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The geometric mean of fitness is considered to be the main indicator of evolutionary change in stochastic models. 
However, this measure was initially derived for models with infinite population sizes, where the long-term evolu-
tionary behavior can be described with certainty. In this paper we begin an exploration of the limitations and util-
ity of this approach to evolution in finite populations and discuss alternate methods for predicting evolutionary 
dynamics. We reanalyze a model of lottery competition under environmental stochasticity by including popula-
tion finiteness, and show that the geometric mean predictions do not always agree with those based on the fixa-
tion probability of rare alleles. Further, the fixation probability can be inserted into adaptive dynamics equations 
to derive the mean state of the population. We explore the effects of increasing population size on these conclu-
sions through simulations. These simulations show that for small population sizes the fixation probability accu-
rately predicts the course of evolution, but as population size becomes large the geometric mean predictions are 
upheld. The two approaches are reconciled because the time scale on which the fixation probability approach ap-
plies becomes very large as population size grows.  
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1. Introduction 
 

As biologists we often attempt to predict the out-
come of evolution as though it were a deterministic 
process, despite the fact that it is inherently sto-
chastic. This may in part be due to a belief that the 
main effect of stochasticity is to introduce noise, 
and not to alter the direction of evolution. How-
ever, this deterministic outlook is often retained 
even when stochasticity is believed to have a direc-
tional effect on evolution, and it is exemplified by 
studies which use geometric mean fitness to pre-
dict the course of evolution under environmental 
stochasticity (Gillespie, 1973; Seger and Brock-

mann, 1987). The idea is that, if the environment 
as a whole fluctuates from year to year, then after a 
series of new mutations and successive allelic re-
placements, the allele coding for the strategy with 
the highest geometric mean fitness will prevail 
[however, see Iwasa (1988)]. If the scenario under 
examination involves fitness interactions among 
individuals that result in density and/or frequency-
dependence, then typically such ‘replacement crite-
ria’ become unworkable. In such cases one then 
uses the geometric mean fitness of a strategy when 
rare as a measure of its ability to invade the popu-
lation (Turelli, 1978b; Ellner, 1996; Benton and 
Grant, 2000). While this latter extension is not 
meant to imply that an invading strategy (i.e. al-
lele) will necessarily replace the resident strategy, 
such ‘invasion criteria’ can (and have) been used 
to find uninvadible strategies under environmental 
stochasticity (Turelli, 1978b; Real and Ellner, 
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1992; Iwasa and Levin, 1995; Kisdi and Meszena, 
1995; Ellner, 1996; Grant, 1997; Benton and 
Grant, 1999; Benton and Grant, 2000; Ranta et al., 
2000). In either case, the goal has been to reduce 
the predictions of the stochastic evolutionary 
model to a single, deterministic outcome based on 
the maximization of geometric mean fitness. Our 
purpose here is to show that the geometric mean 
fitness of invading strategies can give an incom-
plete picture of adaptive evolution in some situa-
tions stemming from two linked features; the infi-
nite population size assumption and deterministic 
interpretation. We focus on evolution in finite 
populations and demonstrate that another fitness 
measure, the probability of fixation, provides addi-
tional and sometimes more suitable information 
than the geometric mean.  

 
 

2. Deterministic models 
 

To better understand the limitations of fitness 
measures in stochastic models it is helpful to first 
look at their use in deterministic models, such as 
simple optimality models. All such models assume 
that some fitness measure (e.g. lifetime reproduc-
tive output) is maximized by natural selection, and 
consequently these models are based (at least im-
plicitly) on a replacement criterion. When such 
replacement criteria are valid they provide a very 
powerful tool for understanding evolution. Once 
the realities of density- and frequency-dependence 
are incorporated in deterministic models, however, 
such replacement criteria typically become intrac-
table, as there is generally no longer an optimiza-
tion principle (Metz et al., 1996b; Heino et al., 
1998a, b; Kisdi, 1998). Analyses are then usually 
based upon an invasion criterion that characterizes 
a strategy's growth factor when rare [this approach 
is the basis of all game-theoretic modeling (May-
nard Smith, 1982)].  

The goal of an invasion analysis is to determine 
whether a rare mutant strategy can invade a resi-
dent strategy. This can be done by deriving an 
expression for the per capita growth factor of a 

mutant (
t

t
Ni
Ni 1+ ), or the per capita change in fre-

quency of a mutant (
t

t
p
p 1+ ). To obtain the invasion 

criterion one takes the limit of this expression as 
the mutant frequency goes to zero. This limit (as 

frequency goes to zero) is the mathematical em-
bodiment of rarity, and it is a central assumption in 
all invasion criteria. In mathematical language, it is 
a linearization of the joint dynamics of the mutant 
and resident strategies where the mutant strategy is 
absent, and it assumes that the mutant's growth 
factor when rare is determined by the environment 
that is set by the resident strategy. Figure 1a is a 
hypothetical curve for a mutant with a per capita 
growth factor of less than 1 at zero frequency. An 
evolutionarily stable strategy is one for which all 

FIG. 1. Hypothetical plots of the mutant growth factor for 
deterministic and stochastic models. Panel a is for a determi-
nistic model with frequency dependence. The mutant has a 
growth factor of less than one when rare, indicating that the 
frequency of the mutant would decrease to zero. However, if 
the frequency of the mutant passes p0, then the growth factor 
is greater than one, and the mutant would increase in fre-
quency until it replaced the resident alleles. Panel b shows the 
same scenario for a stochastic case. There are two types of 
years, one which results in high mutant growth factors (upper 
dashed curve), and one which results in low mutant growth 
factors (lower dashed curve). Even though the geometric mean 
growth factor of the mutant is less than one for low frequency, 
a run of good years would result in fixation of the mutant 

allele 
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mutant strategies have growth factors less than one 
when rare.  

