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Summary

Almost 20 years after the development of models of
malaria pathogenesis began, we are beyond the
‘proof-of-concept’ phase and these models are no
longer abstract mathematical exercises. They have
refined our knowledge of within-host processes, and
have brought insights that could not easily have been
obtained from experimentation alone. There is much
potential that remains to be realized, however, both in
terms of informing the design of interventions and
health policy, and in terms of addressing lingering
questions about the basic biology of malaria. Recent
research has begun to iterate theory and data in a
much more comprehensive way, and the use of sta-
tistical techniques for model fitting and comparison
offers a promising approach for providing a quantita-
tive understanding of the pathogenesis of such a
complex disease.

Introduction

Identifying factors that are involved in pathogenesis is
important, but it is really only the first step towards a
complete understanding of infectious disease. In the
words of Ronald Ross, ‘To say that a disease depends
upon certain factors is not to say much, until we can also
form an estimate as to how largely each factor influences
the whole result’ (cited by McKenzie, 2000). Ross was
driven by this philosophy to find accurate mathematical

models of malaria transmission and his efforts led to new
insights into the biology of the disease and strategies for
control. In particular, his quantitative analysis demon-
strated that mosquito populations need not be eradicated,
but rather need be driven only below a particular threshold
in order to eradicate malaria. Subsequent implementation
of malaria control measures validated these predictions
(McKenzie, 2000) and, since then, numerous epidemio-
logical models have been proposed and directed towards
understanding various processes in malaria transmission.

The interesting and important questions for the math-
ematical study of malaria are not, however, exclusively
epidemiological, but span several levels of biological
organization. Despite a large body of research on malaria
pathogenesis (defined to be the within-host mechanisms
through which the Plasmodium parasite causes disease),
the relative significance of different factors in the devel-
opment of disease is still debated (Miller et al., 2002).
Research has focused mainly on two broad categories of
factors: those that are resource-mediated [e.g. availability
of red blood cells (RBCs), in which malaria parasites
undergo asexual replication; Fig. 1A], and those that are
immune-mediated (Fig. 1B). That we can categorize
factors like this, however, in no way indicates that they are
understood. Indeed, our resolution of the relative impor-
tance of these factors and of any interactions between
them remains quite inadequate. For example, it is known
that several immune components, like macrophages and
natural killer cells, are likely involved in the innate immune
response to malaria; but the interactions of these factors
with acquired responses remain speculative, and conflict-
ing experimental data leaves the role of many compo-
nents in question (Stevenson and Riley, 2004). At best, we
know that some factors are necessary for a particular
outcome (e.g. interferon-g and natural killer cells limit peak
parasitemia, Stevenson and Riley, 2004), but the relative
contribution of each factor to this outcome is still unclear.

In this article we follow Ross’s philosophy, and suggest
that, only when we can quantitatively predict the pattern of
pathogenesis as a function of the underlying within-host
regulatory factors can we legitimately claim to understand
the processes at work. Although some might argue that
the complexity of malaria biology puts this criterion
beyond reach, we contend that such an objection is
simply an acknowledgement of how little is known. As
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such, the development and testing of mathematical
models of within-host processes is necessarily a vital
component of research on malaria pathogenesis.

The value of having a sound, predictive, mathematical
model of malaria pathogenesis cannot be overstated. Such
models would allow in silico experiments of drug treat-
ments and other interventions, thereby focusing efforts on
targets that are likely to have the greatest impact. They
would also allow for the evaluation of the too-often over-
looked evolutionary consequences of treatments before
they are made into policy. ‘No one dies of theoretical
infections’ (McKenzie, 2000), which are also cheaper and
quicker than animal experiments. Equally important,
however, is the value of the whole process of developing
such mathematical models. By developing models of
pathogenesis, we are forced to confess our ignorance of
many of the biological details of infection, and this alone
can be useful for highlighting important areas for future
empirical research. Mathematical models also remove all
ambiguity in potential explanations for patterns of patho-
genesis (there is no where to hide ignorance), and they
clearly delineate the logical conclusions that stem from
various hypotheses. If, for example, experimental inhibi-
tion of erythropoeisis suppresses parasite recrudescence
during an infection, one might be led to suggest that RBC
availability determines such recrudescence. But unless
we can accurately predict such experimental changes in
pathogenesis using a mechanistic model, our understand-

ing of the processes involved is still incomplete. A mutual
feedback between model development/testing and empiri-
cal (ideally experimental) research is necessary to develop
this level of understanding.

