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Abstract

How social traits such as altruism and spite evolve remains an open question in evolutionary

biology. One factor thought to be potentially important is demographic stochasticity. Here

we provide a general theoretical analysis of the role of demographic stochasticity in social

evolution. We show that the evolutionary impact of stochasticity depends on how the social

action alters the recipient’s life cycle. If the action alters the recipient’s death rate, then

demographic stochasticity always favours altruism and disfavours spite. On the other hand,

if the action alters the recipient’s birth rate, then stochasticity can either favour or disfavour

both altruism and spite depending on the ratio of the rate of population turnover to the popu-

lation size. Finally, we also show that this ratio is critical to determining if demographic

stochasticity can reverse the direction of selection upon social traits. Our analysis thus

provides a general understanding of the role of demographic stochasticity in social

evolution.

Author summary

Explaining the evolution of social traits such as altruism and spite remains a key outstand-
ing problem in evolutionary biology. Here we develop a simple theory for the effect of
demographic stochasticity (random variation in an individual’s birth and death rates) on
the evolution of social traits. Our results provide a clear set of predictions: whether a social
trait is favoured or disfavoured is determined by how the social action alters the recipient’s
life cycle. If the social action alters the recipient’s death rate, then altruism is favoured and
spite disfavoured. If instead the social action alters the recipient’s birth rate, then both
altruism and spite can be either favoured or disfavoured—the precise outcome depends
upon the ratio of the population turnover rate to the population size.

Introduction

The evolution of social traits remains a very active area of investigation in evolutionary biology
[1–4]. Research has predominately focused upon how different mechanisms such as popula-
tion structure [5–8], kin discrimination [9–11] or greenbeard effects [3, 12, 13] create
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heterogeneity in interactions among individuals of different types, leading to the evolution
of social traits. Recent evolutionary theory, however, has considered whether or not in the
absence of interaction heterogeneity, demographic stochasticity alone can promote the evolu-
tion of altruism (e.g., [14–16]; see also [17] for when interaction heterogeneity and demo-
graphic stochasticity work in combination). These studies concluded that since altruism
increases population size, it confers a stochastic advantage that can reverse (weak) selection
against altruism. Counterexamples to this prediction have been found however (e.g., see
below) leading one to wonder whether unambiguous conclusions can be drawn.

To address this question we develop a general theoretical analysis of the role of demo-
graphic stochasticity in social evolution for well-mixed populations. We start with a detailed
description of birth and death events at the individual level [18] and then derive a very simple
theory that makes a set of clear, general, predictions. Whether a social trait is favoured or disfa-
voured by demographic stochasticity is determined by how the social action alters the recipi-
ent’s life cycle. When the action alters the recipient’s death rate, altruism is stochastically
favoured, and spite is stochastically disfavoured. When the action alters the recipient’s birth
rate both altruism and spite can be either stochastically favoured or disfavoured, with the out-
come depending upon the ratio of the rate of population turnover to the population size.
These results provide a general understanding of the role of demographic stochasticity in the
evolution of social traits. They also explain previous models and counterexamples, and illus-
trate how previous results are special cases of a simple general principle.

Models

Consider a well-mixed population of size On(t), where O is the habitat size and n(t) is the pop-
ulation density at time t. The population consists of two types of individuals: type 1 individu-
als, who are social actors capable of altering the birth or death rate of other individuals in the
population, and type 2 individuals who are not. The social action may occur through direct
contact between individuals or by the production and uptake of an external compound (e.g.,
the release of siderophores or toxins by bacteria [19–21]). Each individual in the population is
equally likely to be the recipient of the social action, and the effect of the social action upon the
recipient is identical among types. We distinguish between two possible social traits: altruism,
which we define to be an action that enhances the vital rates of other individuals (e.g., by
increasing birth rates or decreasing mortality rates) and spite, which we define to be an action
that inhibits the vital rates of other individuals (e.g., by decreasing birth rates or increasing
mortality rates). These are standard definitions if the social trait comes at a cost to the actor
[22]. Thus at demographic equilibrium the population size n will increase as the frequency of
altruism increases whereas it will decrease as the frequency of spite increases.

Denote the per-capita birth and mortality rates as b and m, respectively, and let the per-cap-
ita cost of the social trait be ✏c, where ✏ is a parameter controlling the magnitude of the costs
(b, m, and c may depend upon population densities and/or the state of the environment). Thus
the per-capita growth rate of social actors (type 1 individuals) and non-actors (type 2 individu-
als) is b −m − ✏c and b −m, respectively. As a consequence, whenever ✏> 0, non-actors have a
selective advantage, and so in the absence of mutations and stochasticity they will ultimately
take over the population. If ✏ = 0, then the social trait is cost-free and so neither type of individ-
ual is selectively favoured. Finally, we suppose that mutation between the two types occurs at a
per-capita rate μ. We will further assume that in the absence of selection and mutation, there
is an asymptotically stable curve of ecological equilibria given by b = m. This is a curve rather
than a fixed point because in the absence of selection and mutation, both types have identical
per-capita growth rates.

Social evolution under demographic stochasticity
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If selection is weak, mutations rare, and habitat size large, then the system dynamics occur
on two timescales: a fast timescale corresponding to demographic processes (birth and death
events) and a slow timescale corresponding to evolutionary change in population composition.
As our primary interest is the evolution of the population, our focus is on the slow timescale.
On this slow timescale, let p be the fraction of social actors (type 1 individuals); then we can
rewrite total population density as a function of p(t) alone, that is, n(t) = n(p(t)) = n(p) (see S1
Appendix). Then let b(p), m(p), and c(p) be the per-capita birth, death, and costs on the slow
timescale. If ✏ is small then T(p)⌘ b(p) + m(p) is approximately the total rate at which demo-
graphic events are occurring and so is a measure of the rate of population turnover. Formally,
it is also the variance in per-capita growth rate at selective neutrality.

Using a diffusion approximation of the full, individual-based, stochastic process [23, 24]
(see S1 Appendix) and eliminating the fast timescale dynamics [25–28], the evolutionary
change in frequency of social actors in the population is described by the stochastic differential
equation (SDE)

dp à aÖpÜdt á
ÅÅÅÅÅÅÅÅÅÅÅ
s2ÖpÜ

p
dWt Ö1Ü

where α(p)⌘ μ(1 − 2p) − ✏c(p)p(1 − p), σ2(p)⌘ p(1 − p)T(p)/[On(p)], Wt is a Wiener process
and we have neglected terms of order ✏/O and μ/O (see S1 Appendix). Eq 1 is associated with a
one-dimensional diffusion process with infinitesimal mean and variance α(p) and σ2(p) [29,
30]; when written as an SDE, the expression α(p)dt is often referred to as the “drift term”. If
mutation rate is sufficiently large, the diffusion process admits a stationary distribution, which
we will denote by π(p).

Note that in contrast to previous work (e.g., [16]), here our focus is the frequency of the
social trait, p, rather than the density of social actors, n(p)p. As a consequence, there are no
noise-induced effects in the drift term of Eq 1, whereas there are often noise-induced effects in
the drift term of the SDE describing the change in density of social actors (see S1 Appendix,
and also [16]). We opt to focus upon the frequency SDE rather then the density SDE because
we are concerned with evolutionary processes, and evolution is a change in frequency not
density.

Results

We wish to use Eq 1 to determine if stochasticity favours one type over another. Since α(p)dt
represents the expected change in frequency of the social actors, while

ÅÅÅÅÅÅÅÅÅÅÅ
s2ÖpÜ

p
dWt represents

stochastic noise around this mean change, one is tempted to simply examine the sign of α(p).
With this approach, if α(p)< 0 then the social actor (type 1) is disfavoured, which is the same
conclusion as the deterministic model (O!1), and so this approach fails to take into
account the role played by stochasticity. A second approach would be to suppose that when-
ever a mutation arises, it is either lost or sweeps to fixation before another mutation occurs,
and so evolution proceeds according to a mutation-fixation process [31, 32]. With this
approach, assessing if a trait is favoured or not is often done by comparing the probability a
trait i mutant sweeps to fixation in a population monomorphic for trait j to the role-reversed
situation (a comparison of invasion probabilities). If the costs of the social behaviour due to
selection are sufficiently weak, ✏⇡ 0, then from Eq 1 the invasion probability of a single social
actor in a population of non-social individuals is 1/[On(0)], whereas the invasion probability
of a single non-social individual in a population of social actors is 1/[On(1)]. Hence a compari-
son of invasion probabilities favours the social actor whenever the social trait increases popula-
tion size (altruism) [14–16]. The problem with comparing invasion probabilities alone is
doing so fails to consider the full evolutionary process. Because in a mutation-fixation process
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the population transitions from monomorphic state to monomorphic state, we can construct a
Markov chain on the space of possible traits by letting Ni be the size of a trait-i population and
μij be the per-capita rate at which trait i mutates to trait j. Then the population will transition
from a trait i state to a trait j state at a rate μijNi × (1/Ni) = μij. Thus in the absence of any biases
in per-capita mutation rate, the population is equally likely to be observed in any monomor-
phic state, irrespective of the effect the trait has upon population size [32–34].