Notice that the above analysis (i.e. linearization) 
tacitly relies on the continuous state space of the 
model when taking the limit as frequency goes to 
zero. Of course, this implies an assumption of an 
infinite population size since otherwise the small-
est non-zero frequency possible would be 1/N, 
where N is the population size. We are primarily 
interested in knowing whether or not population 
finiteness can qualitatively alter predictions about 
evolution. Consider an example in which a rare 
mutant strategy goes extinct deterministically, but 
if the mutant reaches a threshold frequency, p0, 
then it spreads to fixation (Fig. 1a). Now suppose 
that p0 < 1/N, so that the rarest possible mutant in 
the population is nevertheless above this threshold 
frequency. This will occur if the real population 
size is small enough and/or the threshold is low. 
Then once a single mutant copy exists, it will 
spread to fixation despite the fact that the above 
invasion criterion predicts it to go extinct.  

This example illustrates that invasion criteria 
can easily fail in deterministic models because they 
are based on the per capita growth factor of mu-
tants when they have zero frequency, and any real 
mutant will first appear at frequency 1/N in a finite 
population. Notice, however, that invasion criteria 
can be rescued (conceptually at least) provided we 
are willing to assume that the population size is 
large enough. More specifically, we can usually 
assume a large enough (but still finite) population 
so that the growth factor of a mutant strategy at 
frequency 1/N has the same sign as the growth 
factor of a mutant strategy at frequency zero (Fig. 
1a). In such a case, even though the real growth 
factor of a mutant will differ quantitatively from 
that predicted by the invasion criterion, the qualita-
tive behavior of the two will nevertheless coincide. 
This means that invasion criteria will work prop-
erly provided that the population size is larger than 
some fixed threshold. As we will argue next, the 
exact same issues arise in stochastic models, and it 
is of interest to know the degree to which large 
population size rescues the invasion criteria in this 
setting.  

 
 

3. Stochastic models and the derivation 
of the geometric mean principle 

 
Geometric mean fitness is probably the most 
widely employed fitness measure under environ-
mental stochasticity, and the geometric mean fit-
ness of a mutant when rare has also been used as 
an invasion criterion in many studies (Turelli, 
1978b; Real and Ellner, 1992; Kisdi and Meszena, 
1995; Ranta et al., 2000). The reasoning behind 
using the geometric mean in stochastic models 
initially came from a stochastic model that pre-
dicted a ‘deterministic’ outcome (Gillespie, 1973). 
The original model is one of two strategies, each 
growing without density dependence or interfer-
ence from the other strategy, and having its repro-
ductive success in each year determined by the 
environment in that year (appendix A). In these 
models, even though the frequency of a mutant 
may go up or down in a particular generation, the 
frequency of the mutant becomes either virtually 0 
or virtually 1, depending on the geometric mean of 
relative fitness. The mathematical statement is that 
for any small neighborhood around 0 (or 1), the 
probability that the allele frequency is in that 
neighborhood approaches 1 as time goes to infinity 
(Gillespie, 1973). The strategy which becomes 
fixed is the strategy with the largest geometric 
mean fitness. These results have been interpreted 
as implying a geometric mean maximization prin-
ciple, and thus the geometric mean has often been 
used as a replacement criterion.  

Although the utility of the geometric mean was 
first shown for frequency and density independent 
processes, it was later applied as a heuristic tool to 
more complex processes, by using the geometric 
mean growth factor of a mutant strategy when rare 
as an invasion criterion (Turelli, 1978a; Chesson 
and Warner, 1981; Bulmer, 1985; Chesson, 1985). 
Although no proof was provided in these early 
studies, the logic was that such invasion criterion 
could be constructed for stochastic systems just as 
they are for deterministic systems. This logic was 
later upheld by rigorous mathematical treatments 
for a variety of models (Ellner, 1984; Chesson and 
Ellner, 1989; Ferriere and Gatto, 1995), and the 
idea that the geometric mean growth factor of a 
rare strategy can determine invasion success in any 
model has become prevalent in the theoretical lit-
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erature (Metz et al., 1992; Ellner, 1996; Benton 
and Grant, 2000). However, just as with the con-
struction of deterministic invasion criteria, these 
treatments of stochastic invasion criteria consider 
only situations in which the state space of the 
model is continuous, and thus they include an infi-
nite population size assumption.  

Figure 1b depicts a hypothetical example for a 
model of environmental stochasticity. The dashed 
curves depict two different types of year, while the 
solid curve is the geometric mean of the mutant 
growth factor. Because selection is highly variable, 
the new strategy has a low geometric mean growth 
factor when rare, and according to the invasion 
analysis this strategy will go extinct. But the 
dashed curves show that there is some possibility 
of increasing in frequency, and that this is true for 
any current frequency. Consequently, if the popu-
lation is finite, and a run of years happens to favor 
the mutant, it may become fixed (alternatively, a 
run of bad years could drive it extinct). This uncer-
tainty in the evolutionary outcome is often pre-
cluded in an infinite population when frequency is 
modeled as a continuous variable, because, under 
the linearization that is used in calculating the in-
vasion measure, it takes an infinite number of steps 
for a rare allele to escape its infinitesimally small 
starting frequency. This ensures that the allele ‘ex-
periences’ a perfectly representative collection of 
environmental states while it is still rare by forcing 
it to remain at zero frequency for an arbitrarily 
long period of time, and it is the reason why inva-
sion criterion based on the geometric mean fitness 
when rare can accurately capture the invasion dy-
namics in models with a continuous state space. 
For a finite population, however, this will no 
longer be true because there is always some prob-
ability that the mutant allele escapes rarity before 
all possible environmental states are experienced.  

