degree of mutational bias is always
expected. For example, even when the mutation rates among the different strains
are all equal (i.e., mji = 1/n) we have x̄m =

∑
i

1
nxi, which is the average trait

value if all strains were at equal frequency. Consequently, even when mutation is
unbiased among the different strains, it will nevertheless impart a directional effect
on the mean value of any given trait because selection on this trait will usually not
favour equal frequencies of all strains (and hence x̄ 6= x̄m).

2.2. An extension to multiple habitats. Before connecting the above re-
sults to evolutionary epidemiology, we first generalize equation (2.4) to allow for
multiple habitats. For example, a bacterial population of interest might exist in



4 TROY DAY AND SYLVAIN GANDON

different habitats connected by migration. Similarly, a Daphnia population might
inhabit different parts of a lake connected by migration.

To simplify the presentation we consider only two habitats, labeled A and B.
The extension to an arbitrary number of habitats will become obvious from this
case. The analogs of equation (2.1) for each of the two habitats are

(2.5) ṄA
i = rAA

i NA
i − µNA

i + µ

n∑

j=1

mjiN
A
j + rBA

i NB
i

(2.6) ṄB
i = rBB

i NBB
i − µNB

i + µ

n∑

j=1

mjiN
B
j + rAB

i NA
i .

In equations (2.5) and (2.6) rAA
i is the per capita rate of production of offspring of

strain i by such an individual in habitat A, and that end up in habitat A. On the
other hand, rBA

i is the per capita rate of production of offspring of strain i by such
an individual in habitat B, that end up in habitat A. Analogous interpretations
apply to rBB

i and rAB
i .

From equations (2.5) and (2.6) we can derive the analogues of equation (2.2)
as

q̇A
i =

ṄA
i

NA
T

− qA
i

ṄA
T

NA
T

=
rAA
i NA

i − µNA
i + µ

∑n
j=1 mjiN

A
j + rBA

i NB
i

NA
T

− qA
i

∑
i

(
rAA
i NA

i − µNA
i + µ

∑n
j=1 mjiN

A
j + rBA

i NB
i

)

NA
T

which yields

q̇A
i =rAA

i qA
i − µqA

i + µ

n∑

j=1

mjiq
A
j +

NB
T

NA
T

rBA
i qB

i − qA
i

(
r̄AA +

NB
T

NA
T

r̄BA

)

=qA
i

(
rAA
i − r̄AA

)− µqA
i + µ

n∑

j=1

mjiq
A
j +

NB
T

NA
T

(
rBA
i qB

i − qA
i r̄BA

)

=qA
i

(
rAA
i − r̄AA

)− µqA
i + µ

n∑

j=1

mjiq
A
j +

NB
T

NA
T

qB
i

(
rBA
i − r̄BA

)

+
NB

T

NA
T

r̄BA
(
qB
i − qA

i

)

(2.7)

with an analogous equation for habitat B (not shown). Note that there are two
different probability distributions used in the averages calculated in (2.7). For
example, the average r̄BA is calculated over the distribution qB

i whereas the average
r̄AA is calculated over the distribution qA

i .
Finally, we can calculate the equation for the dynamics of the average value

of trait x, specific to each habitat as ˙̄xA =
∑n

i=1 xiq̇
A
i and ˙̄xB =

∑n
i=1 xiq̇

B
i . This
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gives

˙̄xA =
∑

i

xiq
A
i

(
rAA
i − r̄AA

)−
∑

i

xi


µqA

i − µ

n∑

j=1

mjiq
A
j




+
NB

T

NA
T

∑

i

xiq
B
i

(
rBA
i − r̄BA

)
+

NB
T

NA
T

∑

i

xir̄
BA

(
qB
i − qA

i

)
,

(2.8)

or

(2.9) ˙̄xA = cov
A

(
x, rAA

)− µ
(
x̄A − x̄A

m

)
+

NB
T

NA
T

cov
B

(
x, rBA

)
+

NB
T

NA
T

r̄BA
(
x̄B − x̄A

)
.

Analogously, we have

(2.10) ˙̄xB = cov
B

(
x, rBB

)−µ
(
x̄B − x̄B

m

)
+

NA
T

NB
T

cov
A

(
x, rAB

)
+

NA
T

NB
T

r̄AB
(
x̄A − x̄B

)
.

Equations (2.9) and (2.10) are the multiple habitat versions of Price’s equation
(2.4), and they also have a useful interpretation. Let’s focus on (2.9) (equation
(2.10) can be interpreted analogously). The average trait value in habitat A changes
as a result of four processes, corresponding to the four terms in (2.9). The first two
terms are analogous to those of equation (2.4) and represent natural selection and
mutational bias specific to habitat A. The third and fourth terms represent the
evolutionary change in habitat A that results from migration of individuals from
habitat B to habitat A.

Beginning with the fourth term, migration into habitat A causes evolutionary
change in x̄A if the mean trait value differs in the two habitats. The factor r̄BA

represents the average per capita rate of such migration, and this is weighted by
the relative population sizes of the two habitats, NB

T /NA
T , to obtain the absolute

effect of migration on the mean trait value. Furthermore, these migrants will cause
an evolutionary increase in x̄A if they have an average trait value larger than that
of x̄A and vice versa. This accounts for the factor (x̄B − x̄A) in the fourth term.