The same mathematical tools that have become
(almost) ubiquitous in studies of malaria epidemiology
have the capacity to be equally informative when applied
to questions of malaria pathogenesis. Yet modelling the
within-host dynamics of malaria is a comparatively new
practice, beginning just 20 years ago (e.g. Anderson
et al., 1989). But unlike population dynamical models,
which can rarely be fitted to truly replicated populations,
within-host models can be very stringently challenged
with data from numerous hosts. For the brave, this should
make for much more rapid progress than is possible in
epidemiology alone. Indeed, it may be no accident that
the advent and expansion of in-host malaria models coin-
cided with the explosive interest in mathematical model-
ling of within-host dynamics of HIV, where interactions
between theorists and empiricist yielded considerable
insights (see examples in Perelson and Nelson, 1999).

Modelling approaches to malaria pathogenesis

The types of mathematical models of malaria pathogen-
esis we discuss in this review are based on a mechanistic
description of the underlying biology of the system. This
contrasts with purely statistical (i.e. curve-fitting models),

Fig. 1. Schematic of two recent models of malaria pathogenesis.
A. Modified from Mideo et al. (2008), this model tracks the densities of red blood cells (RBCs), merozoites and gametocytes. The main
regulatory mechanism here is resource (i.e. RBC) abundance.
B. The model of Dietz et al. (2006) focuses on the effects of innate and acquired immune responses and tracks the density of infected RBCs
only. The abundance and action of different immune effectors is translated into probabilities of infected RBCs surviving their attack.
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although our exclusion of this class of models is not a
value judgement. Indeed, such statistical models have
also provided important insights (see Paul et al., 2007 for
a recent example). Also, note that we do not restrict our
discussion to models of human malaria. Much of the
current theory is aimed at explaining experimental malaria
infections in model organisms and, in particular, mice from
which there is a wealth of data, and therefore we include
these models as well.

A basic model of the dynamics of malaria infection
would track the changes in density (e.g. number per
microlitre) of the kinds of cells and/or molecules thought to
be important in pathogenesis. For example, it might track
the density of asexual and sexual parasite forms, red
blood cells, and various types of immune effectors. As
factors are identified as being potentially important in
regulating these variables, they are translated into a
mathematical formulation that can be incorporated into
the basic model structure.

The ultimate aim when building models of malaria
pathogenesis is to simplify the highly complex biological
processes occurring during an infection into a compre-
hensible mathematical system from which inferences and
predictions can be drawn. Critical in this process is the
recognition that not all details of the biological system are
relevant for understanding and predicting pathogenesis.
Models need not (in fact should not) incorporate every-
thing that we know about the biological system: we seek
to understand the important components of reality, not to
replicate the reality we do not understand. Indeed, the
true power of a good model lies in its ability to expose the
central agents responsible for the biological patterns
under investigation by dispensing with the irrelevant
details. Models help us to determine what is irrelevant.