In small populations stochastic effects due to 
drift alone will be large enough that predictions 
from infinite population models will not apply. The 
effect of stochasticity may be to alter the mean 
state, or to increase the variance of the system 
(Iwasa, 1988). This effect may be pronounced even 
for moderately sized populations, but of course it 
should tend towards zero as population size ap-
proaches infinity.  

 
 

4. The fixation probability as an indicator  
of evolutionary change 

 
To address the issues raised above about evolution 
in finite populations, another useful measure 
(rather than the geometric mean) is the fixation 
probability of a rare allele. The population genetics 
literature has relied heavily upon fixation probabil-
ity [e.g. Crow and Kimura (1970)], and it has been 
used to infer the directionality of adaptive evolu-
tion (Gillespie, 1974; Otto and Whitlock, 1997; 
Proulx, 2000). If the fixation probability of a mu-
tant allele is greater than neutral, then, in one 
sense, that allele is selectively favored.  

A neutral allele in a haploid organism, i.e. an al-
ternative allele which is different from the resident 
only in name (sequence) but not function, will 
become fixed with a probability of 1/N, when ini-
tially present in a single copy. Although one might 
guess that for a slightly favored allele, the fixation 
probability in a large population would be similar 
to the fixation probability of a neutral allele, this is 
not the case. An early study of Haldane showed 
that the fixation probability of a selectively favored 
allele is twice the selective advantage in an infinite 
population (Crow and Kimura, 1970). This result 
comes from a branching process approximation, 
where the mutant alleles are thought of as an inde-
pendent population reproducing without density  
or frequency dependence. (Technically, the “fixa-
tion probability” is assumed to be one minus the 
extinction probability.) A mutant which is at a 
selective disadvantage is guaranteed to go extinct 
in the long run, and so has a fixation probability 
of 0.  

The same branching process approach can be 
taken for a model with environmental stochasticity, 
and the geometric mean fitness determines whether 
the fixation probability of a mutant allele is greater 
than 0. In much the same way as for constant envi-
ronments, an allele with a geometric mean greater 
than 1 has a positive fixation probability, whereas 
an allele with a geometric mean of less than 1 has a 
fixation probability of 0 in a very large population 
(Haccou and Iwasa, 1996). So, the geometric mean 
fitness of rare mutants describes the limit of the 
fixation probability as population size becomes 
large. However, it only partially distinguishes al-
leles which have fixation probabilities greater than 
neutral alleles and those which have fixation prob-
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abilities less than neutral alleles. In particular, an 
allele which has a geometric mean fitness of 
greater than 1 will have a greater than neutral fixa-
tion probability (in a large population), but an al-
lele with a geometric mean fitness of less than 1 
may still have a fixation probability greater than a 
neutral allele, even for very large population sizes. 
This situation is graphically depicted in Figure 2, 
which is motivated by the examples presented later 
in this paper.  

Thus, in a small population, the geometric mean 
fitness may not indicate the magnitude of the fixa-
tion probability, and there are at least two reasons 
to expect that it is the fixation probability rather 
than the geometric mean that reveals important 
information for evolution in finite populations.  

 
 

4.1.  Markovian 2-allele models 
 

The first reason comes from considering only two 
alleles at a time (which is a common assumption in 

many models that use invasion criteria) and asking 
how much time the system spends fixed for each 
allele. If we assume that mutations are rare com-
pared to the time scale at which fixation occurs, 
and that the two alleles can mutate with the same 
probability, then the state of the population is a 
very simple Markov chain (see Iwasa [1988] for a 
similar approach). In any step, the population can 
either remain in its current state, or switch states. If 
we write the probability of allele A fixing in a 
population of allele B when rare as UA,B, then the 
matrix describing the Markov chain is 

 







−

−
=

BABA

ABAB

UU
UU

M
,,

,,

1
1

. (1) 

The  proportion  of  time  the population  spends 

fixed  for allele  A  is  given  by   
ABBA

BA

UU
U

,,

,

+ ,  which 

depends only on the relative fixation probabilities, 
but not on their magnitudes. Therefore, the allele 
which has the higher fixation probability is the one 

FIG. 2.  This shows fixation probabilities as a function of population size for various invading alleles. The solid line is for a 
neutral allele, so the fixation probability is 1/N. The upper dashed line is for an allele which has a geometric mean greater than 1. 
This fixation probability is above 1/N and approaches a positive value as population size increases. The middle dashed curve is 
for an allele with a geometric mean less than 1,  but a fixation probability  greater than a neutral allele. The lower dashed curve is

for an allele which has a geometric mean less than 1 and a fixation probability less than a neutral allele 
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which will be observed more often in the long-
term, regardless of population size. This is true 
even if both alleles have geometric mean fitnesses 
of less than 1, as there is no reason why the ratio of 
the fixation probabilities cannot become more dif-
ferent as population size becomes large.  
 