What both of these approaches have failed to take into account is the speed at which the
change in population composition (and hence the evolutionary process) occurs. In particular,
although the stochastic noise does not induce an average directionality to the change in p, the
amount of stochasticity nevertheless is typically different for different values of p, and this
will effect the speed at which the population composition changes, affecting the likelihood of
observing the process in a particular state. As an analogy, a biased random walk whose step-
size and time between steps depends upon the position of the walker will tend to spend more
time in regions with smaller step-sizes and less frequent steps, independent of any bias in the
directionality of the walk. Thus we will say that the social actor is favoured if, in the long-term,
we are more likely to observe the system in a state in which the social actor is at greater fre-
quency than the non-social actor (see S1 Appendix). For example, in the case where a station-

ary distribution π(p) exists, the social actor is favoured if
R 1

1=2
pÖpÜdp > 1=2.

To understand how this applies to the stochastic process defined by Eq 1, first suppose the
social trait is cost-free (✏ = 0). Then the behaviour of Eq 1 is determined by two factors: the
magnitude of the mutation rate μ and the ratio T(p)/n(p). Mutation does not directly favour
one type over the other and therefore the ratio T(p)/n(p) should play a critical role in deter-
mining the values of p at which the system spends the most time. The following derivative tells
us how this ratio changes with p:

d
dp

TÖpÜ
nÖpÜ

 �
à TÖpÜ

nÖpÜ

✓
� dn=dp

nÖpÜ|ÇÇÇÇÇ{zÇÇÇÇÇ}
ÖiÜ

á dT=dp
TÖpÜ|ÇÇÇ{zÇÇÇ}
ÖiiÜ

◆
: Ö2Ü

There are two components to Eq 2, each with a simple biological interpretation: (i) is the effect
the social trait has upon population size, n(p), and (ii) is the effect the social trait has upon pop-
ulation turnover, T(p). In terms of our random walk analogy, as the population size increases,
the step size of the random walk (in terms of frequency p) decreases, meaning that the process
will tend to spend more time at values of p corresponding to large population sizes. Put
another way, larger populations are more buffered against demographic stochasticity and thus
effect (i) shows how the type resulting in the greatest population size tends to be favoured [14–
16]. Likewise, the rate of population turnover (as measured by the neutral variance in per-cap-
ita growth rate, T(p)) can be thought of as controlling the frequency of steps taken by the ran-
dom walker. Thus the process will tend to spend more time at values of p that correspond to
less frequent steps, and so effect (ii) shows how the type minimizing T(p) tends to be favoured.
Taken together these two effects therefore favour the type minimizing the amount of demo-
graphic stochasticity, as given by the ratio T(p)/n(p).

We can now examine how the different social traits influence effects (i) and (ii). If the social
trait is altruism, then as explained earlier the population size will increase as its frequency
increases (i.e., dn/dp> 0; this process was the focus of previous work on the role of demo-
graphic stochasticity [14–16]). On the other hand, if the trait is spite then the population size
will decrease as its frequency increases (i.e., dn/dp< 0). Thus effect (i) always favours altruism
and disfavours spite. The role played by effect (ii) is more complex. To see why, observe that
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on the slow timescale the demographic processes are in quasi-equilibrium and so T(p) =
2b(p) = 2m(p). Therefore if either b(p) or m(p) are constant with respect to p then dT/dp = 0.
In this case only term (i) plays a role and so altruism is always favoured and spite disfavoured.
Otherwise, to understand how the social action affects T(p), we need to consider two cases:
(a) the social action affects the death rate, or (b) the social action affects the birth rate.

Consider the case where the social action affects the death rate. If the the social action is
altruism then by definition it must decrease the death rate (dm/dp< 0) and so we have dT/
dp< 0. Conversely, if the social action is spite then by definition it must increase the death
rate (dm/dp> 0) and so dT/dp> 0. In both cases effect (ii) works in concert with effect (i) to
always favour altruism and disfavour spite. Indeed the ratio T(p)/n(p) is monotonic is p, being
minimized at p = 1 in the case of altruism and at p = 0 in the case of spite.

Next consider the case where the social action affects the birth rate. If the social action is
altruism then by definition it must increase the birth rate (db/dp> 0) and so we have dT/
dp> 0. On the other hand, if the social action is spite then by definition it must decrease the
birth rate (db/dp< 0) and so we have dT/dp< 0. Hence effect (ii) opposes effect (i). As a result,
altruism or spite can each be favoured or not depending upon the magnitude of effect (i) rela-
tive to the magnitude of effect (ii). Moreover, the ratio T(p)/n(p) can be non-monotonic,
meaning that it can be minimized by a polymorphic population.

To illustrate these phenomena more concretely, we apply our analysis to several specific
models (see S1 Appendix for details). Throughout we use xi to denote the density of type i.

1. Social action alters death rate. Consider a population in which social actors alter the death
rate of others. This could be through, for example, the actors producing a diffusible com-
pound such as a resource (e.g., the enzyme invertase in S. cerevisiae [16, 19]) or toxin (e.g.,
bacteriocins [20]). Let m⌘ d(1 + νx1/[x1 + x2]), with ν 2 (−1, 1). Then the type of social
trait is determined by the sign of ν: if ν> 0, the trait is spite, whereas if ν< 0 the trait is
altruism. Suppose population size is regulated by density-dependent fecundity, and so let
b⌘ β(1 − x1 − x2), with β> d(1 + |ν|). Thus T(p)/n(p) is decreasing in p if ν< 0 (altruism)
and increasing if ν> 0 (spite) (see also S1 Appendix). Fig 1 shows that, as our analysis pre-
dicts, demographic stochasticity favours altruism and disfavours spite. It also illustrates
how the evolutionary outcome depends upon mutation rate.

2. Social action alters birth rate. Here we consider separate models for altruism and spite.
For altruism, we suppose that social actors produce a public good that increases growth/
reproduction, and that uptake of this good occurs through mass-action contact between the
social actor and the recipient. One such example is the production of siderophores by Pseu-
domonas aeruginosa to scavenge iron essential for bacterial growth [35]. As such, we sup-
pose social actors increase the birth rate of others by an amount ν> 0, and so let b⌘ β +
νx1. For spite, suppose individuals attempt to reproduce at a per-capita rate β, and with
probability νx1/(x1 + x2 + a) reproduction is blocked by a social actor (so ν 2 [0, 1], a> 0),
and thus b⌘ β(1 − νx1/[x1 + x2 + a]). This could represent a population of sexual hermaph-
rodites such that when social actors play the role of ‘male’ they spitefully reduce their
investment in gametes, leading to reproductive failure (so a controls probability of self-fer-
tilization). For both models, let the per-capita mortality rate be m⌘ d + κ1(x1 + x2) +
κ2(x1 + x2)2. Fig 2a and 2c shows that, as our analysis predicts, demographic stochasticity
can now disfavour altruism and favour spite. In fact, the ratio T(p)/n(p) can be non-mono-
tonic in p and so be minimized by a polymorphic population containing social actors and
non-actors. This also suggests that in such cases an intermediate level of social action
might, in some sense, be optimal (see S1 Appendix). For example, in a monomorphic popu-
lation the value of ν minimizing the ratio T/n for the altruism model is ν⇤ = κ1 − |β − 2d|/θ,

Social evolution under demographic stochasticity
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where y à
ÅÅÅÅÅÅÅÅÅÅ
d=k2

p
, and for the spite model is ν⇤ = (a + θ)(β − 2d − κ1θ)/(βθ). Fig 2b and 2d

shows that when one type of actor displays this level of social action, all other levels of social
action ν are disfavoured.

Simulation results suggest that when more than two types of individuals are included in the
population, the above results hold. For example, Fig 3a shows that when the social trait acts on
death rate and there are several different types of individuals in the population, ranging from
very altruistic to very spiteful, it is the most altruistic type that is favoured. Furthermore, Fig 3b
and 3c shows that when the social trait acts on birth rate and there are multiple types of indi-
viduals in the population, it can be an intermediate level of altruism or spite that is favoured
(analogous to Fig 2b and 2d). Up until this point we have assumed the social trait is cost-free,