To illustrate what such models typically look like and
how, through the process of model development, the irrel-
evant biological details are uncovered, we present a sim-
plified generic example based on Mideo et al. (2008). The
model is in discrete time to account for the distinctly
discrete life cycle of malaria parasites, and the densities
are evaluated every day, corresponding to the 24 h cycle
of the rodent malaria system on which this model was
based. The model predicts how the density of three quan-
tities, merozoites (M), gametocytes (G), and red blood
cells (R), change from one day to the next;

M t f M t R tM+( ) = ( ) ( )[ ]1 , ,

G t f M t R t G tM+( ) = ( ) ( ) ( )[ ]1 , , ,

R t f M t R tR+( ) = ( ) ( )[ ]1 ,

The above equations capture the idea that the density of
each quantity in the next day (time t + 1) is some function
of their densities on the present day (time t). Notice that
two of these functions do not depend on the gametocyte

density, G(t), reflecting an assumption that gametocytes
play no role in determining the merozoite or RBC counts
on the next day. Other assumptions about how various
biological processes work (e.g. erythropoeisis, RBC infec-
tion, gametocytogenesis, etc.) are captured by the spe-
cific forms of the functions fM[M,R], fM[M,R,G] and fR[M,R]
(Table 1).

Models like that above can also be further refined as
necessary, by including things such as RBC age structure
and time-lags in erythropoeisis. They can also be
extended to include other regulatory factors related to
innate and adaptive immune responses. For example,
one might introduce other variables that represent the
densities of different immune effectors molecules and
cells. If we use T(t) to denote the density of specific T cells
on day t then the model might be extended as

M t f M t R t T tM+( ) = ( ) ( ) ( )[ ]1 , , ,

G t f M t R t G t T tG+( ) = ( ) ( ) ( ) ( )[ ]1 , , , ,

R t f M t R t T tR+( ) = ( ) ( ) ( )[ ]1 , ,

T t f M t R t T tT+( ) = ( ) ( ) ( )[ ]1 , ,

where the functions fM[M,R,T ], fG[M,R,G,T ], fR[M,R,T ]
and fT[M,R,T ] are specified to account for the relevant
assumptions about how these processes work (Table 1).
The predictions of each model obtained by employing a
different set of assumptions can then be tested against
data to determine its ability to explain known patterns of
pathogenesis (Mideo et al., 2008).

Each model, with its associated assumptions about
how the important regulatory factors come into play, rep-
resents a different biological hypothesis about what deter-
mines malaria pathogenesis (Johnson and Omland,
2004). It might well turn out that a given model does not
accurately reflect the biology of the system, but if so,
something new about the biology and the importance of
various regulatory factors would thereby have been
learned. The clarity that comes from having made such
unambiguous assumptions often will also point towards
new empirical questions that need to be answered.

Consider again, the recrudescences in parasite density
that occur during some malaria infections. One explana-
tion for these peaks is that they are the result of antigen
switching and immune escape by the parasite (Brown
and Brown, 1965; Phillips et al., 1997). That secondary
peaks are antigenically distinct does not, however, mean
that the peaks exist because they are antigenically dis-
tinct, and an alternative explanation is that the peaks
simply track resource availability – parasite densities
increase as red blood cell densities rebound from the
destruction wrought by the initial wave of parasites. An
experimental approach to testing these hypotheses might
alter an immune component of a model organism, gen-
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erate malaria infections, and then see if these peaks still
occur. Deciding what immune component to alter, when
to alter it, and by how much, however, makes this line of
investigation non-trivial.

A modelling approach to this question can provide two
valuable kinds of information. First, as is often done in
physics, mathematical simulations of experimental proce-
dures can help to inform researchers which manipula-
tions, of the vast array of possibilities, are likely to be the
most informative. As with the case of RBC availability
mentioned earlier, ultimately we cannot claim to under-
stand the processes that are occurring unless we can
accurately predict the outcome of such experimental
manipulations.

Second, mathematical models can provide inferential
power. By building models that include or exclude antigen
switching mechanisms and immune responses, we can
determine the conditions under which secondary parasite
peaks are predicted to occur and if these regulatory
factors are relevant for this particular pattern. In fact,
models have revealed that both resource availability
(e.g. Hetzel and Anderson, 1996; Mideo et al., 2008)
and certain forms of antigen switching (e.g. Paget-
McNicol et al., 2002) are plausible explanations for para-
site recrudescences. A more thorough modelling
approach that incorporates each of these processes, in
isolation and in combination, will then help to resolve this
issue, and inform future experiments. Below, we discuss
how statistical model selection techniques are increas-

ingly being used to compete multiple models and test
alternative hypotheses.