Turning to the third term in equation (2.9), migration can also cause an evo-
lutionary effect on x̄A even if the average trait values in the two habitats are the
same (in which case the fourth term disappears). In particular, if those individuals
that migrate tend to have higher than average trait values, then this will drive x̄A

toward higher values and vice versa. This is represented by the covariance term
cov
A

(x, rAB). Again this is weighted by the relative population sizes of the two

habitats, NB
T /NA

T , to obtain the absolute effect of migration on the mean trait
value.

3. Applying Price’s equation to epidemiological models

The above equations are quite general, and track the dynamics of any collection
of asexually reproducing entities. Of primary interest here is using this formalism
to model the evolutionary dynamics of pathogen populations. To do so, we view
the pathogen population from the perspective of infected hosts, and interpret qi

as the frequency of all infected hosts that harbour a pathogen of strain i. This
implicitly assumes that a host contains at most a single pathogen strain at any
given time. Furthermore, mutation from strain j to strain i in the above formalism
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then corresponds to a host infected with strain j “becoming” a host infected with
strain i.

Such transitions between infection types are assumed to take place as a result
of two processes. First, a mutant pathogen strain must arise within an already
infected host. Second, it is assumed that competition between these two pathogen
strains then results in competitive exclusion. Thus, as is common in many models
of evolutionary epidemiology, we assume that a polymorphism is never maintained
within a host ([4], [27]). In fact, to simplify matters further we assume that the
competitive exclusion is effectively instantaneous (i.e., we assume superinfection;
([27])). Clearly these assumptions neglect some features of the reality of host-
parasite interactions, but they have been used successfully in previous theory to
provide considerable insight into evolutionary epidemiology ([4], [21], [22], [25],
[27]). Given the above assumptions, we next need to specify the parameters mji

and ri.
The parameter mji is the probability that an infection with strain j undergoes

a transition to an infection with strain i. This can be decomposed into the product
to two factors: (i) the probability that a strain j pathogen mutates into a strain i
pathogen within an infected host, and (ii) the probability that, given strain i has
appeared in the host, it competitively excludes the pathogen of strain j. There is
no a priori reason to expect a particular bias in any of the mutations that arise,
and therefore we assume that factor (i) is simply 1/n (i.e., strain j gives rise to all
other strains with equal probability). Factor (ii) will depend on any competitive
asymmetry between strains within a host, and we denote this probability by ρji.

The parameter ri is the per capita rate of change of hosts infected with strain i.
This will be determined by the epidemiological dynamics of the host population. To
specify ri we must therefore specify the epidemiological model that is assumed to
describe the between-host dynamics of the pathogen. We consider three examples.

3.1. A Simple S-I-R Model. As a very simple example, consider a standard
SIR description of the epidemiological dynamics. Specifically, if S, I, and R and
the densities of susceptible, infected, and recovered and immune hosts, we suppose

(3.1) Ṡ = θ − dS − βSI

(3.2) İ = βSI − dI − vI − cI

(3.3) Ṙ = cI − dR,

where θ is a constant immigration rate of susceptible hosts, d is the per capita
mortality rate of hosts in the absence of infection, β is the transmission rate of
the infection from infected to susceptible hosts, v is the pathogen-induced host
mortality rate (i.e., virulence ([8])), and c is the per capita rate of clearance of the
infection through host defense mechanisms.

Equations (3.1)–(3.3) implicitly assume that there is only one parasite strain
circulating in the host population. To connect this to the earlier results for the
evolutionary dynamics of the pathogen population we need to consider how this
epidemiological model is extended to multiple strains. If Ii is the number of hosts
infected with strain i, then (3.1)–(3.3) extend to

(3.4) Ṡ = θ − dS − S
∑

i

βiIi
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(3.5) İi = SβiIi − dIi − viIi − cIi

(3.6) Ṙ =
∑

i

cIi − dR.

Equations (3.4)–(3.6) assume that once a host is infected, it becomes immune to
all reinfection regardless of strain type. They also assume that the clearance rate,
c, is the same for all strains and that immunity is cross specific.

From equation (3.5) we can now readily identify the per capita rate of change
of each strain. Writing this equation as İi = Ii(Sβi − d − vi − c), we can see that
ri = Sβi − d − vi − c. We can now apply equation (2.4) to obtain the following
equation for the evolutionary dynamics of the two characteristics of the pathogen
that are assumed to vary between strains (i.e., the virulence, v and the transmission
rate, β). We obtain

(3.7) ˙̄v = Sσβv − σvv − µ (v̄ − v̄m)

(3.8) ˙̄β = Sσββ − σβv − µ
(
β̄ − β̄m

)
.