Fig 1. Role of demographic stochasticity in the evolution of cost-free social traits acting on death rate. The model uses b⌘ 3(1 − x1 − x2), m⌘ 1 + νx1/(x1 + x2)
withO = 900; if ν> 0, the trait is spite, whereas if ν< 0, the trait is altruism. Subplot a—stationary distributions corresponding to three different values of ν: altruism
(ν = −0.95), neutral (ν = 0), and spite (ν = 0.95), revealing the close match between our analytic results and simulations of the full stochastic process. Mutation rate is
μ = 0.006 in all cases. The distribution is skewed towards a higher frequency of the social actor in the case of altruism and towards a lower frequency of the social actor
in the case of spite (distribution is symmetric in the neutral case). Underlying contour plot shows the value of the ratio T(p)/[On(p)]. Subplots b and c shows the
degree to which the social actor is disfavoured (spite, ν = 0.95; subplot b) or favoured (altruism, ν = −0.95; subplot c) for different mutation rates: as mutation rate
decreases, the effect of demographic stochasticity increases. Subplots d-g show how changing mutation rate alters the shape of the stationary distribution. When
mutations are low (subplot d), the stationary measure is U-shaped, but skewed in favour of the social actor if the trait is altruism (red curve) or non-social actor if the
trait is spite (black curve). As mutation rate increases, the distribution is initially pushed into the interior at the boundary for which the ratio T(p)/n(p) is minimized
(p = 1 and red curve on subplot e; p = 0 and black curve on subplot f), before the distribution ultimately becomes unimodal with distribution favouring the type which
minimizes T(p)/n(p) (subplot g). In all plots, the curves/bars are analytic predictions, while circles are the average of 3 × 104 simulations of the full stochastic process
(see S1 Appendix). For subplot b and c, simulations were terminated after 5 × 105 and 7.5 × 105 time units, respectively.

https://doi.org/10.1371/journal.pcbi.1006739.g001
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✏ = 0. Suppose instead the social action has a cost, ✏> 0, which creates a directional bias disfa-
vouring the social trait. We may then ask if/when the effect of stochastic noise can overcome
this directional bias, and so reverse the direction of selection [14–16]. We will focus upon situ-
ations in which a stationary distribution, π(p), exists. Since by construction the social actor

(type 1) is at a selective disadvantage (✏> 0), if
R 1

1=2
pÖpÜdp > 1=2, then we may argue demo-

graphic stochasticity reverses the direction of selection.
We illustrate this phenomenon with two examples. First, consider a population where the

social actor is an altruist capable of altering birth rate such that b⌘ r + νx1, m⌘ κ(x1 + x2),
and c⌘ r, where r> 0, κ> ν> 0. Models based on these specific assumptions have been
explored by previous authors, where it was argued that demographic stochasticity favours
altruism and thus a selective reversal is possible [14–16]. This argument was based upon two
main points. First, the authors observed that the drift term of the SDE associated with the den-
sity of social actors, pn(p), could be either positive or negative due to the magnitude of noise-
induced effects relative to selection. Second, the authors showed that whichever phenotype
can grow to a larger population size in isolation is favoured (altruists) by applying a pairwise
comparison of invasion probabilities. Each of these points has an interpretative issue. First,
although noise-induced effects often appear in the drift term of the SDE describing the change

Fig 2. Role of demographic stochasticity in the evolution of cost-free social traits acting on birth rate. In subplots a-b, the social trait is altruism. In
subplots c-d, the trait is spite. Subplot a—stationary distributions corresponding to three different strengths of altruism ν, showing how altruism can be
disfavoured. Subplot c—stationary distributions corresponding to three different strengths of spite ν, showing how spite can be favoured. Underlying
contour plot shows the value of the ratio T(p)/[On(p)]. Subplots b,d show that in some cases an intermediate level of social action is optimal. Subplot b—a
type that uses the intermediate level of altruism that minimizes the ratio T(p)/n(p) in a monomorphic population (in this case ν = 0.75) is favoured over all
other levels of altruism. Subplot d—a type that uses the intermediate level of spite that minimizes the ratio T(p)/n(p) in a monomorphic population (in this
case ν = 0.75) is favoured over all other levels of spite. Curves are analytic predictions and each circle is 6 × 104 simulations of the full stochastic process;
simulations were run for 103 and 5 × 104 time units for subplots b and d respectively. Parameters values: {β, d, κ1, κ2, O, μ} = {1, 0.5, 0.75, 0.01, 250, 0.01}
(subplots a-b) and {β, d, a, κ1, κ2, O, μ} = {8, 1, 0.05, 0.05, 0.2, 900, 0.005} (subplots c-d).

https://doi.org/10.1371/journal.pcbi.1006739.g002
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in density of social actors (the ecological process), these tend to disappear after the density
SDE is converted to the SDE tracking the frequency of the social trait (the evolutionary pro-
cess), and this is indeed the case here (see Eq 1). It is these noise-induced effects that lead to
the incorrect conclusion about when social traits are favoured. To see why, consider the above
model when there are no mutations, μ = 0, and no selection, ✏ = 0. Then the social trait (altru-
ism) is neutral. Suppose the population is initially at a state in which half the individuals are
social actors, p = 1/2. Then since the fixation probability of the social actor in a neutral popula-
tion is equal to its proportion in the population, 50% of the time the social actor will sweep to
fixation in the population. Unsurprisingly, the drift term for the frequency equation, α(p), in
Eq 1 is zero, that is, the expected change in frequency is zero. However, the drift term of the
SDE for the density of social actors will be positive. This is because the population size goes up
when the altruists fix more than it goes down when non-altruists fix. But altruism is neutral,
and therefore the sign of the drift term of the density equation cannot be used as a measure of
evolutionary ‘success’. Second, although comparison of invasion probabilities does favour
whichever phenotype grows to a larger population size in isolation, as we pointed out previ-
ously, if we place the invasion probabilities within the context of the full mutation-fixation
evolutionary process the effect of population size disappears (see also [32–34]).

Indeed, these issues can be made readily apparent by considering the stationary distribution
associated with the model (this assumes mutations are explicitly included, which deviates from
the model in [16]). In particular, the stationary distribution is

pÖpÜ / p
mO
k �1Ö1� pÜ

mO
k �1e�✏rOk p; Ö3Ü

(see S1 Appendix). If μO/κ> 1, then mutations push the distribution towards p = 1/2 and so
π(p) has a (skewed) bell-shape, whereas if μO/κ< 1, the distribution accumulates at p = 0 and
p = 1 and so π(p) has a (skewed) U-shape. At selective neutrality, π(p) is symmetric about
p = 1/2 and so altruism is completely neutral. If altruism comes at a cost, ✏> 0, then π(p) is

Fig 3. Role of demographic stochasticity in the evolution of cost-free social traits. Each subplot is the model indicated by the per-capita birth and death
rates, b and m, with n = ∑i xi. The black circles are the results of 104 simulations of the system of SDEs (S1 Appendix) and represent the probability of
observing the simulation in a given state (left y-axis). The blue curve is the expected population density of a population monomorphic for the trait value
(right y-axis). If population size alone was sufficient to predict which trait is favoured, we would expect a close match between the stationary distribution
(black circles) and population size (blue curve)—this does not occur because what is important is the ratio T/n. Indeed, as predicted by consideration of (1),
the stochastically favoured trait for subplot a is altruism, whereas for subplot b and c it is the trait value at the red dashed line. Parameter values used:
subplot a, {β, d} = {3, 1}, subplot b, {β, d, κ1, κ2} = {1, 0.5, 0.75, 0.01}, and subplot c, {β, d, κ1, κ2, a} = {8, 1, 0.05, 0.2, 0.05}. All simulations usedO = 104 and
assumed type i mutates to type j at a per-capita rate μ = 10−6.

https://doi.org/10.1371/journal.pcbi.1006739.g003
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shifted in favour of the non-actor and so stochasticity can never reverse the direction of selec-
tion (Fig 4, Model 1—red). This conclusion can also be reached by noting the ratio T(p)/n(p)
in this particular model is a constant, independent of p (S1 Appendix). This is because any
increase in population size (which reduces the step size of the random walk in p) is exactly
compensated for by an increase in the rate of population turnover. Interestingly, it is possible
to construct a model in which a selective reversal occurs by making only a slight modification
of the above assumptions. Suppose b⌘ β + νx1, m⌘ d + κ(x1 + x2), and c⌘ r, with r = β − d.
This model has the same per-capita growth rate as the previous model but now the rate of
population turnover (i.e., the variance in per-capita growth) is larger. As a result, the ratio
T(p)/n(p) is linearly decreasing in p. The stationary distribution is then

pÖpÜ / p
mOr
bk � 1Ö1� pÜ

mOr
bk�dn� 1Öbk� dnpÜ

r2O✏
dn �

mOr
bk �

mOr
bk�dn� 1: Ö4Ü

In this modified model altruism is now stochastically favoured (Fig 4, Model 2—black) and
so stochasticity can reverse the direction of selection. Notice from Eq 4 the role played by

Fig 4. Can stochasticity reverse selection? Here we compare two models of altruism having the same per-capita growth rate,
but differing in variance in per-capita growth (Model 1-red, Model 2-black). As a consequence, this can lead to a stochastic
reversal of selection for model 2 but not model 1. Subplots a-c: predicted stationary distribution for both models from Eq 1 (curve)
compared to 2 × 104 simulations of the full stochastic process (circles) for decreasing habitat size,O (i.e., increasing levels of
demographic stochasticity). The distribution is always skewed towards the non-altruist in model 1. For model 2 the distribution
changes from being skewed towards the non-altruist to being skewed towards the altruist as demographic stochastic increases (i.e.,
a selective reversal occurs). Subplot d: magnitude of the selective reversal plotted against the cost of altruism. Parameters used were
{β, d, κ, ν} = {3, 2.4, 1.2, 1}, with ✏ = 0.003 for subplots a-c.

https://doi.org/10.1371/journal.pcbi.1006739.g004
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mutation rate in shaping the stationary distribution. In the first model, mutation rate only con-
trolled whether the distribution was normalizable or not. Now, however, mutation rate can
alter whether or not a selective reversal is possible.