 

4.2.  Adaptive dynamics 
 

A second justification for using probability of fixa-
tion comes from a more sophisticated model of 
evolution that includes a range of possible alleles. 
This is precisely what Dieckmann and Law mod-
eled to derive the gradient equations of adaptive 
dynamics, given a simplified model of fixation 
(Dieckmann and Law, 1996). In their framework, a 
branching process approximation is used to de-
scribe the dynamics of rare invaders, which leads 
to the calculation that maladapted alleles have a 
fixation probability of zero. However, the actual 
fixation probabilities could instead be used in their 
calculations, with an analogous result (appendix 
B). Evolution will, on average, take the population 
up the fixation probability gradient. One interest-
ing difference between these two approaches is 
that in the Dieckman and Law model, asymmetric 
mutation kernels (which can be thought of as a bias 
in the direction of mutation) slow down the ap-
proach to the attracting point, but do not alter the 
equilibrium state; in the fixation probability 
framework mutation bias causes the mean state to 
move away from the original attractor. This sug-
gests that we might use the probability of fixation 
of strategy x when rare against y (i.e. U(x,y)) as a 
‘fitness function’ in the standard analyses used in 
game-theoretic and adaptive dynamics modeling 
when the model of interest involves stochasticity. 
This allows potential generalizations of the tradi-
tional ESS definition, as well as definitions which 
include dynamic stability, like ‘continuously stable 
strategies’ (CSS) and the evolutionary attractors of 
adaptive dynamics (Maynard Smith, 1982; Eshel, 
1983; Taylor, 1989; Christiansen, 1991; Geritz 
et al., 1998). When strategies exist against which 
all other strategies have less than neutral fixation 
probabilities then they represent the stochastic 
generalization of an ESS. If this strategy has higher 
than neutral fixation probabilities against all mu-
tant strategies then it also invades all other strate-

gies, and this can be thought of as a global evolu-
tionary attractor. Similar arguments could be made 
to generate a stochastic analogue of the CSS condi-
tion of game theory and adaptive dynamics (which 
is a local condition).  

Other more complex scenarios are also possible, 
for instance a set of strategies could be mutually 
invadible or uninvadible (Jensen, 1973; Karlin and 
Levikson, 1974; Yoshimura and Clark, 1991; 
Proulx, 2000). Even in these more complex scenar-
ios the fixation probability gradient can be used to 
find the mean population state (appendix B), but 
the possibility of the stochastic version of evolu-
tionary branching (Abrams et al., 1993; Metz et al., 
1996a; Geritz et al., 1998) cannot be excluded.  

It should be noted, however, that both of the 
above arguments assume that mutations are infre-
quent when compared to the time scale at which 
replacement occurs. However, if population size is 
large enough or the mutation rate is high many 
alternative alleles will segregate in the population 
at any point in time. In addition, two alleles could 
coexist for long periods of time or coexist as a 
polymorphism, putting the above arguments in 
doubt. Interactions between multiple alleles could 
also alter the dynamics of a focal allele, particu-
larly if disruptive selection results in population 
splitting (Abrams et al., 1993; Geritz et al., 1998). 
While it is likely that these complications reduce 
the utility of fixation probability in some situa-
tions, the results discussed below show that fixa-
tion probability can still provide useful evolution-
ary information, even for these more complicated 
situations.  

 
 

5.  Lottery competition in stochastic 
environments 

 
The above arguments for using the fixation prob-
ability of rare alleles to follow evolution under 
environmental stochasticity would have little 
weight if the results from doing so did not differ 
much from those that rely on the geometric mean. 
In this section we show that results using the geo-
metric mean argument and those using the fixation 
probability differ in interesting ways for the lottery 
model with environmental stochasticity (Turelli, 
1978b; Chesson and Warner, 1981; Real and Ell-
ner, 1992; Kisdi and Meszena, 1995; Ranta et al., 
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2000). Furthermore, simulation results suggest that 
up to reasonably large population sizes, the fixa-
tion probability results reflect the actual adaptive 
dynamics.  

The lottery model is designed to mimic the life 
cycle of a sessile, iteroparous organism with fixed 
population size (Chesson and Warner, 1981). The 
population size is assumed to be limited by sites 
for which juveniles must compete, but can also be 
applied to species which consume a fixed amount 
of any resource which is renewed each generation. 
The order of events is zygote production → adult 
mortality → zygotes compete for available sites → 
zygote production. Mortality occurs independently 
in each site with a probability given by the strategy 
of the occupant of that site. Thus, the number of 
surviving adults of a particular strategy is bino-
mial. The number of zygotes produced is assumed 
to be well in excess of the total number of sites, so 
that the number of sites which are filled by each 
strategy is also a binomial random variable. Many 
sessile marine organisms and plants fit this model 
well, and non-sessile organisms may fit it as well if 
some other resource has a fixed yearly production 
and individuals can consume at most some fixed 
amount of it.  