Insights

Mathematical models of malaria pathogenesis have
helped develop our knowledge in many ways. Due to an
increasing interest in this approach, we cannot cite all
important findings, and instead we therefore focus on a
few developments that reflect the range of applications of
these models.

Effective immune targets

One area that has received a lot of attention is host
immune responses to malaria. Despite our incomplete
knowledge of these processes (as described above),
models have helped elucidate some of their general
characteristics. Models of malaria have repeatedly dem-
onstrated that immune responses are more effective if
directed towards infected RBCs rather than free-living
merozoites (Anderson et al., 1989; Hetzel and Anderson,
1996; Haydon et al., 2003). This is perhaps not surprising
given the short lifespan of merozoites in the bloodstream
(on the order of minutes), but tackling this question theo-
retically allows for the quantification of this difference in
efficacy (Haydon et al., 2003). These results have obvious
implications for vaccine design.

Table 1. Example mathematical descriptions of different underlying assumptions.

Equations/variations Assumptions

Merozoite density
M (t + 1) = ba [M (t)]R (t)(1 - g) • A proportion of susceptible RBCs becomes infected. This proportion is described by a function,

a[M(t)], which depends on the density of merozoites. Infected RBCs produces b daughter
merozoites. Asexual replication occurs in a proportion, 1 - g, of all infected RBCs.

M (t + 1) = ba [M (t)]R (t)(1 - g)e-cT(t) • As above but with an immune response as well. The probability of an infected RBC surviving
immune attack is given by e-cT(t), and decreases with increasing immune cell density.
The parameter, c, describes the susceptibility of infected RBCs to immune attack.

Red blood cell density
R (t + 1) = q + R (t) - a [M (t)]R (t) • A constant number, q, of RBCs (per microlitre) are produced daily. There is no natural death of

RBCs; only loss is through infection.
R (t + 1) = s [R (t)] + R (t) - a [M (t)]R (t) • A more general model in which daily RBC production, s, is an arbitrary function of current RBC

density.
R (t + 1) = s [R(t -t )] + R(t) - a [M (t)]R (t) • As above, but now daily RBC production is time-lagged to account for the maturation time of RBC

precursors (production is a function of RBC density t days earlier).
Gametocyte density

G (t + 1) = G (t) + ga [M (t)]R (t) • A proportion, g, of all infected RBCs produce gametocytes.
G (t + 1) = G (t) + ga [M (t)]R (t) - dG (t) • As above but a proportion, d, of gametocytes decay each day as well.
G (t + 1) = G (t) + ga [M (t - t)]R (t - t) • As in the first model, but gametocytes are sequestered for t days before maturing and being

released into the bloodstream.
Immune cell density

T (t + 1) = T (t) + hT (t) • Immune cell densities increase exponentially. Each immune cell activates h others. Immune cell
activation does not require contact with infected cells or merozoites.

T (t + 1) = T (t) + ja [M (t)]R (t) • Production of immune cells is proportional to infected RBC density.

For each of merozoite density (M), RBC density (R), gametocyte density (G) and immune cell density (I), two or three different hypotheses of
increasing complexity are presented.
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Protective immune control

Also, as we would expect, innate immune responses are
predicted to be most important during initial parasite
peaks and progressively less important throughout the
course of infection (Molineaux et al., 2001). Here, Molin-
eaux and colleagues have actually quantified the relative
importance of three types of immune responses (innate,
acquired variant-specific and acquired non-variant-
specific) over successive parasite peaks, finding, for
example, that innate immune responses are almost
entirely responsible for controlling the primary peak but
are completely absent after the sixth peak.