It is important to stress that the difference in outcome between these two models is driven
exclusively by demographic stochasticity. The deterministic components of these two models
are the same. Put another way, the expected change in the frequency of the altruists is identical
in the two models despite the second model predicting the evolution of costly altruism while
the first model not doing so. In the first model selection pushes the distribution in favour of
the non-altruists and demographic stochasticity has no biasing effect. In the second model,
again selection pushes the distribution in favour of the non-altruists, but now demographic
stochasticity is biased such that it decreases as the altruists become more common. The pre-
dicted population composition (i.e., the stationary distribution) thus arises from a balance
between selection favouring non-altruists and the demographic noise being smaller when the
frequency of altruists is high. These effects only become apparent from consideration of the
ratio T(p)/n(p). Thus determining whether stochasticity can reverse selection requires analysis
of this ratio, and we cannot exclusively focus upon how the social trait alters population size
[14–16].

Discussion

Recent work has explored how stochasticity can alter social trait evolution by deriving a sto-
chastic version of Hamilton’s rule [17]. Our work differs from this in a couple of important
ways. First, those authors focused upon the expected evolutionary change alone, which is
equivalent to considering the sign of α(p) of Eq 1, whereas our focus is upon how social traits
influence the evolutionary noise, and how this works in conjunction with the expected evolu-
tionary change. Our results demonstrate that examining the expected evolutionary change
alone may often be insufficient to determine whether a social trait subject to stochasticity is
more or less likely to be observed. Instead one may need to account for both the expected
change in the population composition as well as any change in (unbiased) demographic noise
that occurs during evolution (i.e., the ratio T(p)/n(p)). Second, we have focused on indiscrimi-
nate social behaviours and as such, in well-mixed populations these traits are always either
neutral (if they are cost-free) or selected against (if they entail a cost). In contrast, Kennedy
et al. [17] focuses upon cooperation preferentially directed towards kin.

Our analysis has focused upon unstructured populations in which every individual is
equally likely to interact with every other individual. It is well known that population structure
can aid or hinder the evolution of social traits [5–7, 36–38] by altering the likelihood that simi-
lar or dissimilar social actors interact with one another. Demographic stochasticity will likely
factor into this (see in particular [16]), but its impact will depend upon the relatedness of inter-
acting individuals as well as the magnitude of the benefits of the social trait. As relatedness
between individuals increases, in general so too will the strength of selection (by generating
indirect fitness benefits), which will tend to diminish the role of demographic stochasticity.
However, in populations with low relatedness, or social behaviours with sufficiently low bene-
fits (and costs), we would expect our theory to apply. Interestingly, as shown in [16], in deme-
structured populations although the social behaviour can be disfavoured or neutral at the
within-deme level, it can be favoured at the between-deme level if the social behaviour
increases population size and so the number of dispersers [16].

An interesting parallel to our results is that in structured populations, helping behaviours
effecting fecundity tend to be selectively favoured over those which effect survivorship [36–
39]; a prediction that diverges from our model. One key difference between our model and
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these previous studies is that they focused upon the expected change in the social trait in popu-
lations of fixed size; as such, whether the helping behaviour is interpreted as one which effects
survivorship or one which effects fecundity is based upon whether the population evolves
through birth-death or death-birth updating. Hence this result is mediated through the scale
of competition between interactants, whereas our result occurs through how the social action
effects the evolutionary noise the population experiences.

The role played by demographic stochasticity in populations of fluctuating size has received
increased attention recently [14–16, 40, 41]. Our work here has provided a very general con-
sideration of the evolution of two fundamental social traits, altruism and spite, and this analy-
sis has revealed the importance of the action of the social trait upon the recipient. In particular,
if the social action alters death rate, then provided selection is sufficiently weak, altruism is sto-
chastically favoured while spite is stochastically disfavoured. If instead the social action alters
birth rate, altruism and spite can be either favoured or disfavoured, depending upon mutation
rate, the underlying population demography and how this determines the ratio of the rate of
population turnover to the population size, T(p)/n(p). The generality of our analysis suggests
this principle likely has implications across other study systems as well.

Supporting information

S1 Appendix. Supplementary information. Full derivation of model and details of mathe-
matical analysis.
(PDF)
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General model 1

We first derive the general population model by specifying a continuous time discrete 2

state space Markov process. To do so, consider a population consisting of two types 3

of individuals and potentially some environmental variable that the two types interact 4

with (e.g., a diffusible compound produced by type 1). Let Xi denote the number of 5

individuals of type i = 1, 2 at time t and Y denote the state of the environmental 6

variable. Let X = (X1, X2, Y ). The infinitesimal transition probabilities regulating the 7

population demographics are 8

Event type Transition Probability

birth of type i X ! X+ ei Ti(X) ⌘ bi(X)Xi�t, i, j = 1, 2,

death of type i X ! X� ei Ti+2(X) ⌘ mi(X)Xi�t, i 6= j

mutation of type i to j X ! X� ei + ej Ti+4(X) ⌘ µXi�t
(S1)

where ei is the 1 ⇥ 3 vector with a 1 in the i-th spot and zeros in the others. We do 9

not explicitly specify the dynamics of the environmental variable for reasons which will 10

become apparent shortly, but suppose that it may under go any possible transition of 11

the form X ! X± e3 or X ! X± e3 ⌥ ei. In the latter case, the effect upon type 1 or 12

2 is subsumed into the birth and death terms of eq S1. Let Q(X, t) be the probability 13

density for X at time t. Then the master equation for the stochastic process (ignoring 14

changes in Y ) is 15

@Q

@t
=

2X

i=1


Ti(X� ei)Q(X� ei, t) + Ti+2(X+ ei)Q(X+ ei, t)

�

+
X

i,j=1,2
i 6=j

Ti+4(X+ ei � ej)Q(X+ ei � ej , t)�
6X

k=1

Tk(X)Q(X, t). (S2)

Let ⌦ be a system size parameter (e.g., [1, 2]), and take x ⌘ (x1, x2, y) ⌘ X/⌦, and 16

q(x, t) ⌘ ⌦Q(X, t). In our context ⌦ can be thought of as habitat size and so x can 17

be thought of as densities. If we suppose ⌦ is sufficiently large such that the variables 18

x are approximately continuous and rescale time as ⌧ = t/⌦, we can perform a series 19

expansion in powers of 1/⌦ to give the Fokker-Planck (or forward Kolmogorov) equation 20

@q

@⌧
= �

2X

i=1

@

@xi
Ai(x)q(x, ⌧) +

1

2⌦

2X

i=1

2X

j=1

@2

@xixj
Bij(x)q(x, ⌧) (S3)

where Ai(x) = (bi(x)�mi(x))xi � µ(xi � xj), and the Bij(x) are the entries of 21

B(x) =

✓
(b1(x) +m1(x))x1 + µn �µn

�µn (b2(x) +m2(x))x2 + µn

◆
, (S4)

with n = x1 + x2. 22

The Fokker-Planck equation given by eq S3 is associated with the system of Ito 23

stochastic differential equations (SDEs) 24

dx = A(x)d⌧ + ⌦�1/2C(x)dW⌧ (S5)

where A(x) = (A1(x), A2(x))T , C(x)C(x)T = B(x) and W⌧ is a vector of N indepen- 25

dent Wiener processes [1, 3]. Thus C(x) is a 2⇥N matrix, where N is a integer whose 26

value will depend upon how the matrix C(x) is chosen (the choice of matrix C(x) is not 27
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unique). If habitat size becomes large, ⌦ ! 1, stochasticity disappears from eq S5, and 28

we are left with the system of ordinary differential equations (ODEs) ẋ = A(x), where 29

ẋ = (dx1/d⌧, dx2/d⌧)T (we have purposefully neglected dy/d⌧ in ẋ). 30

As in the main text, we assume that type 1 is the social actor, and so if we let 31

ri(x) ⌘ bi(x)�mi(x) denote the per-capita growth rate of type i, then we assume that 32

r1(x) = b(x)�m(x)� ✏c(x) and r2(x) = b(x)�m(x). Thus whenever ✏ > 0, type 2 has 33

the selective advantage, and will ultimately fix in the ODE model without mutations. 34