Kisdi and Meszena (1995) have considered an 
example where stochasticity is introduced to the 
lottery model via mortality, and there is a trade-off 
between mean mortality and fecundity. In each 
year the mortality of adults is determined by multi-
plying a random environmental variable by the 
mortality probability of the strategy. The expected 
frequency in the next generation is  

 
( ) rtmt

mt
tmtt npnp

npspp
−+

+ξ=+ 11  

 ( )( )trttmt spsp ξ−−ξ− 11  (2) 

where pt is the mutant frequency at generation t, n 
represents the fecundity of a strategy, s is the sur-
vivorship of a strategy, the subscripts m and r refer 
to mutant and resident, and jt is a stochastic envi-
ronmental effect which alters survivorship. We 
assume a trade-off between fecundity and survi-
vorship taken from Kisdi and Meszena (1995) so 
that  

 ( ) 







+

+
+

−= n

n

n

n

e
e

e
ens 6.05

6.0

3 1010
5.08.0 . (3) 

 
Thus, a mutant strategy will consist of a fecundity 
nm and an associated survivorship sm found by 
equation 3. Even if we only have one type of year 
(so that j is fixed), the actual frequency in the next 
generation will vary around this mean, due to the 
stochastic nature of both death and replacement. 
However, if we take the limit as population size 
becomes large, then this variance is reduced to 
zero; only variance due to the environment will 
remain. Now consider the invasion criterion of the 
geometric mean growth rate of a mutant, when that 
mutant is rare. The growth rate when rare is found 

by taking the limit of  
t

t
p
p 1+   as the frequency of the 

mutant allele goes to zero, and is 
 

 ( )
r

m
trtmrm n
n

ss ξ−+ξ=λ 1, . (4) 

 
The expected log of λ  must be greater than 

zero for the rare strategy to increase. Figure 3 
shows the pairwise invasibility plot for a constant 
environment and for a random environment (using 
the geometric mean of λ ). The number of unin-
vadible strategies goes from 1 in a constant envi-
ronment to 2 in a random environment.  

The fixation probability of rare mutants may not 
be reflected by the geometric mean growth rate of 
a rare mutant. In this example, relative fixation 
probabilities can be easily found by examining the 
expected change in gene frequency (appendix C) 
using our original equation for the expected gene 
frequency in a finite population (equation 2). Be-
cause the random variable jt occurs only linearly, 
the expected frequency depends only on the arith-
metic mean of jt, 

 [ ] +=+ ξmtt sppE 1  

 ( ) rtmt

mt

npnp
np
−+

+
1

 

 ( )( )ξ−−ξ− rtmt spsp 11 , (5) 
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and the expected change in p (i.e. E[pt+1 – pt]) is 
 

 [ ] ( )
( ) rtmt

tt

npnp
pp

pE
−+
−

=∆
1

1
 

 ( ) ( )( )11 −ξ−−ξ rmmr snsn . (6) 

 
Note that the sign of the expected ∆p does not de-
pend on pt or on population size. If we take the 
mean of j to be 1, as in Kisdi and Meszena (1995), 
then we see that stochasticity does not qualitatively 
alter the pattern of fixation probabilities. That is, 
the same alleles which had higher than neutral 
fixation probabilities without stochasticity still 
have higher than neutral fixation probabilities with 
stochasticity. This is in direct contrast to findings 
based on the geometric mean, as shown in Figure 
3. Also, the expected ∆p does not depend on popu-
lation size, so this qualitative pattern of evolution 
is not altered by increasing population size. Large 

population size still plays a role, however, by mak-
ing evolutionary transitions from one type to an-
other less frequent. This is shown in Figure 4, 
where the actual fixation probabilities are shown. 
Even when the fixation probability is above 1/N, it 
may be quite small.  

In one case studied by Kisdi and Meszena, the 
system has one ESS in a constant environment 
(ESS A) and, by the geometric mean argument, 
two ESS’s in the stochastic environment (ESS A 
and ESS B, see Fig. 3). What happens is that sto-
chasticity lowers λ  for ESS A when it is invading 
ESS B. This means that in an infinite population 
composed of individuals playing B, a mutant play-
ing A will eventually go extinct. However, in a 
finite population of any size it is possible for A to 
replace B, and it is more likely than the converse. 
This means that if these two strategies were pitted 
against one another, the population would be found 
at A more of the time. Interestingly, these argu-
ments are true regardless of the population size for 
the lottery model. If A and B were pitted against  

FIG. 3. Pairwise invasibility and replacement plots for the lottery model with stochastic death rates. The trade-off between birth 

and death rates taken from Kisdi and Meszena (1995) is s(n) = 0.8 – 0.5 ( )n

n

n

n

e
e

e
e

6.05

6.0

3 1010 ++
+ . The first panel shows the theo-

retical prediction, along with simulated fixation probabilities for populations of 500 individuals, for two models. The first simu-
lated model has no yearly stochasticity in death rates, but is stochastic due to genetic drift (see text). The second simulated model 
includes stochasticity in death rates as well as genetic drift. The lightest shading is for drift only, while the medium shading is for 
both drift and stochasticity. There were 500 populations of 1,000 individuals for the drift simulation and 1,000 populations of 
1,000 for the stochastic simulations. The shaded areas represent invasion/replacement of the strategy on the abscissa. The fixa-
tion probabilities for the stochastic model are predicted to be the same as for the deterministic model, which is borne out by their 
close association. The second panel shows the invasion criterion based on the geometric mean fitness when rare redrawn from 

Kisdi and Meszena (1995) 
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FIG. 4. This shows the log of fixation probabilities for the 
lottery model with stochastic death rates in a population of 
500 individuals. The shading is based on the fixation probabil-
ity, with all white panels representing fixation probabilities of 

less than 1/500 

 
one another in an extremely large population, then 
we would very rarely see any transitions from out 
of either state, but transitions from B to A would 
still be much more frequent than the reverse, indi-
cating that the original ESS is still 
evolutionarily favored. The time 
required for these transitions be-
comes extremely large as population 
size increases however, so, while the 
system spends an increasing propor-
tion of time fixed for A, the time 
required for a transition from B to A 
may be so large as to be evolutionar-
ily unimportant.  