Here σxy is the covariance between x and y across the pathogen strains that are
circulating in the population. We can also use equations (3.4)–(3.6) to obtain
a system of equations governing the total number of susceptible, infected, and
recovered individuals. Defining I =

∑
i Ii, we can write the summation in (3.4) as

SI
∑

i βiIi/I or SIβ̄ where β̄ is the average transmission rate. Performing similar
calculations for (3.5), (3.6) yields

(3.9) Ṡ = θ − dS − SIβ̄

(3.10) İ = SIβ̄ − dI − v̄I − cI

(3.11) Ṙ = cI − dR,

where all overbars denote an expectation over the distribution of strains in the
population.

System (3.7)–(3.11) describes the coupled evolutionary-epidemiological dynam-
ics. Equations (3.7), (3.8) reveal how natural selection and within-host mutation are
acting on v and β at each instant in time as a function of the current epidemiological
state of the population. Equations (3.9)–(3.11) reveal how the epidemiological state
of the population changes over time as a function of the current average value of
virulence and transmission, v̄ and β̄. Day and Proulx ([10]) present a similar deriva-
tion in which there is a continuum of strain types possible, but interestingly those
previous results were based on an assumption of small strain variance whereas the
above results are exact and require no such assumption. The difference in the two
derivations stems from the fact that Day and Proulx ([10]) tracked the evolution
of a single trait only. This typically means that the trait enters the epidemiological
model in a nonlinear fashion, and therefore requires a small variance assumption
in order to simplify the model. Once multiple trait evolution is considered, how-
ever, these nonlinearities often disappear (as above) removing the need for this
assumption about the variance.

The variances and covariances in system (3.7)–(3.11) will also change through
time, and equations for these dynamics will typically depend on higher moments of
the strain distribution. Nevertheless, even in the absence of an explicit model for
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these dynamics, system (3.7)–(3.11) can be used to gain some insights into pathogen
evolution. It can be helpful to take a geometric approach to this question, by first
writing equations (3.7), (3.8) in matrix notation. We obtain:

(3.12)
( ˙̄v

˙̄β

)
= G

( −1
S

)
− µ

(
v̄ − v̄m

β̄ − β̄m

)

where G is termed the genetic (co)variance matrix and
( −1 S

)T is termed the
selection gradient. In general the (co)variances in equations (3.12) are functions
of the strain frequencies. It is relatively easy to obtain explicit mathematical ex-
pressions for these when there are few strains. For example, the two-strain case is
particularly simple and it also provides a natural connection with more standard in-
vasion analyses involving rare mutants. Even in more complex scenarios with many
strains, however, expressions (3.12) provide a nice way to interpret the action of
natural selection within this epidemiological setting.

The product of G with the selection gradient in equation (3.12) describes the
way in which natural selection changes the average level of virulence and transmis-
sion in the pathogen population. Natural selection always favours reduced virulence
with a strength of −1. On the other hand, natural selection always favours an in-
creased transmission rate with a strength that is proportional to the density of
susceptible hosts. At equilibrium the force of mutation must balance the force
of natural selection, as mediated through the genetic covariance structure of the
pathogen population (Figure 1).

The first interesting insight that Price’s equation yields is that, quite generally
we expect an intermediate equilibrium level of virulence and transmission regardless
of the pattern covariance (i.e., regardless of whether there is a tradeoff between
transmission and virulence). This is in contrast to most classical theoretical results
that predict virulence will evolve to be zero and transmission rate as large as possible
whenever there is no tradeoff (but see [4]). The difference in prediction arises
from the inevitable effects of mutational bias (Figure 2). The exact location of
the equilibrium will depend on the suite of strains that are possible for a given
pathogen species as well as the mutation rate. Higher mutation rates will lead to
higher equilibrium levels of virulence. This can be appreciated from Figure 2 by
noting that the hollow arrow in Figure 2c will be larger in this case, thereby pulling
the population closer to x̄m.

It is also interesting to tie these results to previous research in quasi-species
([26]). In many situations we might expect that, out of all the strains that might
exist, relatively few of these will have high fitness (i.e., have zero virulence and very
high transmission). This is because there is likely a very specific exploitation strat-
egy that a pathogen must have to gain a high transmissibility while also inducing
very little virulence. As such these high fitness strains will be akin to the “master
sequences” of quasi-species theory. The vast majority of strains in the population
will contain deleterious mutations leading to lower fitness because of a lower trans-
mission rate and/or a higher virulence. Interestingly, as has been well-documented
in quasi-species theory, there can be a threshold balance between the strength of
selection (which, here, depends on the density of susceptible hosts) and mutation
([26]). When mutation becomes too great (or selection becomes too weak – e.g.,
which can happen here if S is very small) then an “error threshold” is crossed. This
leads to the extinction of the high fitness strain (i.e., the one with low virulence
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and high transmissibility). Again this contrasts with classical results which predict
that this strain should prevail (Figure 3). For highly mutable pathogens such as
RNA viruses this might provide an explanation for the existence of intermediate
levels of virulence even in the absence of tradeoffs between pathogen characters.

Aside from the inevitable effects of mutations bias, Price’s equation yields
other interesting insights and interpretations regarding how natural selection shapes
pathogen evolution. Let’s ignore the effects of mutation, in which case equations
(3.7), (3.8) become

(3.13) ˙̄v = Sσβv − σvv

(3.14) ˙̄β = Sσββ − σβv.