Note that the costs may either reduce birth rate or increase death rate; although in 35

general this will have implications for the structure of B(x) and thus C(x), because we 36

will assume ✏ is sufficiently small that we can neglect terms of order ✏/⌦, we only need 37

to take into account how the costs alter expected per-capita growth rate. 38

Reduction of system to slow manifold 39

We wish to reduce system S5 into a more manageable problem. To do so, suppose that 40

in the absence of selection, mutations, and stochasticity (✏ = 0, µ = 0, and ⌦ ! 1, 41

respectively), there exists a globally asymptotically stable curve of ecological equilibria 42

in the ODE system given by ri(x) = 0. We parameterize this curve in terms of x1, and 43

so let �(w) = (w, �2(w), �y(w)) denote the value of x along the curve. We will assume 44

that both w/�2(w) and w/(w + �2(w)) are invertible. When µ = ✏ = 0 and ⌦ ! 1, 45

the ODE system will asymptotically approach different points on �(w) dependent upon 46

the initial conditions (�(w) is a center manifold [4]). If instead ⌦ is large but finite, 47

and ✏, µ are nonzero but small, then system S5 will rapidly approach �(w) along the 48

flow lines of the ODE system. However, once in the vicinity of �(w) the stochastic 49

component of system S5 will dominate the dynamics, since as x ! �(w), A(x) ! 0. 50

Because the movement along �(w) is slow relative to the rate at which a system initially 51

distant moves to the vicinity of �(w), in this context �(w) is often referred to as a ‘slow 52

manifold’ [5–7]. Since the movement along the slow manifold corresponds to change in 53

population composition (and so represents the evolutionary timescale), our goal is to 54

derive an equation approximating the motion of system S5 along �(w). 55

To do so, observe that when ✏ = µ = 0 and ⌦ ! 1 we have 56

dx1/d⌧

dx2/d⌧
=

A1(x)

A2(x)
=

x1

x2
)

dx1

dx2
=

x1

x2
, (S6)

and so for the initial condition xw = (w1, w2, w3), the solution of eq S6 is x1(t) = 57

(w1/w2)x2(t). Now suppose (stochastic) trajectories along the slow manifold receive 58

random “kicks” displacing the system from the slow manifold. Once the system is 59

“kicked away” from the slow manifold, then provided ⌦ is large (and ✏, µ small), the 60

system will return to the slow manifold approximately along the (deterministic) flow 61

lines. These flow lines are the solutions of eq S6 with the initial condition being the 62

position system was “kicked” too. Thus a trajectory initially at (x1, x2, y) will return to 63

the point on the slow manifold, �(w), implicitly given by 64

�2(w) =
x2

x1
w. (S7)

From eq S7, since w parameterizes the slow manifold, dw/dt reveals how the position 65

of the system along the slow manifold evolves with time [6, 8]. Let G(w) = w/�(w) 66

and g(w) = G
�1(w). Then from eq S7 we have w = g(x1/x2) and so applying the 67
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multivariable version of Ito’s formula [1, 3] to w gives 68

dw =

 2X

i=1

@g

@xi
Ai(x) +

b(x) +m(x)

2⌦

2X

i=1

@2g

@x2
i

xi

�
d⌧ +

vuut
2X

i=1

✓
@g

@xi

◆2 (b(x) +m(x))xi

⌦
dW⌧

(S8)

where we have neglected terms of order ✏/⌦ and µ/⌦. 69

Let p ⌘ w/(w + �2(w)) be the frequency of type 1 along the slow manifold. Then 70

applying Ito’s formula to compute dp using eq S8 and evaluating the result on the slow 71

manifold (see [6, 8] for justification) gives 72

dp = [µ(1� 2p)� ✏c(p)p(1� p)]d⌧ +

s
p(1� p)T (p)

⌦n(p)
dW⌧ (S9)

with T (p) = b(�(h(p))) +m(�(h(p))), c(p) = c(�(h(p))), n(p) = h(p) + �2(h(p)), where 73

h(p) is defined as h�1(w) = w/(w + �2(w)). 74

To obtain eq S9 we did not need to specify the dynamics of the environmental variable 75

y, and instead only needed to know the density of the environmental variable along the 76

slow manifold, �y(w). This is because the separation of time scales assumes population 77

composition changes on a slower time scale than demographic processes and so on the 78

slow timescale the environmental variable will be in a quasi-steady state if we use the 79

tools of Parsons and Rogers [6]. 80

As an aside, we note that for problems which satisfy condition eq S6, then eq S9 is the 81

same result we would have obtained if we instead applied Ito’s formula to p = x1/(x1+x2) 82

and then restricted the resulting equation to �(w). The intuitive reason for why this is 83

true is that a system (stochastically) perturbed away from the slow manifold will return 84

roughly along the flow lines of the ODE system when ✏ = 0. But along these flow lines, 85

by eq S6 we see that the proportion p remains constant. 86

To summarize our analysis to this point, we first specified a discrete state space 87

stochastic process involving two types of competing individuals in eq S1. We then 88

assumed that habitat size (and so population size) was sufficiently large that the discrete 89

state space is approximately continuous, and obtained a diffusion approximation of the 90

stochastic process (eq S3). We then applied the techniques of Parsons and Rogers [6] to 91

derive a single-variable SDE approximating the dynamics of motion of eq S3 along the 92

slow manifold by eliminating the dynamics on the fast timescale. 93

Speed measure and stationary distribution 94

As in the main text, let ↵(p) ⌘ µ(1�2p)�✏c(p)p(1�p) and �2(p) ⌘ p(1�p)T (p)/[⌦n(p)]. 95

Then ↵(p) and �2(p) are the infinitesimal mean and variance, respectively, of a one- 96

dimensional diffusion process [9, 10]; this is the diffusion process associated with the 97

SDE S9. Define 98

⇡(p) ⌘
C0

�2(p)
exp

✓
2

Z p ↵(z)

�2(z)
dz

◆
(S10)

for some constant C0. If C0 can be chosen such that
R 1
0 ⇡(p)dp = 1, then ⇡(p) is 99

normalizable and so represents the stationary distribution of the diffusion process with 100

infinitesimal mean ↵(p) and infinitesimal variance �2(p) [1,3,10]. However, regardless of 101

whether such a C0 exists, ⇡(p) is the speed measure of the diffusion process [9]. The 102

relevance of this is that the speed measure is proportional to the expected time a diffusion 103

process initially at p takes to exit an interval ("� p, p+ ") for small " [9]. Thus as ⇡(p) 104
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increases, the process will tend to spend more time at state p, and so we are more likely 105

to observe the process in such a state. Hence as ⇡(p) increases for a given p, we will say 106

state p is increasingly favoured. 107

There are three factors that influence eq S10: 108

1. selection, which is controlled by ✏c(p), and biases the stochastic process against 109

the social actor, 110

2. mutation rate, µ, which pushes ⇡(p) away from the boundaries (p = 0 and p = 1) 111

towards p = 1/2, 112

3. and demographic stochasticity, which is controlled by the infinitesimal variance, 113

�2(p). If we inspect �2(p), however, we see that it is the product of a symmetric 114

term, p(1� p)/⌦, and the ratio, T (p)/n(p). Thus this ratio controls the effect of 115

demographic stochasticity, and as we will see is key to understanding social trait 116

evolution. 117

Evolution of cost-free social traits 118

To understand the role of demographic stochasticity, suppose that selection is turned off 119

(✏ = 0). Then the only two factors present in eq S10 are mutation rate and the ratio 120

T (p)/n(p). First, consider how T (p)/n(p) changes in p, that is, 121

d

dp


T (p)

n(p)

�
=

T (p)

n(p)


dT/dp

T (p)
�

dn/dp

n(p)

�
. (S11)

If the social trait is spite, dn/dp < 0, whereas if the social trait is altruism, dn/dp > 0. 122

Since on the slow manifold, T (p) = 2b(p) = 2m(p), if the social trait acts upon death 123

rate, then dT/dp = 2dm/dp > 0 if the trait is spite, whereas if the trait is altruism, 124

dT/dp < 0. Thus for social traits acting on the death rate, T (p)/n(p) is monotonic in p, 125

and so is either minimized by the social actor (if the trait is altruism) or the non-social 126

actor (if the trait is spite). If instead the social trait acts upon birth rate, then since 127

dT/dp = 2db/dp, if the trait is spite dT/dp < 0 and if the trait is altruism dT/dp > 0. 128

Hence for both altruism and spite the ratio T (p)/n(p) may be smaller for a population 129

monomorphic for the social actor, or it may be smaller for a population monomorphic 130

for the non-social actor. Moreover, it is also possible that T (p)/n(p) is non-monotonic 131

in p (and so minimized by a polymorphic population). 132

To understand the implications of the behaviour of T (p)/n(p), first we will assume 133

that T (p)/n(p) is monotonic in p, and so is minimized by either type 1 or type 2, before 134

considering what happens when T (p)/n(p) is non-monotonic in p. There are three 135

different regimes based upon mutation rate, and we consider each in turn. 136

1. Low mutation rate. When mutation rate is sufficiently low, then in the interval 137

p 2 (0, 1), ⇡(p) ⇡ 1/�2(p), and ⇡(p) is U -shaped. We are interested in whether 138

⇡(p) is increasing or decreasing in p. Taking the derivative gives 139

d⇡

dp
⇡

d

dp


1

�2(p)

�
= �

1

�2(p)

✓
(1� 2p)

p(1� p)
+

n(p)

T (p)

d

dp


T (p)

n(p)

�◆
. (S12)