 
 

5.1.  Simulation results 
 

The analyses based on fixation 
probability depend on separating the 
time scales of mutation and re-
placement. If replacement takes long 
enough, or the mutation rate is high 
enough, then many alleles should 
segregate in the population at any 
point in time. Also, the time taken 
for replacement, given that it occurs, 
may depend on the invading allele. 
Therefore, we designed a simulation 
which allows for a continuum of 
alleles with mutation between alleles. 
In this simulation each genotype is 

associated with a fecundity and survivorship (a 
strategy). This model includes both environmental 
stochasticity and genetic drift. Genetic drift is in-
cluded because this is an individual based model so 
only integer numbers of adults and offspring are 
allowed. Both the number of surviving adults and 
number of successful offspring are therefore mod-
eled as binomial trials.  

In this model, adults first produce gametes and 
then experience mortality. The number of gametes 
produced depends upon the genotype of the parent, 
and the gamete genotype is modified by mutation 
with a probability dependent on the mutation rate 
parameter. Mutation is assumed to operate glob-
ally, so that each genotype is equally likely to arise 
by mutation from any other genotype. We adopted 
this model of mutation because a strictly local mu-
tational process would find local equilibria in both 
the stochastic and constant models, and it is only 
the global properties of the equilibria which are 
predicted to change under stochasticity. Each adult 
then dies with a probability determined by her 

FIG. 5. This shows the dependence of the distribution on population size and 
time. The simulation was run with 30 alleles with offspring production be-
tween 0 and 20 and a mutation rate of 0.001. The x-axis represents the initial 
population genotype, while the y-axis shows a frequency distribution averaged 
across 100 runs of the simulation. The top row is for populations of size 1,000, 
while the bottom row is for populations of size 10,000, while the bottom row is 
for populations of size 10,000. The left column shows the distributions after 
only 1,000 generations and the right column shows the distribution after 

10,000 generations 
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genotype and the current environment, which is 
itself a random variable. The empty spots are then 
filled by juveniles which are drawn at random from 
the pool of gametes. At the beginning of each run 
all individuals had the same genotype. We ran the 
simulation 100 times for each set of conditions for 
two different lengths of time.  

Figure 5 shows the gene frequency distribution, 
averaged over all the runs, for a given initial condi-
tion. After a long time, the set of populations 
should approach a stationary distribution, inde-
pendent of the initial condition. This effect is dem-
onstrated in the top half of Figure 5, for a modestly 
sized population of 1,000 individuals. After only 
1,000 generations, the populations which started 
fixed for ESS B still have a high frequency of indi-
viduals around B. However, by generation 10,000, 
most individuals have genotype A, regardless of 
the initial state of the population. These results are 
replicated for a larger population of 10,000 indi-
viduals in the lower half of the figure. Now, even 
after 10,000 generations there is still an effect of 
the initial condition, although it is less pronounced 
than at 1,000 generations.  

 
 

6.  Conclusions 
 

We have argued that the probability of fixation 
provides important information for predicting the 
course of evolution in stochastic environments for 
finite populations. Although probability of fixation 
can sometimes be difficult to calculate analytically, 
the above example makes clear that using alterna-
tive measures (particularly those based on the 
geometric mean fitness) can easily give very dif-
ferent evolutionary predictions. Fixation probabili-
ties can always be generated by simulation, and it 
is also possible in some contexts to generate ana-
lytical predictions about fixation probabilities rela-
tive to that of a neutral allele without calculating 
them explicitly (Proulx, 2000) (appendix C). 
Moreover, calculating the geometric mean fitness 
of a strategy (when rare or otherwise) can also be 
very difficult in all but the simplest of models 
(Metz et al., 1992; Ferriere and Gatto, 1995).  

In order to present our argument for fixation 
probability as an indicator of evolutionary dynam-
ics we adopted several simplifying assumptions. 
We limited our consideration to two segregating 

alleles in a population of fixed size and ignored 
potential differences in the time needed for re-
placement. These ideas can be easily extended to 
populations which fluctuate in size as long as 
population size is bounded both below and above. 
However, if extinction is possible, and particularly 
if the risk of total population extinction depends on 
the allele frequencies in the population then fixa-
tion probability will be poorly defined and unsatis-
factory. Once the possibility of population extinc-
tion exists a more detailed examination of both 
population and genetic dynamics is required. Simi-
larly, for some models, extensions to multiple seg-
regating alleles are not difficult. The time dynam-
ics were simplified by assuming that mutations 
occur with a frequency that is much less than the 
time that one allele takes to replace another. Under 
this assumption, the Markov chain or adaptive 
dynamics model does not depend on the time taken 
for allelic replacement.  

If instead mutations occur often compared to the 
time required for alleles to fix, then the time dy-
namics of allele frequency become important. 
Asymmetries in fixation time could alter the ex-
pected evolutionary trajectory from the equilibrium 
predicted by fixation probability. This is a definite 
shortcoming of the probability of fixation as an 
indicator of evolutionary dynamics, which can 
only be resolved through models with increased 
complexity or simulation. We feel that the prob-
ability of fixation represents a medium where sen-
sible predictions can be made, but where some 
realism is necessarily excluded.  

Our simulations of lottery competition include 
many alleles and allow mutation to act at the same 
time scale as replacement. The simulations bear 
out most of our predictions: If the population size 
is not too large and the mutation rate is not too 
small, then the fixation probability gradient accu-
rately predicts the mean population genotype. 
These simulations do reveal that as population size 
becomes large the time required to reach this state 
can be very large and may become evolutionarily 
unimportant. However, we do note that even the 
smaller population size of 1,000 individuals is 
reasonably large.  