The approach of Molineaux and colleagues is also
unique in that they estimate model parameters for several
individual host data sets, allowing variation in parasite
traits between variants and between hosts. This results in
some novel, testable, predictions. In particular, to recover
differences in patterns of infection among hosts, the rank
order of the parasite variants’ baseline multiplication
factors differed between hosts (i.e. the fastest growing
variant in one host was not the fastest growing in all hosts,
Molineaux et al., 2001). While the authors suggest this
might not be a biologically justified conclusion, such a
variant by host interactive effect on parasite growth rate
could be tested experimentally with a model system.

Clonal interactions

Immune responses will also have effects on the competi-
tion between parasite clones within a host. Hellriegel
(1992) showed that competitive suppression of a superior
clone, via a common immune response, was possible if
the inferior clone arrived first (i.e. several days earlier).
This prediction has since been tested and validated with
experimental infections in mice (de Roode et al., 2005).
The paradoxically low numbers of transmissible parasite
forms in malaria infections (Taylor and Read, 1997) can
also be explained by competition mediated by a shared
immune response (McKenzie and Bossert, 1998). Instead
of producing multiple daughter merozoites (each with
the potential to infect another RBC), a small fraction of
infected RBCs produce transmissible gametocytes. A
common immune response that both was elicited by, and
that targeted merozoites, would favour parasite clones
that could quickly build up a ‘stock’ of merozoites during
competition, i.e. those with low levels of conversion to
gametocytes (McKenzie and Bossert, 1998). Competition
for access to red blood cells may also be sufficient for
generating selection for low levels of conversion to game-
tocytes (Mideo and Day, 2008). In the time frame of
a single infection, there is experimental evidence that
parasites alter gametocyte sex ratios in response to
co-infection (Reece et al., 2008) and alter rates of conver-

sion to gametocytes in response to drug treatment (Buck-
ling et al., 1999), however, adjustment of conversion rates
in response to co-infection has not yet been demonstrated
(Wargo et al., 2007). Further investigation of a potentially
plastic response is warranted, as is a comparison of levels
of conversion in Plasmodium species that have been
exposed to different amounts of co-infection over an evo-
lutionary time frame (Mideo and Day, 2008).

Gametocytogenesis

Models of human malaria, fitted to data from malaria-
therapy patients, have shown that the level of conversion
to gametocytes changes significantly during the course
of infection (Diebner et al., 2000; Eichner et al., 2001).
However, the pattern of the shift in conversion rates
remains unexplained. Several factors have been identi-
fied as likely influencing gametocyte production (Dyer and
Day, 2000; Talman et al., 2004), and incorporating these
into models could help in understanding the dynamics of
gametocytogenesis.

Consequences of RBC preference

In humans, parasite preference for certain ages of RBCs
seems to relate to disease severity. The most severe
disease is caused by P. falciparum, which infects RBCs of
all ages. In contrast, less deadly species show prefer-
ences for infecting either younger (reticulocytes) or older
RBCs (Paul et al., 2003). These cell preferences have
been incorporated into models of human malaria, where
they have been shown to have a significant effect on
infection dynamics, and also help to explain the differ-
ences in clinical observations between species (McQueen
and McKenzie, 2004). Recent models have explored
whether this sort of cellular tropism is an important deter-
minant of the dynamics of different rodent malarias. For
example, a strong preference of P. berghei for reticulo-
cytes can explain prolonged low levels of circulating
reticulocytes that tend to be thought of as the result of
suppressed RBC production (Cromer et al., 2006).

In contrast, P. chabaudi is generally thought to indis-
criminately infect RBCs of all ages, but parameter esti-
mates from a recent model show that parasites invade
older RBCs at a rate that is an order of magnitude higher
than for reticulocytes. Despite this, parasites did better in
reticulocytes, producing more daughter merozoites per
infected cell (Mideo et al., 2008). This effect, however,
appears to be clone-specific which suggests it might be a
mechanism that explains different levels of virulence
between clones. Another model allows for P. chabaudi
parasites to further discriminate between ages of RBCs
and predicts that the size of the age range a particular
clone can infect is correlated with its virulence (Antia
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et al., 2008). Each of these predictions can (and should)
be tested empirically.