Since the first term, (1� 2p)/[p(1� p)], is symmetric in p, we can ignore it and 140

instead focus upon how the ratio T (p)/n(p) changes with respect to p. If the ratio 141

is decreasing (resp. increasing) in p, then d⇡/dp > 0 (resp. d⇡/dp < 0), and the 142

social actor is favoured (resp. disfavoured). 143

An alternative way to arrive at this conclusion is to note that in the absence 144

of selection (and mutations), the diffusion process is on its natural scale (i.e., 145
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↵(p) = 0), and so the fixation probability of either type is simply equal to its 146

proportion in the population. Suppose there are k possible types of individuals, 147

and let mutations be sufficiently rare such that between mutations the population 148

returns to a monomorphic state. Then we can construct a Markov chain on the 149

state space of possible strain types [11]. In particular, let µij be the rate at which 150

strain i mutates to strain j and Ni be the number of type i individuals in the 151

population at the moment of the (rare) mutation. Then 152

M(i, j) = (mutation rate)⇥ (fixation probability) = µijNi ⇥
1

Ni
= µij (S13)

is the rate at which the population transitions from a monomorphic strain i state to 153

a monomorphic strain j state [11]. Hence in the absence of mutational biases, the 154

Markov chain is equally likely to be in any particular state [11–13]. This implies 155

that the process will spend equal time in any of the monomorphic states. But if 156

so, then what type we are most likely to observe in the population will be dictated 157

by the time the process takes to transition between states, that is, the expected 158

time from the initial appearance of a mutation for the population to return to a 159

monomorphic state. Using standard techniques [10], when there are two types in 160

the population and they are selectively neutral, ✏ = 0, then the expected time till 161

absorption (time to reach either p = 0 or p = 1) from an initial state p0 is 162

t̄(p0) = 2(1� p0)

Z p0

0

⌦n(p)

(1� p)T (p)
dp+ 2p0

Z 1

p0

⌦n(p)

pT (p)
dp. (S14)

Since time spent in any monomorphic state is equal, the type that is most likely 163

to be observed is the type which maximizes absorption time, that is, the type that 164

maximizes the time spent transitioning between states. 165

To determine this, let ⌫ control the effect of the social behaviour, and suppose 166

that the effect of the social behaviour upon the ratio T (p)/n(p) is small. Since the 167

two types only differ due to the effects controlled by ⌫, we can write T (p)/n(p) = 168

T (⌫p)/n(⌫p), and so a Taylor expansion of the ratio T (p)/n(p) with respect to ⌫ 169

gives 170

T (p)

n(p)
=

T

n
+ ⌫p


@

@[⌫p]

T (⌫p)

n(⌫p)

�

⌫=0

+O(⌫2). (S15)

If we then use this approximation for the ratio T (p)/n(p) in the differential equation 171

used to derive eq S14, we obtain the time till absorption as 172

t̄(p0) = �
2⌦

T/n

✓
ln([1� p0]

1�p0pp0
0 )�

⌫

T/n

@T/n

@[⌫p]
ln([1� p0]

1�p0)

◆
+O(⌫2),

(S16)

where T/n no longer depends upon ⌫ or p (or p0). Notice from eq S16 that if the 173

two types are identical in every respect, ⌫ = 0, then absorption time is symmetric 174

in p about p = 1/2, and for any p, t̄(p) will decrease (resp. increase) as T/n 175

becomes large (resp. small). Thus absorption time is maximized (resp. minimized) 176

when we have minimized T/n (resp. maximized T/n). If instead ⌫ > 0, then 177

time till absorption will no longer be symmetric about p = 1/2, and instead will 178

depend upon how the social behaviour effects the ratio T/n. In particular, if we 179

consider the difference t̄(p0)� t̄(1� p0) on the interval p0 2 (0, 1/2), we see that 180

this quantity will be negative, that is, the process will take longer to absorb from 181

state 1 � p0 then p0, provided the social trait minimizes the ratio T/n. In this 182
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circumstance, it follows immediately that
R 1
1/2 t̄(p0)dp0/

R 1
0 t̄(p0)dp0 > 1/2. Hence 183

if the social trait minimizes the ratio T/n, then absorption time will be biased 184

in favour of the social actor and so the type minimizing T/n is favoured when 185

mutations are sufficiently rare. 186

2. Intermediate mutation rate. Suppose mutation rate is non-negligible, but is 187

not sufficiently high so as to admit a normalizable stationary distribution. Now 188

the picture is more complex, and it is not clear how to determine which type is 189

favoured. To see why, consider how ⇡(p) changes in p: 190

d⇡

dp
= 2

⇡(p)

�2(p)

✓
↵(p)�

1

2

d�2(p)

dp

◆
,

= 2
⇡(p)

�2(p)

✓
(1� 2p)

✓
µ�

T (p)

2⌦n(p)

◆

| {z }
(1)

�
p(1� p)

2⌦

d

dp


T (p)

n(p)

�

| {z }
(2)

◆
. (S17)

From how the terms are grouped, we see that as p ! 1/2 term (1) disappears, 191

whereas when p ! 0 or p ! 1, term (2) disappears (note it is also possible that 192

there exists a p0 such that µ = T (p0)/[2⌦n(p0)], in which case term (1) also 193

disappears as p ! p0). Roughly speaking, this implies that term (1) is the stronger 194

effect near the boundaries of the interval p 2 [0, 1], whereas term (2) is the stronger 195

effect in the interior. Term (1) represents the effect of mutations, µ, which pushes 196

⇡(p) towards p = 1/2, and genetic drift, T (p)/[2⌦n(p)], which pushes ⇡(p) towards 197

the boundaries. These effects would be present even if the ratio T (p)/n(p) were 198

constant, that is, type 1 and 2 were mathematically interchangeable. Term (2), 199

however, occurs due to how the magnitude of demographic stochasticity (or genetic 200

drift) changes due to the consequences of the social trait, that is, how the ratio 201

T (p)/n(p) changes in p. 202

Consider the behaviour of ⇡(p) at the boundaries, and so focus upon term (1). 203

When mutation rate satisfies µ < T (p)
2⌦n(p) for all p, then the distribution tends to 204

accumulate at both boundaries since genetic drift is stronger then mutations. As 205

µ increases, however, because in general T (0)
2⌦n(0) 6= T (1)

2⌦n(1) , there will be a regime 206

in which µ > T (p1)
2⌦n(p1)

but µ < T (p2)
2⌦n(p2)

where {p1, p2} 2 {0, 1} with p1 6= p2. Thus 207

at the boundary which minimizes T (p)/n(p) (p1 boundary), mutations will be a 208

stronger force then genetic drift, pushing the distribution towards the interior, 209

whereas at the other boundary (p2 boundary) the distribution will accumulate at 210

the boundary in a state of quasi-fixation as the force of genetic drift outweighs 211

mutations. This will tend to give rise to the sideways S-distribution as seen in Fig 212

1e,f in the main text. 213

This behaviour at the boundary prevents us from formulating a clear criteria 214

about which type is ‘favoured’. We can no longer focus exclusively upon the ratio 215

T (p)/n(p) as in the case of low mutation rate, but we also cannot use an integral 216

measure to determine which type is stochastically favoured (i.e., does more of 217

the mass of ⇡(p) occur for p > 1/2 or p < 1/2?), since ⇡(p) is not normalizable. 218

However, because away from the boundaries the strongest effect upon the shape 219

of ⇡(p) will be how the ratio T (p)/n(p) changes in p (term (2) from eq S17), we 220

may be inclined to argue that given sufficient ‘segregating variation’ exists, and 221

so for polymorphic populations, the type minimizing the ratio T (p)/n(p) will be 222

favoured. 223

3. High mutation rate. Suppose mutation rate is sufficiently high such that the 224

distribution is normalizable. Now we can compute
R p1

p0
⇡(p)dp, and so it makes 225
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sense to use
R 1
1/2 ⇡(p)dp to determine which type is favoured. In particular, if 226

R 1
1/2 ⇡(p)dp > 1/2, then the social actor is favoured (this assumes we have chosen 227

C0 such that
R 1
0 ⇡(p)dp = 1). There are two possibilities here, either (a) mutations 228

are of small effect, or (b) mutations are of large effect. We consider these cases in 229

turn. 230

(a) Suppose mutations are of small effect, that is, type 1 only slightly differs from 231

type 2 in terms of the social action. Let ⌫ denote the social trait difference 232

between types (⌫ may be positive or negative). This formulation allows for 233

both types to be social actors: for example, if the social trait is altruism, then 234

if ⌫ > 0 type 1 is more altruistic then type 2, while if ⌫ < 0, type 1 is less 235

altruistic then type 2. To make it clear which quantities have a dependence 236

on ⌫, we will explicitly include ⌫ as an argument in the various functions, i.e., 237

T (p) = T (p, ⌫). We will also write ⇡(p, ⌫) = C0(⌫)S(p, ⌫), where 238

S(p, ⌫) =
1

�2(p, ⌫)
exp

✓
2

Z p ↵(z)

�2(z, ⌫)
dz

◆
,

and refer to S(p, ⌫) as the speed measure [9]. Hence, C0(⌫) = 1/
R 1
0 S(p, ⌫)dp, 239

and dC0
d⌫ = �C0(⌫)2

R 1
0

@S
@⌫ dp. Note that when ⌫ = 0, both types are identical 240

and so T (p, 0)/n(p, 0) = T/n is constant with respect to p (since there are 241

no costs), and so
R 1
1/2 ⇡(p, 0)dp = 1/2. Using this fact, a Taylor expansion of 242

R 1
1/2 ⇡(p, ⌫)dp gives 243

Z 1

1/2
⇡(p, ⌫)dp ⇡

Z 1

1/2
⇡(p, 0)dp+ ⌫

Z 1

1/2

@⇡

@⌫

����
⌫=0

dp+O(⌫2)

=
1

2
+ ⌫

Z 1

1/2


@S

@⌫
C0(⌫) + S(p, ⌫)

dC0

d⌫

�

⌫=0

dp+O(⌫2)

=
1

2
+ ⌫C0(0)

Z 1

1/2


@S

@⌫
� ⇡(p, ⌫)

Z 1

0

@S

@⌫
dz

�

⌫=0

dp+O(⌫2)

=
1

2
+

⌫C0(0)

2

"Z 1

1/2

@S

@⌫
dp�

Z 1/2

0

@S

@⌫
dp

#

⌫=0

+O(⌫2).