While the geometric mean has been used as an 
invasion criterion for some one dimensional sto-
chastic systems, the Lyapunov exponent has been 
used as a measure of stability in multi-dimensional 
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and one dimensional chaotic models (Metz et al., 
1992; Ferriere and Gatto, 1995). In fact, the geo-
metric mean of a rare strategy is the Lyapunov 
exponent for a one dimensional system. These 
more complex systems differ from the one ana-
lyzed in this paper in that the population dynamic 
attractors can be stable cycles or chaotic trajecto-
ries. Clearly, when Lyapunov exponent techniques 
are applied to stochastic systems, the issues raised 
here will still apply, but we believe the difficulty is 
even more severe. It seems quite plausible that 
even in deterministic systems with chaotic attrac-
tors the Lyapunov exponent can fail as an invasion 
measure. The Lyapunov exponent is calculated by 
assuming that the mutant trajectory stays infini-
tesimally close to the attractor for an arbitrarily 
long period of time (Rand et al., 1994), just as the 
geometric mean argument did for one dimensional 
stochastic systems. A negative dominant Lyapunov 
exponent can result from alternating increasing and 
decreasing mutant dynamics, so that periods of 
mutant growth can cause the trajectory to deviate 
from the attractor, and into a range where the linear 
approximation no longer applies. This will be par-
ticularly true in finite populations, because changes 
of even a single individual result in finite devia-
tions from the attractor.  

Our intent here is not to discredit the geometric 
mean as a measure of evolutionary change, but 
rather to point out that the utility of the geometric  
mean has not been fully quantified. Models with 
finite populations can yield substantially different  
results than models which use the geometric mean 
fitness of rare alleles, and the extent to which 
population size alters these results is an open ques-
tion. Frequency dependence creates additional 
difficulties which the geometric mean, as a local 
measure, cannot overcome. The arguments pre-
sented here for the probability of fixation of rare 
alleles must be tempered by population dynamic 
and extinction effects of alternative alleles. Al-
though the geometric mean may represent a suit-
able fitness measure for some population struc-
tures, there is still much theoretical work required 
before a complete understanding of evolution in 
even simple stochastic environments is achieved.  
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APPENDIX 
 
 

A)  The geometric mean as a fitness measure 
 

The geometric mean as a fitness measure seems to 
have been first derived for a model of two clones, 
each experiencing independent growth. In this 
model, the growth of each clonal population is 
considered independently, so that the growth equa-
tions are 

 ( ) ( ) ( )tNtRtN iii =+1 , (7) 

where Ni(t) is the number of clone i individuals at 
time t and Ri(t) is the number of type i offspring 
produced per capita in generation t. The frequency 
of type i is simply 

 ( ) ( )
( ) ( ) =+++

+
=+

11
1

1
21

1

tNtN
tN

tp  

  
( ) ( )

( ) ( ) ( ) ( )tRtNtRtN
tRtN

2211

11

+
= . (8) 

We are interested in how the frequency of each 
clone changes in the long run, so we would like a 
formula for p(t) in terms of the starting frequency. 

By defining the selection coefficient as ( ) ( )
( )tR
tRts

1

2=  

and writing the Ni's in terms of p, we see that 
 

( ) ( )
( ) ( )( ) ( )∏−+

=
t
tspp

ptp
010

0
. (9) 

 
So, it seems that the long run behavior of p de-
pends on the product of all the selection coeffi-
cients experienced, and does not depend on their 
order. What happens to the product of the selection 
coefficients after a long time? 



 S. R. PROULX and T. DAY 

 

12

( )
( )( ) ( )( ) t

t
ts

t
ts

t

t
t

t

eets 









=
















= ∑∏ 











∏
lnln

1

. (10) 

The final expression in equation 10 includes the 
sum of a random outcomes, weighted by how 
many times each outcome occurs. By the law of 
large numbers, the number of times each event 
occurs approaches the probability of that event 
times the number of events. The geometric mean 
(Mg) of a random variable X is defined as 

 Mg = e∑ln(x) Pr(X=x),  

where Pr(X=x) is the probability that a particular 
value x occurs, so equation 10 approaches 

 

 ( ) ( )( ) ( )( ) t
g

t
tsts

t
Mets t =





 ∑=∏ Prln

. (11) 

 
therefore, if Mg > 1, then the product of selection 
coefficients grows without bound, but if Mg < 1 the 
product of selection coefficients approaches 0. In 
case where Mg = 1, the product of selection coeffi-
cients approaches 1. Substituting this back into 
equation 9 we get 

 ( ) ( )
( ) ( )( ) t

gMpp
ptp

010
0
−+

= . (12) 

We know that t
gM  will approach either 0, 1, or 

infinity, and so p(t) will either approach 1, p(0), or 
0, respectively.  
 
 

B)  Deriving the adaptive dynamics equation 
 

The equations for adaptive change used in adaptive 
dynamics models have been derived by Dieckmann 
and Law (1996) by using a branching process ap-
proximation for the success of a rare mutant. They 
define the fixation probability of a rare mutant as 
the probability that the mutant does not go extinct 
when mutant birth and death rates are determined 
by the conditions set up by a resident population at 
equilibrium. In their derivation, the probability of 
invasion of a neutral mutant is exactly zero, and 

the probability of invasion of mutants with growth 
rates less than 1 is also zero. This results in a sto-
chastic process which can only move in certain 
directions and cannot, even rarely, move down an 
adaptive landscape.  