Manipulation of erythropoeisis

The idea that erythropoeisis is suppressed during malaria
infection has been refuted by models of both human
(Jakeman et al., 1999) and rodent (Mideo et al., 2008)
malaria. In fact, during periods of disease-induced
anaemia, these models predict that hosts increase RBC
production well above baseline rates. Intriguingly, models
fitted to data from experimental P. chabaudi infections
suggest that host response to anaemia varies depending
on the genotype of the infecting parasites (Haydon et al.,
2003; Mideo et al., 2008). Whether this effect can also help
explain different levels of virulence between parasites
clones remains unclear, as in one case the more virulent
clone induced faster rates of RBC production (Haydon
et al., 2003) and in the other, the opposite was true (Mideo
et al., 2008). Unlike in Haydon et al. (2003), the data in
Mideo et al. (2008) came from CD4+ T cell-depleted mice,
indicating a possible interaction between parasite geno-
type and host immune status. Regardless of the relation-
ship between virulence and erythropoeisis, the prediction
of a clone-specific effect on this host trait could not likely be
made from looking at data alone.

Theoretical developments

Below we discuss criticisms of previous models of malaria
pathogenesis and the improvements both realized in
recent work and hoped for in the future. It should be noted
that the issues we highlight are not malaria-specific;
rather they really represent challenges to all modellers of
disease dynamics.

Biological realism

The best level of mathematical abstraction for any biologi-
cal process should be determined by the nature of the
question being addressed. For example, if one wants to
identify mechanisms that can plausibly explain dynamics,
schematic models are often sufficient. Many of the
insights discussed above come from model approaches
of this type. However, many of these same models have
been criticized for their lack of realism (Molineaux and
Dietz, 1999) and if one wants to use a model to make
quantitative predictions about the dynamics of malaria
pathogenesis, then a key goal is realistically capturing as
much of the biology of the system as is necessary to
explain data. In particular, early models of malaria patho-
genesis allowed for no individual variation between hosts
or parasites and failed to account for the distinctly discrete
life cycle of malaria parasites (Molineaux and Dietz,

1999). The field is maturing and recent work has
addressed these concerns (e.g. Molineaux et al., 2001;
Dietz et al., 2006; Mideo et al., 2008), hopefully broaden-
ing the appeal (and thus the impact) of theoretical
approaches for studying malaria pathogenesis.

Clearly, there is still some way to go regarding the
mathematical capture of immunological processes. A
major future challenge is to move beyond the mathemati-
cal caricatures of immune control (e.g. arbitrary functions,
the grouping of distinct populations of immune effectors
into ‘immune cells’) towards mathematical descriptions
that more closely accord with the qualitative picture
emerging from experimental immunology (e.g. Stevenson
and Riley, 2004). Indeed, we expect mathematical models
to play a critical role in identifying the key processes
involved, and determining their relative importance.

Tying theory to data

Another significant criticism of many of these models is
that, while they often include some indication of the quali-
tative agreement between model predictions and experi-
mental or clinical data, they tend to lack an investigation
into whether alternative models could do as good a job,
and whether the model predictions provide a statistically
good fit for the data (Molineaux and Dietz, 1999). More
rigorous approaches to model design, fitting and selection
can help to resolve conflicts between current results. As
a starting point, many theoretical studies do consider
multiple biological hypotheses for what regulates malaria
pathogenesis. Ideally, these should be translated into
mathematical descriptions (i.e. models) of the hypoth-
eses, and then the best model should be chosen from this
pool of potential descriptions. For example, a resource-
based model may capture the details schematized in
Fig. 1A; a competing model, the immune regulation of
Fig. 1B. Statistical procedures exist to compare the fit of
each model’s predictions to data using one of a number of
different information-theoretic techniques (Hilborn and
Mangel, 1997; Burnham and Anderson, 2002; Johnson
and Omland, 2004; see Diebner et al., 2000; Mideo et al.,
2008 for examples); we give an illustrative example in
Fig. 2. Once a best model is chosen, determining whether
it indeed does provide an acceptable quantitative descrip-
tion of observed dynamics requires further assessment.
This kind of ‘goodness-of-fit’ analysis is still relatively
uncommon in mathematical treatments of malaria, but
recent research has begun to take this approach (Molin-
eaux et al., 2001; Dietz et al., 2006; Mideo et al., 2008).