(S18)

The logic of eq S18 is clear: for example, if @S/@⌫ > 0, then if the increase in 244

the speed measure on the interval (1/2, 1) exceeds the increase on the interval 245

(0, 1/2), we should expect the social actor to be favoured in the sense that 246R 1
1/2 ⇡(p, ⌫)dp > 1/2 since the process will tend to spend more time in the 247

region (1/2, 1). 248

To make further progress, we need to compute @S
@⌫

��
⌫=0

. For ease of notation, 249

let R(p, ⌫) ⌘ T (p, ⌫)/n(p, ⌫) and ! ⌘
2⌦µ
R . Then 250

@S

@⌫
= �S(p, ⌫)


1

R(p, z)

@R

@⌫
+ 2⌦µ

Z p 1� 2z

z(1� z)R(z, ⌫)2
@R

@⌫
dz

�
(S19)

Now what is @R/@⌫? Suppose we can write per-capita growth as b(n)�d(n)+ 251

⌫✓(n)np, where b(n) and d(n) are the birth and death rates when ⌫ = 0, and 252

✓(n)⌫ is the (additional) social effect of type 1 individuals (which is multiplied 253

by the density of type 1 individuals, np). The precise action of the social 254

trait may be upon either the birth or death rate, while if ✓(n)⌫ < 0, the trait 255
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is spite whereas if ✓(n)⌫ > 0, the trait is altruism. The function ✓(n) controls 256

any density-dependent effects of how the social action is distributed among 257

members of the population. 258

Since on the slow timescale the process is in demographic equilibrium, per- 259

capita growth is zero, and so at equilibrium 260

⌫p =
b(n)� d(n)

✓(n)n
.

Let G(n) ⌘ [b(n) � d(n)]/[✓(n)n], and assuming G(n) is invertible, n = 261

g(⌫p) ⌘ G�1(⌫p). Thus we see that in order for G(n) to be invertible, n must 262

be a monotonic function of ⌫p (which it is by our classification of the social 263

traits). Since at equilibrium, T (p, ⌫) is either two times the per-capita birth 264

rate or two times the per-capita death rate (e.g., if the social trait acts on 265

birth rate, then the birth rate is b(n)+⌫✓(n)np and the death rate is d(n) and 266

thus T (p, ⌫) = 2(b(n) + ⌫✓(n)) = 2d(n)), we can write R as a function of n, 267

that is R(n) = R(g(⌫p)) (e.g., using our previous example, R(n) = 2d(n)/n). 268

So all of the instances of ⌫ in R are mediated through their presence in n. 269

Then 270

@R

@⌫
=

@

@⌫
R(g(⌫p)) = R0(n)g0(⌫p)p,

and when ⌫ = 0, 271

@R

@⌫

����
⌫=0

= R0(g(0))g0(0)p = �p

where � ⌘ R0(g(0))g0(0) is constant with respect to p (and ⌫). 272

Using this information and the fact that 273

S(p, 0) =
⌦

R

1

p(1� p)
exp

✓
!

Z p 1� 2z

z(1� z)
dz

◆
=

⌦

R
(p[1� p])!�1

in eq S19 gives 274

@S

@⌫

����
⌫=0

= �
S(p, 0)

R

✓
p+ !

Z p 1� 2z

z(1� z)
zdz

◆
�

= �
S(p, 0)

R
(p+ ! [2p+ ln(1� p)]) �

= �
⌦

R2
([1 + 2!]p+ ! ln(1� p)) (p[1� p])!�1 �. (S20)

Now using eq S20 in eq S18 yields 275

Z 1

1/2
⇡(p, ⌫)dp ⇡

1

2
�

⌫C0(0)

2

⌦�

R2

 Z 1

1/2
f(p,!)dp�

Z 1/2

0
f(p,!)dp

!
+O(⌫2)

(S21)

where 276

f(p,!) ⌘ ([1 + 2!]p+ ! ln(1� p)) (p[1� p])!�1 .

Since
R 1
1/2 fdp�

R 1/2
0 fdp is a function of a single variable, !, it can be plotted. 277

From inspection of Fig A, this quantity is positive for ! > 0 and goes to zero 278

as ! ! 1. It follows that if �⌫ < 0, type 1 is favoured, whereas if �⌫ > 0, 279

type 2 is favoured. But the sign of �⌫ has the same interpretation as before: 280

whichever type minimizes the ratio T/n is favoured. Thus when mutations 281

are of small effect, whichever type minimizes the ratio T/n is favoured. 282
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Fig A. As ! ! 1,
R 1
1/2 fdp�

R 1/2
0 fdp ! 0, but remains positive.

(b) If mutations are not of small effect, that is, ⌫ � 0, and mutation rate is also 283

high, then mutations will exert a strong effect near the boundary pushing 284

the weight of the distribution towards p = 1/2. In this regime, the ratio 285

T (p)/n(p) plays the strongest role. So provided T (p)/n(p) is monotonic in 286

p, then the type minimizing the ratio T (p)/n(p) will tend to be favoured in 287

the sense that the weight of the distribution will be displaced away from 1/2 288

towards this boundary. 289

The preceding analysis assumed that the ratio T (p)/n(p) was monotonic in p and so 290

minimized at either p = 0 or p = 1. Suppose instead that T (p)/n(p) is non-monotonic 291

in p. Then for some p 2 (0, 1), say p⇤, d
dp

h
T (p)
n(p)

i
= 0. From our analysis above, it is 292

apparent where the issues are going to arise. For low mutation rate, when we are in 293

a small neighbourhood of p⇤ consideration of eq S12 predicts that whichever type is 294

more abundant will be favoured. Likewise, at intermediate mutation rates, now term 295

(2) in eq S17 will be zero at p⇤ and so in a neighbourhood of p⇤ the dominant force 296

shaping ⇡(p) will be term (1). But away from the boundary, whether term (1) favours 297

or disfavours the social actor will depend both upon the value of p⇤ (is it greater or 298

less than 1/2?) and the magnitude of mutation rate relative to genetic drift at p⇤ (is 299

µ greater or less than T (p⇤)/[2⌦n(p⇤)]?). Finally, consider the case in which mutation 300

rate is sufficiently high such that there is a normalizable distribution. If mutations are 301

of small effect, that is, the two types are sufficiently similar in terms of the social trait, 302

then implicit within the preceding analysis was that one of the types will minimize the 303

ratio T (p)/n(p) (and so T (p)/n(p) is monotonic in p for sufficiently small ⌫). However, 304

when mutations are of large effect, then consideration of eq S17 reveals again how the 305

results become more complex and how the magnitude of mutation rate will alter the 306

expected outcome. 307

Evolution of costly social traits 308

If we instead suppose that ✏ > 0, then the social actor is selected against, and so can only 309

be favoured if the influence of demographic stochasticity outweighs that of selection. This 310

is similar to the observation from classical population genetics that in large populations, 311

selection dominates, whereas in small populations, genetic drift does. Because of the 312

inherent complexities owing to how the costs of the social traits are formulated (are 313
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they density-dependent, or is c(p) constant for all p?), as well as how the costs interact 314

with mutations and demographic stochasticity, in the main text we simply focus upon 315

numerical calculations to show that a stochastic reversal of selection is possible using the 316

measure
R 1
1/2 ⇡(p)dp. If

R 1
1/2 ⇡(p)dp > 1/2, then despite the social actor being selected 317

against, the population is most likely to be observed in a state in which the social actor 318

is at greater frequency, and so we characterize this as a stochastic reversal of selection. 319