One of the central predictions from the classical theory on virulence evolution is that
a heightened background mortality rate of the host will select for increased pathogen
virulence (assuming that a tradeoff between transmission rate and virulence exists
([18])). Conceptually, this is explained as resulting from the decreased lifespan of
an infected host (see [10] for a comparison of the approach presented here with
more classical game-theoretic models of this question). This reduced lifespan of
infections reduces the future transmission potential of the pathogen at any given
time during an infection, and therefore it selects for an increased emphasis on
current transmission. This is realized through the evolution of higher virulence.
The same reasoning has been used to predict the evolution of higher virulence in
response to any factor that shortens the lifespan of an infected host, including an
increased clearance rate as well as the existence of secondary infections (see section
3.2).

Equations (3.13)–(3.14) reveal that there is something amiss with this interpre-
tation. Host background mortality and clearance do not appear in the equations
for the evolution of virulence and transmission, and therefore they have no direct
effect on evolution. In fact this should be obvious from the outset. Background
mortality and clearance are both assumed to act in a fashion that is independent of
strain type, and therefore by definition they can play no direct role in the change
in frequency of strain types. Both of these factors can have an indirect role in
evolution, however, through their influence on the genetic parameters in equations
(3.13)–(3.14) and/or their influence on the density of susceptible hosts.

Typically we might expect the influence of clearance and host mortality on the
genetic variances and covariances to be relatively minor. They can play a large role,
however, in determining the density of susceptible hosts. In standard epidemiolog-
ical models such as equations (3.9)–(3.11) heightened host mortality or clearance
rates lead to a higher density of susceptible hosts. It is this increased benefit of
transmission that causes the evolution of higher virulence. This clearly illustrates
that virulence evolves to be higher solely because of its positive covariance with
transmission. Higher transmission rates are selected for because of the increased
density of susceptible hosts, and virulence gets dragged along as a correlated re-
sponse to selection. Interestingly, in this case the transient evolutionary dynamics
occurring from an increased mortality rate can actually be opposite to those occur-
ring from an increased clearance rate despite them reaching the same equilibrium
values. This can occur because of differences in the transient dynamics of S that
occur from these two different manipulations ([10]).
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Perhaps even more significantly, an increased mortality rate of infected hosts
does not necessarily lead to the evolution of higher virulence under all epidemiolog-
ical schemes. For example, if we increased host mortality rate but artificially main-
tained a constant density of susceptible hosts experimentally, then no evolutionary
change in virulence or transmission rate should occur. Thus, rather than viewing
host mortality and clearance as factors directly affecting pathogen evolution, we
should view them as factors that will affect pathogen evolution only through their
influence on the density of susceptible hosts (e.g., Figure 3). Previous theory has
focused predominately on cases whether there is a positive relationship between
mortality or clearance and the density of susceptible hosts but this need not always
be the case. It is also worth noting that the perspective used here to elucidate a
qualitative understanding of how various factors affect pathogen evolution does not
require that we even attempt to calculate the evolutionarily stable level of virulence.
Rather, a general understanding of these issues can be obtained from inspection of
the equations governing the evolutionary dynamics.

Finally, by treating the evolution of transmission rate and virulence as distinct
traits with some potential genetic covariance, the present approach opens the door
to making concrete predictions regarding the magnitude of evolutionary change in
response to various manipulations. The lack of these sorts of predictions has led to
criticisms of previous theory on virulence evolution ([13]). As an example, Ebert
and Mangin ([14]) manipulated background host mortality and then quantified
evolutionary changes in transmission rate and virulence. As already mentioned,
this manipulation will cause evolution only through its effects on the density of
susceptible hosts. Consequently, equations (3.13)–(3.14) predict that the manipu-
lation should cause a stronger evolutionary response in transmission rate than in
virulence. The reason is that the response in transmission rate is mediated directly
through the genetic variance in transmission rate whereas the response in virulence
occurs only indirectly through its genetic covariance with transmission. This differ-
ence in evolutionary response does appear to have occurred in the results of Ebert
and Mangin ([14]; see their Figure 1).

3.2. An S-I-R Model with Secondary Infections. As a second example,
we consider the same model as in section 3.1, but we now allow for secondary
infections to occur. Specifically, we allow for hosts that are already infected with a
particular strain, to acquire secondary infections as a result of contact with other
infected hosts. When such an event occurs, we again suppose that one of the two
strains competitively excludes the other instantaneously (i.e., superinfection). This
has previously been shown to result in the evolution of higher levels of virulence in
many models ([21], [22], [27], [25]).

We begin with model (3.1)–(3.3), and extend this to multiple strains as

(3.15) Ṡ = θ − dS − S
∑

i

βiIi

(3.16) İi = SβiIi − dIi − viIi − cIi + Ii

∑

j

Ij (βiρji − βjρij)

(3.17) Ṙ =
∑

i

cIi − dR.