They first derive the transition probability for a 
population as the product of the probability a mu-
tant enters the population and the probability of 
fixation. They have explicitly assumed that the 
timescales are separated, so that fixation occurs 
before subsequent mutation. This gives 

( ) ( ) ( ) ( ) ( ) ( )
( )ssb
ssfsssMsnsbsssw

,
,,ˆ,
′
′

−′µ=′ , (13) 

 
where ( )sµ  is the mutation rate, b(s) is the birth 

rate, ( )sn̂  is the equilibrium population size, 

M(s,s′−s) is the probability of a mutational jump 
from s to s′, f(s′,s) is the net reproductive rate of 
the mutant, s is the resident strategy, and s′ is the 
mutant strategy. In their branching process deriva- 

tion  ( )
( )ssb
ssf

,
,
′
′

  is the fixation probability of a mutant, 

so the equation could be rewritten as 
 

( ) ( ) ( ) ( ) ( ) ( )ssUsssMsnsbsssw ,,ˆ, ′−′µ=′ , (14) 

 
where U(s′,s) is defined as the probability that s′ 
reaches fixation from a single starting mutant in a 
population otherwise composed of s.  

The mean path dynamics can be derived in simi-
lar ways for both formulations. The mean path, 
which is the average of population states over 
many runs of the process, is defined as 

 

 ( ) ( )∫= dstssPts , , (15) 

where P(s,t) is the probability density of genotype 
s at time t. The dynamics of the mean path can be 
derived following Dieckmann and Law (1996). We 

will write s  as s to simplify the notation, giving 

 

 
( ) ( ) ( )∫ ′′−′

R
sdsswss

dt

tds
, , (16) 
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where R is the set over which integration is per-
formed. The range of integration is the set of muta-
tions which have some chance of invading, so that 
R={s'|f(s'; s)>0} for the Dieckman and Law treat-
ment, and R is the entire domain for our treatment. 
We can now substitute in the two forms for w and 
approximate the systems with a Taylor's series 
expansion around small s′−s. For the Dieckman 
and Law treatment we have 

 

( ) ( ) ( ) ( ) ( ) ( )∫ ′−′−′′=
R

sdsssMsssfsns
dt

tds
,ˆ 2µ ,(17) 

 
and for our treatment we have 

 
( ) ( ) ( ) ( ) ( )


 +′−′−′= ∫R

sdsssMsssbs
dt

tds
,µ  

             ( ) ( ) ( ) ( ) )∫ ′−′−′′+ sdsssMsssUsn ,ˆ 2  (18) 

Note that the range of integration is quite different 
in the two cases. In the Dieckman and Law formu-
lation with a symmetric mutational distribution, 
only half of the local mutations (those which in-
crease the fixation probability) have a non-zero 
chance of replacing the resident. In our formula-
tion, all possible mutants have some non-zero 
chance of replacing the resident. We can define the 
proportion of mutants which increase fitness as 
ρ(s).  

If we define ( ) ( )∫ ′−′−′=
R

sdsssMssM ,  and 

( ) ( )∫ ′−′−′=σ sdsssMss ,22  then the two ap-

proaches, respectively, yield 
 

 
( ) ( ) ( ) ( ) ( ) 2ˆ σ′µρ= sfsnss
dt
tds

, (19) 

and 

 
( ) ( ) ( ) ( ) ( )( )2ˆ σ′+µ= sUsnMsbs
dt
tds

. (20) 

 
Interestingly, the approach based on fixation 

probabilities shows some dependence on direc-
tional  biases  in  the  mutation  function.  In the  
Dieckman and Law formulation only the magni- 

tude of mutational steps is important, not the direc-
tion because deleterious mutations can never be 
fixed. In our formulation a directional bias in mu-
tation will push the mean path away from the puta-
tive ESS, as would be expected in a quantitative 
genetic model.  

 
 

C)  Fixation probability as a martingale 
 

If the mean change in frequency of a mutant allele 
has a constant sign, regardless of frequency, then it 
is easy to determine whether the fixation probabil-
ity is larger or smaller than that of a neutral allele 
Proulx (2000). This type of stochastic process is 
called a submartingale when the initial value of the 
process remains above the expected value at every 
time in the future (it is called a supermartingale if 
the expected value increases in time). The idea is 
that if, for any frequency, an allele is expected to 
spread, then compounding this process through 
time also results in the alleles spread. Finally, be-
cause this is a discrete model with two absorbing 
states (loss or fixation of the mutant) the continual 
increase in the expected allele frequency must 
translate into a higher probability of fixation than 
the initial frequency. The converse argument can 
be made for alleles which are expected to decrease 
in frequency, but for alleles which vary in their 
tendency to spread no such simple calculation can 
be made.  

Mathematically, this can be proved by consider-
ing the stochastic sequence of the number of mu-
tant alleles, Nt, which has two absorbing states, 0 
and N (the total population size). The martingale 
property means that the expected number of mu-
tant alleles can only increase. Because there are 
only two absorbing states, the probability that the 
process is not in an absorbing state decreases to-
wards 0 as time becomes large. Putting these two 
facts together with the definition of fixation prob-
ability leads to the conclusion that the probability 
that the mutant allele becomes fixed is greater than 
that of a mutant allele, 

 

 
N
iUi ≥ , (21) 

where Ui is the probability a mutant allele becomes 
fixed given a starting number of i.  
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