Examples 320

In this section we detail the calculations used to obtain the examples found in the main 321

text. 322

1. b(x) ⌘ �(1 � x1 � x2), m(x) ⌘ d(1 + ⌫x1/[x1 + x2]), and c(x) ⌘ 0 with � > 323

d(1 + |⌫|) and ⌫ 2 (�1, 1). Here the social action alters death rate: if ⌫ < 0 324

the trait is altruism, whereas if ⌫ > 0 the trait is spite. On the slow manifold, 325

w + �2(w) = (� � d(1 + ⌫p))/�, and so the ratio T (p)/n(p) is 326

T (p)

n(p)
=

2�d(1 + ⌫p)

� � d(1 + ⌫p)
(S22)

and thus 327

d

dp


T (p)

n(p)

�
=

2�2d⌫

(� � d(1 + ⌫p))2
, (S23)

which shares the same sign as ⌫. Thus if ⌫ > 0 then T (p)/n(p) is increasing in p 328

and so spite is disfavoured, whereas if ⌫ < 0 then T (p)/n(p) is decreasing in p and 329

so altruism is favoured. Simulations indicate these results extend to the n-type 330

model (Fig 3). 331

2. b(x) ⌘ � + ⌫x1, m(x) ⌘ d+ 1(x1 + x2) + 2(x1 + x2)2 and c(x) ⌘ 0 with � > d 332

and ⌫ > 0. Here the social trait is altruism which alters birth rate. On the 333

slow manifold, �2(w) = (�22w � 1 +
p
42(⌫w + � � d) + 2

1)/(22), and so 334

h(p) = p(⌫p�1+
p
(⌫p� 1)2 + 42(� � d))/(22). For this example, T (p)/n(p) 335

is non-monotonic in p (and ⌫) and so whether altruism is favoured or disfavoured 336

depends upon the demographic parameters. In particular, the level of altruism 337

minimizing T (1)/n(1) is ⌫⇤ = (d1 +
p
2d(� � 2d)2)/d. Simulations predict this 338

level of altruism also tends to be favoured in the n-type model (see Fig 3). 339

3. b(x) ⌘ �(1 � ⌫x1/(x1 + x2 + a)), m(x) ⌘ d + 1(x1 + x2) + 2(x1 + x2)2 and 340

c(x) ⌘ 0 with � > d, a > 0, and ⌫ 2 [0, 1]. Here the social trait is spite which alters 341

birth rate. In particular, with probability ⌫x1/(x1 + x2 + a) a type 1 individual 342

blocks another individual from reproducing. For this example, �2(w) can be 343

computed analytically, but the expression is unwieldy and so we do not show it 344

here. Importantly, however, T (p)/n(p) is a nonlinear function of ⌫, and the level 345

of spite minimizing T (1)/n(1) is 346

⌫⇤ =

✓
a+

r
d

2

◆✓
� � 2d� 1

r
d

2

◆r
2

�2d
.

Simulations predict this level of spite also tends to be favoured in the n-type model 347

(Fig 3). 348

4. b(x) ⌘ r + ⌫x1, m(x) ⌘ (x1 + x2), and c(x) ⌘ r, with r, ⌫, > 0 and  > ⌫. 349

Here the social trait is altruism which increases birth rate. On the slow manifold, 350
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�2(w) = (r� [� ⌫]w)/, and so h(p) = rp/(� ⌫p). Using this information yields 351

the stationary distribution 352

⇡(p) / pµ⌦/�1(1� p)µ⌦/�1e�✏r⌦p/, (S24)

where proportionality is up to a positive constant. In the absence of costs (✏ = 0), 353

eq S24 is symmetric about p = 1/2, and so neither type is stochastically favoured. 354

The reason for this result is that T (p)/n(p) = 2 which is constant for all p. 355

5. b(x) ⌘ � + ⌫x1, m(x) ⌘ d+ (x1 + x2), and c(x) ⌘ r, with � > d > 0,  > ⌫ > 0 356

and r = � � d, and so the social trait is altruism increasing the birth rate. The 357

per-capita growth rate in this model is the same as in example 4 and so �2(w) and 358

h(p) are the same. However now the stationary distribution is 359

⇡(p) / p
µ⌦r
� �1(1� p)

µ⌦r
��d⌫ �1(�� d⌫p)

r2⌦✏
d⌫ �µ⌦r

� � µ⌦r
��d⌫ �1.

Here, in the absence of costs, the distribution is asymmetric and favours type 1 360

(the altruist). This can be seen by noticing that T (p)/n(p) = 2(��d⌫p)/r, which 361

is decreasing in p. 362

Interestingly, example 4 is the non-spatial model of Constable, Rogers, McKane & 363

Tarnita [8] (CRMT), differing only in that we have explicitly included mutations (our 364

notation also slightly differs). CRMT concluded that stochasticity induced an advantage 365

for the altruist whereas our analysis shows altruism is stochastically neutral if cost-free 366

and disfavoured otherwise. There are two reasons for this discrepancy. 367

1. Density versus frequency. Rather than dealing with the SDE for proportions 368

directly (eq S9), CRMT focused upon interpreting the infinitesimal mean of the 369

density SDE, dx1 (this can be obtained from (S9) by application of Ito’s formula [1]). 370

However, evolution is a change in frequency, not density, and a change in density 371

is not equivalent to a change in frequency. This is clear from eq S9 where 372

in the absence of mutations and selection, the infinitesimal mean is zero while 373

�2(p) =
q

2
⌦ p(1� p) so the stochastic process is mathematically equivalent to 374

pure genetic drift in a population of constant size [14]. 375

2. Inclusion of mutations. At selective neutrality, which is the scenario most conducive 376

to the evolution of altruism, the fixation probability of a particular type is equal to 377

its proportion in the population. Thus the invasion probability of a type j mutant 378

into a monomorphic type i population of size Ni is simply 1/Ni. As the altruist 379

can grow to a larger population size then the non-altruist, pairwise comparison 380

of invasion probabilities predicts the altruist is favoured [8, 15, 16]. However, if 381

we assume type i mutates to type j at a per-capita rate µij , then as shown in 382

eq S13 the transition rate from an all-type i state to an all-type j state is µij . So 383

in the absence of mutational biases, the Markov chain is equally likely to be in any 384

state, a standard result for neutral evolution in sequential-fixation models [11–13]. 385

Hence mutations erase any numerical advantage of the altruists. However, this 386

does not take into account that in our model the expected time till fixation varies 387

based upon population composition. Consideration of expected time till fixation 388

(or absorption time) reveals the importance of the ratio T (p)/n(p) (see eq S16). 389

Simulations 390

To support our analytic predictions, we use two types of simulations: Gillespie’s algorithm 391

[17] and the Euler-Maruyama (EM) method [3]. In particular, for plots involving the 392
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stationary distribution of the two-type model, we have used Gillespie’s algorithm (Fig 393

1, Fig 2 and Fig 4) to simulate the full stochastic process specified by eq S1. When 394

we consider more then two types (as in Fig 3) we simulate the system of stochastic 395

differential equations which approximates eq S1 using the EM method [3], which we 396

detail briefly here. For the EM method, we assume that a type i individual mutates to 397

a type j individual at rate µ. Thus the total rate at which a type i individual mutates 398

to a different type is µ(n � 1). Let ⌘ be a n ⇥ n matrix of standard normal random 399

variables, and let �⌧ be the step-size. Then using EM, the change in variable xi over 400

the time increment �⌧ , i.e., �xi ⌘ xi(⌧ +�⌧)� xi(⌧), is given by 401

�xi =
�
(bi(x)�mi(x)� µn)xi +

X

j

µxj

�
�⌧

+

r
(bi(x) +mi(x))xi�⌧

⌦
⌘ii +

X

j

✓r
µxj�⌧

⌦
⌘ij �

r
µxi�⌧

⌦
⌘ji

◆
. (S25)

For all the n-type simulations used in this paper, �⌧ = 0.01, ⌦ = 104, and µ = 10�6, 402

and the initial conditions were chosen to be xi(0) = 0.05 for all i; this was then simulated 403

until ⌧ = 2⇥ 106 for 104 individual simulations (we checked that the distribution had 404

settled down by ⌧ = 2⇥ 106). Then if x(j)
i (⌧̃) is the density of type i in sample run j at 405

time ⌧̃ , then the probability of type i plotted in Fig 3 (black circles) is 406

Prob(xi) =
X

j

x(j)
i (⌧̃)

P
k x

(j)
k (⌧̃)

�2

4
X

`

X

j

x(j)
` (⌧̃)

P
k x

(j)
k (⌧̃)

3

5 . (S26)

The primary reason for using EM method rather than Gillespie’s algorithm when 407

the number of types is greater then 2 is that the computational costs of Gillespie’s 408

algorithm rapidly become prohibitive. This is because when we construct the stationary 409

distribution in the 2-type case, in order to have the distribution normalizable, mutations 410

must be artificially high. When mutations are high, the population composition can 411

change more rapidly, and so simulations reach the stationary distribution more rapidly. 412

When we extend the system to include more than 2-types, mutations have a homogenizing 413

effect, and so we lower the mutation rate. However, this means that the population 414

composition changes less quickly, and so more time must elapse to obtain the stationary 415

distribution. 416
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