INSIGHTS FROM PRICE’S EQUATION INTO EVOLUTIONARY EPIDEMIOLOGY 11

Equations (3.15)–(3.17) are identical to equations (3.4)–(3.6) except for the in-
clusion of secondary infection. This is represented in equation (3.16) by terms
reflecting the additional way in which infections of type i can be gained and lost.
Contacts between hosts infected with strain i and hosts infected with strain j occur
at a rate IiIj (according to the mass action assumption used implicitly in equa-
tions (3.1)–(3.3)). Upon such contact, strain i pathogens are transmitted to the
host infected with strain j at a rate βi, and strain j pathogens are transmitted to
the host infected with strain i at a rate βj . Within-host competition then takes
place, and strain i competitively excludes strain j in the j-type host with proba-
bility ρji, whereas strain j competitively excludes strain i and the i-type host with
probability ρij . Thus the total rate of change of hosts infected with strain i due
to contacts with hosts of strain j is IiIj (βiρji − βjρij). Summing this over all the
possible strain types in the population then gives the new term in equation (3.16).

To apply equation (2.4) we need to identify the per capita rate of change of
hosts infected with strain i. Using I to denote the total number of infected hosts,
we can write equation (3.16) as

İi = Ii


Sβi − d− vi − c + I

∑

j

qj (βiρji − βjρij)




or
İi = Ii

(
Sβi − d− vi − c + Iβiρ̄•i − Iβρi•

)
,

where βiρ̄•i is the average rate at which strain i infections displace infections of
other strains through secondary infection, and βρi• is the average rate at which
they themselves are displaced. This illustrates that the per capita rate of change
under this model is

ri = Sβi − d− vi − c + Iβiρ̄•i − Iβρi• .

If we further simplify matters by assuming that all strains have equivalent within-
host competitive abilities (i.e., ρji ≡ ρ), we have

ri = Sβi − d− vi − c + Iβiρ− Iβρ .

Applying equation (2.4) then gives

(3.18) ˙̄v = (S + ρI)σβv − σvv − µ (v̄ − v̄m)

(3.19) ˙̄β = (S + ρI)σββ − σβv − µ
(
β̄ − β̄m

)
.

Note the similarity between these equations and equations (3.7), (3.8). Secondary
infection has a very simple effect on the evolutionary dynamics; it changes S in
equations (3.7), (3.8) to S + ρI in equations (3.18), (3.19). Under secondary in-
fection, hosts that are already infected now represent an additional ‘resource’ that
can be used for transmission, and ρ is a factor that weights the susceptibility of
already infected hosts to secondary infections, relative to the susceptibility of hosts
with no infection. We can also use equations (3.15)–(3.17) to obtain a system of
equations governing the total number of susceptible, infected, and recovered indi-
viduals, yielding exactly the same system as before (i.e., equations (3.9)–(3.11)).
Secondary infection has no direct effect on the epidemiological dynamics.

Again Price’s equation yields some interesting new insights in the case of sec-
ondary infection. As mentioned in section 3.1, secondary infection has previously
been suggested to cause the evolution of higher virulence because it reduces the
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lifespan of an infected host in much the same way that increased mortality or clear-
ance does. The suggestion is that this reduces the future transmission potential
of the pathogen at any given time during an infection and therefore it selects for
higher virulence. Examination of equations (3.18)–(3.19) reveals that, as with the
case of mortality and clearance, this interpretation is incorrect. Secondary infection
selects for higher virulence solely because it increases the benefit of transmission,
and because transmission is positively genetically correlated with virulence.

Another way to appreciate this difference in interpretation is to imagine con-
ducting an experiment with a host-pathogen system that does not normally have
secondary infection (e.g., some phage-bacteria systems; [24]), but in which you can
experimentally induce secondary infection. Suppose you maintained a control pop-
ulation with no secondary infection, and an experimental population in which you
caused secondary infections with randomly chosen pathogen strains. The loss rate
of infected hosts in the experimental population through secondary infection would
be elevated, and therefore previous interpretations would lead you to expect the
evolution of higher virulence. This will not actually occur, however, and equations
(3.18)–(3.19) reveal why. Secondary infection selects for higher virulence solely be-
cause it increases the benefit of transmission, and because transmission is positively
genetically correlated with virulence. The experimental design suggested here has
removed this benefit while maintaining the level of secondary infection. Specifically,
strains causing secondary infection are chosen randomly and therefore the covari-
ance between transmission rate and virulence is zero for all secondary infections.
In this case equations (3.18), (3.19) reduce to equations (3.7), (3.8) revealing that
secondary infection will have no evolutionary consequences.

3.3. The Curse of the Pharaoh. Our final example examines the so-called
“Curse of the Pharaoh” hypothesis ([3], [16], [20], [31]). This hypothesis applies to
pathogens that have free-existing environmental stages (e.g., spores) such as Bacil-
lus anthrax and many of the nucleopolyhedrosis viruses of insects. The hypothesis
postulates that long-lasting environmental stages (which we will refer to here as
spores) result in the evolution of higher virulence. In such cases the pathogen can
kill its host quickly without compromising transmission to other hosts because of
the existence of transmissible spores persisting in the environment. The hypothesis
derives its name from the suggestion that virulent pathogens with long-lived spores
might have been the cause of the mysterious death of Lord Carnarvon after opening
the tomb of King Tutankhamen ([3], [20]).