Finally, models ought to be validated by altering some
model component, generating new predictions, and then
empirically testing these with independent experiments.
The experimental manipulations required to do this are
only ethically feasible in model organisms. While there is
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still debate about the relevance of these experiments for
human malaria (see Dietz et al., 2006), the fact that we can
use them to test and refine theory highlights the utility of
using model malaria systems. Further, if we cannot design
theory that accurately captures the dynamics of malaria
pathogenesis in a highly controlled setting (like clonal
infections in inbred laboratory mice), there is no hope for a
full understanding of more heterogeneous human malaria
infections.

Model validation is an extremely important step in the
theoretical process and even ‘bad’ validation can lead to
new insights. For example, a recent model based on RBC
limitation as an explanation for the dynamics of single-
clone malaria infection in CD4+ T cell-depleted mice could
not accurately capture all of the dynamics seen in experi-
ments involving co-infection with two clones (Mideo et al.,
2008). This suggests the existence of a hitherto unknown
specific immune response that is independent of CD4+

T-cell control.
This example helps us illustrate two key points. First,

collaboration between experimentalists and theorists is
essential and can yield mutually beneficial insights.
Second, particularly when data and theory are tied in this
way, models that generate predictions that fail to accu-
rately capture real observations can still be extremely
informative.

Future directions

An important goal of building mathematical models
of malaria pathogenesis is to use them to evaluate
interventions. By translating the mode of action of an
intervention into changes in particular model parameters,
the effects on disease progression within a host can be
predicted. Recently, Dietz et al. (2006) took this approach
to explore the effects of vaccination by altering several
different model parameters corresponding to different
(plausible) modes of vaccine action. They determined that
the outcome of infection after vaccination is strongly host-
dependent, and that certain types of vaccines are better at
protecting against severe versus mild malaria. These
results suggest that current methods of evaluating vac-
cines may be inappropriate (Dietz et al., 2006).

Changes to within-host parameters due to interventions
will have influences on processes at higher levels of
biological organization. Simply put, epidemiological pro-
cesses like transmission are determined by parasite den-
sities within hosts, which are regulated by all the factors
we have discussed above and, likely, many more. Inter-
ventions like drug treatment and vaccination will alter
within-host regulatory factors with effects that will scale up
from the within- to the between-host level, influencing, for
example, disease prevalence.