As with the previous two examples, we begin by specifying an epidemiological
model. Several authors have examined this hypothesis ([3], [9], [20]), and here we
use a special case of the model by [9]:

(3.20) Ṡ = Φ

(3.21) İ = γSF − (d + v)I

(3.22) Ḟ = κI + vωI − δF .

The variables S, I, and F are the populations sizes of susceptible hosts, infected
hosts, and freely-existing spores. We leave the dynamics of the susceptible class un-
specified. The parameter γ is the transmission rate of spores from the environment
to susceptible hosts, d is the natural host death rate, v is the pathogen-induced
death rate (i.e., the virulence), κ is the rate at which infected hosts shed spores
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into the environment, ω is the number of spores shed into the environment upon
pathogen-induced death of the host, and δ is the per capita loss rate of spores from
the environment. Model (3.20)–(3.22) assumes that infections are generated only
through contact between susceptible hosts and environmental spores, and that this
has a negligible effect on the number of spores in the environment.

Model (3.20)–(3.22) embodies two different pathogen habitats: (i) the host
habitat, and (ii) the environmental habitat. As a result, we will need to use the
multiple-habitat version of Price’s equation to model evolutionary change. Doing
so requires that we first extend model (3.20)–(3.22) to multiple strains. Focusing
only on equations (3.21), (3.22) gives

(3.23) İi = γSFi − (d + vi)Ii

(3.24) Ḟi = κiIi + viωIi − δFi .

In equations (3.23), (3.24) we have assumed that the rate of transmission of spores
to susceptible hosts, γ, is independent of strain type, as is the number of spores
produced upon pathogen-induced host death, ω. Model (3.23)–(3.24) does not allow
for superinfection, but it can be extended to do so relatively easily. This requires
only that equation (3.23) be changed to

(3.25) İi = γSFi − (d + vi)Ii + Fi

∑

j

Ijγρji − Ii

∑

j

Fjγρij .

The second-to-last term in equation (3.25) represents the influx of strain i infections
through secondary infection. It is the rate at which hosts infected with strain j
come into contact with spores of strain i (i.e., FiIj) multiplied by the probability of
transmission, γ, and the probability that strain i competitively excludes strain j, ρji

(summed over all strains j). Similarly, the last term in equation (3.25) represents
the loss of strain i infections through secondary infection. It is the rate at which
hosts infected with strain i come into contact with spores of strain j (i.e., FjIi)
multiplied by the probability of transmission, γ, and the probability that strain j
competitively excludes strain i, ρij (summed over all strains j).

To apply Price’s equation (2.9)–(2.10) we now need to identify rII
i and rFI

i .
These represent the per capita rate of production of strain i infected hosts by
strain i infected hosts, and by strain i spores respectively. Similarly, we need to
identify, rIF

i and rFF
i , which represent the per capita rate of production of strain i

spores by strain i infected hosts and by strain i spores respectively. From equations
(3.23)–(3.24) we can see that rII

i = −(d + vi), rFI
i = γS, rIF

i = ωi + viω, and
rFF
i = δδ. If there are secondary infections then rIF

i and rFF
i remain unchanged

(because equation (3.24) remains unchanged) while rII
i and rFI

i become rII
i =

−(d + vi)− Fγρ̄i• and rFI
i = γS + ρ̄•iγI, where ρ̄i• is the average probability that

strain i infections gets competitively excluded during secondary infection, and ρ̄•i
is the average probability that strain i secondary infections competitively exclude
other strains in secondary infections.

For simplicity we will assume that ρji is a constant (and equal to ρ) and we
will ignore mutational effects on virulence and focus only on the effects of natural
selection. In this case applying equations (2.9)–(2.10) to virulence, v, gives

(3.26) ˙̄vF =
I

F

(
σI

κv + ωσI
vv

)
+

I

F

(
κ̄I + ωv̄I

) (
v̄I − v̄F

)
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and

(3.27) ˙̄vI = −σI
vv +

F

I
γS

(
v̄F − v̄I

)
,

where I and F to denote the total population size of all infected hosts and spores
respectively. In the case of secondary infection equation (3.26) remains unchanged
but equation (3.27) becomes

(3.28) ˙̄vI = −σI
vv +

F

I
γ (S + ρI)

(
v̄F − v̄I

)
.

Even though the pathogen spores do not express virulence, each spore can still be
characterized by its strain type, which indicates the level of virulence it would cause
in a host. Equation (3.26) then gives the dynamics of the average level of virulence
in this spore population. Finally, the equations governing the total number of
infected hosts and spores are

(3.29) İ = γSF − (d + v̄I)I

(3.30) Ḟ = κ̄II + v̄IωI − δF.

Equations (3.26)–(3.28) provide an interesting perspective on virulence evo-
lution in spore-producing pathogens. We are primarily interested in the average
level of virulence that is expressed when pathogens infect the host, v̄I , and thus
equations (3.27) or (3.28) are of most interest. The first term in equation (3.27)
or (3.28) (i.e., −σvv) shows that virulence is always selected against in the host
population regardless of whether there is secondary infection or not. The reason
is simply that low virulence strains will persist for longer in the host population
than high virulence strains because the latter will kill their hosts quickly and then
be shed into the spore population. Indeed the only reason why virulent strains are
able to persist in the host population is that they “migrate” into hosts from the
spore population.

The average level of virulence in the spore population (even though it is unex-
pressed) is higher than that in the host population (v̄F > v̄I). This can be seen
directly from equation (3.26), which reveals that v̄F will always increase above the
value of v̄I . Biologically, this occurs because it is the most virulent strains that
tend to be shed into the spore population. Thus the second term in equation (3.27)
or (3.28) will be positive, and will eventually counterbalance the selection against
virulence in the host population. Furthermore, we can see that the strength of this
effect of “migration” is determined by the magnitude of the flow of spores into the
host population (i.e., the force of infection). This will be higher when there is sec-
ondary infection because spores then move into the host population through both
susceptible and infected hosts. This is reflected by the fact that the only effect of
superinfection is to change S in equation (3.27) to S + ρI in equation (3.28). This
selects for higher virulence in a fashion analogous to that in the model of section
3.2.

We can now ask how the lifespan of spores is expected to affect the evolution of
virulence. The Curse of the Pharaoh hypothesis states that an increase in δ (which
results in a decreased spore life-span) should lead to the evolution of lower virulence.
The parameter δ does not appear anywhere in equations (3.26)–(3.28) and therefore
spore lifespan does not have a direct effect on the evolution of virulence. It can
nevertheless have an indirect effect, however, because it will affect the values of
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S, I, and F . At equilibrium, these epidemiological variables cancel out of the
evolutionary equation (3.26) and therefore changes in their values (as a result of
changes in δ) will have an evolutionary effect on the average level of virulence only
through equation (3.27) or (3.28). We treat each of these in turn.

In the case of no secondary infection equation (3.27) applies and thus we need to
know how the value of the quantity FS/I changes as δ is increased. Assuming that
the population is at an epidemiological equilibrium, equation (3.29) reveals that
the relationship FS/I = (d + v̄I)/γ must always hold. Consequently, even though
the equilibrium values of all of the variables S, I, and F change as δ is increased,
the ratio FS/I remains constant. As has been noted in previous epidemiological
models ([3]), the prediction is therefore that spore lifespan has no effect on the
evolution of virulence provided we assume that an epidemiological equilibrium is
reached.

In the case of secondary infections equation (3.28) applies and we then need to
know how the quantity F (S + ρI)/I changes. We can re-write this as FS/I + Fρ.
From the above analysis we know that the first of these two terms remains constant
as δ increases, and we expect the second to decrease (the size of the spore population
will decrease if its death rate increases). Consequently, there is a lower migration
rate of spores into the host population and thus the effect of this migration on
maintaining virulence in the host population is diminished; the average level of
virulence v̄I decreases. This is exactly in accord with the Curse of the Pharaoh.

The logic of why the hypothesis holds under superinfection is as follows. The
average level of virulence in spore populations is always higher than that in host
populations for reasons outlined above. Longer spore life spans also lead to a
higher spore population size. So long as secondary infections occur, this larger
spore population then results in a greater flux of virulent spore strains into the
host population, yielding a higher equilibrium level of virulence. Interestingly,
secondary infection has previously been noted to result in predictions consistent
with the Curse of the Pharaoh but for different reasons ([20]). In these previous
results changes in spore lifespan result in changes in the degree of relatedness among
coinfecting pathogens, and it is this effect of relatedness that leads to evolutionary
changes in virulence.

Finally, we consider what the model of this section can tell us about virulence
evolution in pathogens such as the nucleopolyhedrosis viruses of insects, that release
spores only upon pathogen-induced host death. In this case κ = 0, and we are left
with the epidemiological-evolutionary system

(3.31) İ = γSF − (d + v̄I)I

(3.32) Ḟ = v̄IωI − δF

(3.33) ˙̄vF =
I

F
ω

(
σI

vv + v̄I
(
v̄I − v̄F

))

(3.34) ˙̄vI = −σI
vv +

F

I
γS

(
v̄F − v̄I

)
.

We can now use these equations to deduce how the average level of virulence in
the host, v̄I , is expected to evolve. Assuming that the epidemiological dynamics are
fast relative to evolutionary change, equation (3.31) tells use that FSγ/I = d+ v̄I .
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Thus, equations (3.33), (3.34) become

(3.35) ˙̄vF =
I

F
ω

(
σI

vv + v̄I
(
v̄I − v̄F

))

(3.36) ˙̄vI = −σI
vv +

(
d + v̄I

) (
v̄F − v̄I

)
.

As discussed earlier, we always expect v̄F > v̄I .
Can equations (3.35), (3.36) reach an equilibrium if there is always some genetic

variation in the population? If so equation (3.35) requires that v̄F − v̄I = σI
vv/v̄I .

Substituting this into equation (3.36) and re-arranging shows that, in this case,
˙̄vI ∝ d. This means that virulence in the host will evolve to be large whenever the
level of virulence in the spore population is at equilibrium. Thus there is no joint
equilibrium of the two. Once v̄I increases, v̄F will evolve to higher values as well
leading to yet further evolutionary increases in v̄I .