Fig. 2. Model selection and validation. Data from a single CD4+ T cell-depleted mouse (dashed lines and dots) and predictions from four
models (solid lines) Top panels, RBC densities; bottom panels, parasite densities. Model predictions are from four models representing
different hypothesis about what regulates the dynamics of pathogenesis: i. no RBC age structure or parasite cell age preference and constant
erythropoetic response; ii. no RBC age structure or parasite cell age preference and variable erythropoetic response; iii. RBC age structure,
possible parasite cell age preference and constant erythropoetic response; iv. RBC age structure, possible parasite cell age preference and
variable erythropoetic response. Models iii and iv provide statistically significantly better fits to the RBC data than models i and ii. As the
models were fit only to the RBC data, the parasite data provide a means of model validation. It is clear that model iv is better than iii at
qualitatively capturing the parasite dynamics. Model iv is selected as the ‘best’ model among those tested. See Mideo et al. (2008) for further
details.
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One way to account for these interactions is by using
a theoretical framework that nests levels of biological
organization. A few recent models have taken this
approach and combined models of the within-host
and transmission dynamics of malaria (McKenzie and
Bossert, 2005; Mideo and Day, 2008). The combined
model of McKenzie and Bossert (2005) leads to some
novel predictions about how within-host details affect
host population level processes. For example, they
predict that increased antigenic diversity in a parasite
population can lead to increased persistence of indi-
vidual parasite genotypes. This is explained by the action
of innate immune responses during superinfections,
which allow recovery from secondary infection by a par-
ticular genotype before acquired responses (specific
to that genotype) can build up, maintaining a pool of
hosts susceptible to that genotype. Another finding of
McKenzie and Bossert (2005) is that the number of hosts
infected in their model is insensitive to changes in within-
host gametocyte survivorship, as only below a certain
threshold density does the actual number of gameto-
cytes (versus presence) seem to have an effect on trans-
mission success. Given these results, any intervention
targeting this parasite stage ‘would need to be astonish-
ingly effective’ (McKenzie and Bossert, 2005) to be of
any consequence.

Although the aim of McKenzie and Bossert (2005) was
not to evaluate interventions, nested models can be
directed at this purpose as we know that changes to
within-host parameters (as a result of, say, vaccine action)
will have an effect on higher level processes. For example,
nested models have demonstrated the potential for unin-
tended, negative consequences in response to vaccina-
tion, including selection for increased virulence, depending
on the specific vaccine target (e.g. Gandon et al., 2001;
Ganusov andAntia, 2006) or vaccine coverage (e.g. André
and Gandon, 2006). However, these are highly general-
ized models with non-disease-specific mathematical
descriptions of within-host processes. As we have argued
above, if our aim is to make quantitative predictions about
outcomes for a specific disease, we ought to use strongly
supported, biologically based models. Improving within-
host models of malaria pathogenesis and combining these
with epidemiological models will lead to better predictions
about the effects of interventions.

Some of the potential evolutionary effects of interven-
tions have been studied with model organisms and while
their results are important they are not always well
understood. Why, for example, does passaging malaria
parasites through immunized mice result in selection for
more virulent parasites (Mackinnon and Read, 2004)? In
particular, what is the mechanism of this increased viru-
lence, i.e. on what trait is selection acting? These em-
pirical results may have serious implications for human

health policy, yet these questions remain unanswered.
With a good model of mouse malaria (one that has been
derived from, calibrated and validated with data) we can
replicate this experiment in silico with the aim of predicting
what kinds of malaria parasites (e.g. those that undergo
rapid antigen switching, replicate at higher rates or infect
RBCs at faster rates) have an advantage in immunized
hosts. Theory offers an easier and powerful approach for
teasing apart mechanisms.

Conclusions

The fundamental goal of any study of malaria pathogen-
esis is to bring new insights towards developing success-
ful treatment and control measures for this disease. Given
the lack of progress in the past, our best hope for tackling
the problem of malaria is through a more comprehensive
understanding of the mechanisms that determine its
pathogenesis. Unless these processes can be translated
into mathematical models that accurately capture the
dynamics of pathogenesis, this understanding will remain
out of reach. In the process of striving for a mathematical
account of malaria pathogenesis, we will likely discover
the existence of new regulatory factors and that some
regulatory factors are largely unimportant. By determining
the relative importance of what does matter, and how
those factors interact, we will be able to predict the likely
consequences of clinical interventions, such as vaccines
and chemotherapeutic agents targeted at particular para-
site stages, and novel interventions aimed at host factors
which determine disease (immunopathology). Achieving
this promise requires the careful interactions between
experimental biologists who appreciate that useful models
need not include every last detail of every pathway, and
biomathematicians who are prepared to tackle the jargon,
the huge experimental literature and the fuzzy uncertain-
ties of real experimental data.
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