The above considerations reveal that, for pathogens that release spores only
upon pathogen-induced host death, virulence is expected to evolve to be as large
as possible. Eventually, however, the inevitable forces of mutational bias outlined
earlier will come into play, halting evolutionary change. Moreover, it is possible that
other factors not included in the above model would also halt evolution towards
extreme virulence. For example, if there were a tradeoff between the speed at which
the host is killed and the number of spores produced, this too could result in the
evolution of intermediate levels of virulence ([15]).

4. Summary

In this chapter we have presented an alternative theoretical framework for mod-
eling the evolutionary and epidemiological dynamics of host-parasite interactions.
The approach is based on using the instantaneous rate of change of infected hosts
as a measure of pathogen fitness rather than the more commonly used quantity, R0.
Our alternative approach leads to a number of re-interpretations of predictions de-
rived from previous theory, and it thereby provides a more thorough perspective on
how various factors affect pathogen evolution. It also provides a relatively straight-
forward approach for modeling the dynamics of evolutionary change in pathogen
populations when it cannot be assumed that the epidemiological dynamics occur
on a time scale that is fast relative to that of the evolutionary dynamics (see also
[10]).

The approach used here is also more amenable to integrating the somewhat
disparate bodies of theory that have developed in the study of the evolutionary
ecology of host-parasite interactions. For example, there is a large body of theory
devoted to understanding the evolution of the harm that pathogens induce on their
hosts (i.e., virulence as defined here). There is also a large and relatively inde-
pendent body of theory that is focused on predicting the evolutionary dynamics of
antigenic matching and avoidance between host and pathogen (e.g., gene-for-gene
and matching-allele models; [19]). The approach based on Price’s equation that we
have developed here offers one framework in which these two bodies of theory might
be integrated. Similarly, we have illustrated how the ideas of quasispecies theory
can be integrated into theory on the evolution of virulence using this framework as
well.

There are several potentially important areas for future development, but there
is one in particular that is especially important. All of the theory developed and
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discussed here has assumed that the transmission rate and virulence of difference
pathogen strains are determined by their genotypes alone. In reality the extent to
which a pathogen strain causes mortality and is transmitted is a function of both
its genotype and that of its host. Developing models that elucidate the additional
complexities of such coevolutionary dynamics will be an important challenge for
future research.
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Figure 1. A schematic representation of a pathogen population at
evolutionary and epidemiological equilibrium. The dot next to x̄m

denotes the mean transmission rate and virulence of all mutations
that arise. The shaded ellipse represents the contour within which
95% of the pathogen genotypes lie, and the dot in its center is
the mean transmission rate and virulence of the population. The
fact that the major axis of the 95% ellipse has a positive slope
implies a positive genetic covariance between transmission rate and
virulence. (a) Dashed arrows represent the direction of selection
on transmission rate and virulence, and the solid arrow is the net
direction of selection. (b) Dashed arrow is the net direction of
selection from panel (a) and the solid arrow is the direction of
evolutionary change that results from this selection when mediated
through the positive genetic covariance between transmission rate
and virulence. (c) Solid arrow is the direction of evolution change
from selection from panel (b) and the hollow arrow is the force of
mutational bias that exactly balances this at equilibrium.
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Figure 2. A schematic representation of a pathogen population
at evolutionary and epidemiological equilibrium as in Figure 1 but
with no covariance between transmission rate and virulence. The
dot next to denotes the mean transmission rate and virulence of
all mutations that arise. The shaded circle represents the contour
within which 95% of the pathogen genotypes lie, and the dot in
its center is the mean transmission rate and virulence of the pop-
ulation. (a) Dashed arrows represent the direction of selection on
transmission rate and virulence, and the solid arrow is the net di-
rection of selection. (b) Solid arrow is the direction of evolutionary
change is the same as in panel (a) because there is no covariance
between transmission rate and virulence. (c) Solid arrow is the di-
rection of evolution change from selection from panel (b) and the
hollow arrow is the force of mutational bias that exactly balances
this at equilibrium.
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Figure 3. An example of how an intermediate level of virulence
and transmission rate can evolve in the absence of tradeoffs as a
result of crossing an error threshold. One pathogen strain was as-
signed high fitness parameters (i.e., high transmission rate and low
virulence) and 19 others were assigned low fitness values of these
parameters at random. These are represented by the dots plotted
in each of the panels. Model (3.4)–(3.6) of the text was then used
to simulate the evolutionary and epidemiological outcome under
different conditions. Parameter values were θ = 10, µ = .13, and
d = 0 or d = 1. Size of dots depict relative equilibrium frequency
in the population. (a) all strains are introduced at equal frequency
at time 0. (b) When d = 1. The equilibrium density of suscepti-
ble hosts is high and thus the fitness difference between the high
fitness strain and the deleterious mutants outweighs mutational
loss, causing the high fitness strain to prevail. (c) When d = 0.
The equilibrium density of susceptible hosts is low and thus the
fitness difference between the high fitness strain and the deleteri-
ous mutants is not enough to outweigh mutational loss. The error
threshold is crossed and the high fitness strain goes extinct, leading
to an intermediate average value of virulence and transmission rate.


