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Abstract
Farming practices have changed dramatically over the years. The industrialization of 
farming has provided parasites with an abundance of hosts and is thought to have in-
fluenced parasite evolution. For example, the parasite that causes the highly conta-
gious poultry disease, Marek’s disease, has evolved over the past 60 years into a highly 
virulent pathogen. It is assumed that the industrialization of the industry and vaccina-
tion have selected for more virulent strains of the virus. Here, with the use of an im-
pulsive differential equation model, we investigate how modern broiler farm practices 
could independently lead to virulence evolution. Our model suggests that longer co-
hort durations and more densely stocked barns both select for less virulent strains of 
the virus. Our model also suggests that if intensive cleaning between cohorts does not 
rid the barn of disease, it may drive evolution and cause the disease to become more 
virulent.
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The industrialization of farming may be driving virulence 
evolution

Carly Rozins | Troy Day

1  | INTRODUCTION

The Marek’s disease virus (MDV) is a highly contagious poultry patho-
gen first recognized over 100 years ago. Up until the 1960s, the 
disease caused by MDV was characterized as paralytic, occasionally 
resulting in lymphomas in older birds, and only affecting a low fre-
quency of flocks (Biggs & Payne, 1967). The relatively benign nature of 
the disease allowed the virus and the chickens to coexist without the 
necessity of human intervention.

In the early 1960s, there was a widespread move from small- scale 
farming to intensive large- scale farming. For the first time, large flocks 
of chickens were being reared together in crowded farms. It is believed 
that these changes in husbandry practices caused an evolutionary 
shift towards greater virulence in Marek’s disease (MD) (Nair, 2005). 
The disease continued to cause paralysis, but was now accompanied 
by an unusually large presence of lymphomas in very young birds. This 
resulted in widespread outbreaks and very high mortality rates around 

the world (Benton & Cover, 1957; Witter, 1997). There was an urgent 
need for human intervention to combat economic losses, and the solu-
tion came in the form of vaccination (Churchill, Payne, & Chubb, 1969; 
Okazaki, Purchase, & Burmester, 1970). Vaccination campaigns were so 
successful that deaths due to MD became almost nonexistent (Witter, 
2001).

In the 1970s, the vaccine in circulation started to loose efficacy and 
infections with more virulent strains of the MDV were observed. As losses 
due to MD started to dramatically increase again, the poultry industry 
responded with a new bivalent vaccine that offered better protection from 
the strains in circulation. The bivalent vaccine was successful, but not for 
long. By the mid 1990s, there was another shift in the disease towards 
higher virulence and an ability to bypass the bivalent vaccine- induced 
immune response (Nair, 2005; Witter, 1998). Again the industry combat-
ted the escalating losses due to disease with a new more potent vac-
cine. The new vaccine, like the previous ones, offered immediate relief, but 
there is concern that this protection will again be temporary (Nair, 2005).
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There has never been, nor is there now, a treatment for MD, and 
case fatality risk can be as high as 100% in unvaccinated birds (Nair, 
2005; Witter, 1998). The only defence against MD is vaccines, which 
are administered to chicks on the day of hatching or in ovo. In ovo 
vaccination automates the process and allows the chickens to develop 
immunity as early as possible (Sarma, Greer, Gildersleeve, Murray, & 
Miles, 1995). The MD vaccines have all been “imperfect vaccines”, 
which are unable to induce a sterile immunity in the vaccinated host. 
The vaccine protects the host from developing signs associated with 
the disease, but does not prevent infection and will allow the virus to 
replicate within the host (Purchase & Okazaki, 1971). Therefore, vac-
cinated chickens can become infected with MDV, and once infected, 
they can transmit it. In addition, once MDV makes its way into a barn, 
the disease may go undetected because the vaccine masks the disease. 
The MDV is transmitted indirectly through the inhalation of viral par-
ticles, which are shed by infected birds (Witter, Moulthrop, Burgoyne, 
& Connell, 1970). MDV has been found in depopulated barns (Jurajda 
& Klimes, 1970), and it has been shown to cause infection weeks after 
being shed (Carrozza, Fredrickson, Prince, & Luginbuhl, 1973; Jurajda 
& Klimes, 1970; Witter, Burgoyne, & Burmester, 1968). Therefore, a 
chicken can become infected by viral particles shed by a bird from a 
previous flock.

It has been suggested that the industrialization of the industry in 
the 1960s led to an increase in virulence (Nair, 2005). The emergence 
of more virulent strains since the 1970s has largely been attributed to 
the widespread use of vaccinations (Davison & Nair, 2005), and this 
has been supported by empirical and theoretical work (Atkins et al., 
2012; Read et al., 2015). Atkins et al. (2012) constructed a model of 
MDV fitness for a range of vaccination treatments and cohort dura-
tions. They used an individual- based approach in deriving an expres-
sion for pathogen fitness and with it found that the reduced lifespan 
of poultry on industrial farms (reduced cohort duration) and the intro-
duction of vaccination can lead to an increase in virulence. However, 
these results stem from a single- cohort model and therefore have 
ignored all intercohort dynamics, such as the cleaning and restocking 
of the barn. By ignoring intercohort dynamics, the survival of free- 
living viral particles between subsequent cohorts of chickens is com-
pletely overlooked.

In this article, we do not directly investigate vaccination, but 
instead explore how the current state of the industry can select for 
more or less virulent strains of the virus. In particular, we look at the 
duration of time a chicken spends in a barn, the number of chickens 
reared together in the barn and the cleaning and restocking regi-
men of the barn. We develop a mathematical model, which tracks 
the spread of MD on a single industrial broiler farm. We capture 
both the within- cohort dynamics (rearing of the chickens) and the 
intercohort dynamics (cleaning and restocking of the barn) with the 
use of an impulsive differential equation model. We model the cur-
rent state of MD in which vaccination provides chicks with an effec-
tive immune response against the circulating strains of the virus, 
which we refer to as wild- type strains. This model differs from other 
mathematical models of poultry diseases (Atkins, Read, Walkden- 
Brown, Savill, & Woolhouse, 2013; Atkins et al., 2012; Klinkenberg 

& Heesterbeek, 2005), in that it models long- term persistence of 
disease on a single farm.

2  | MODEL

The spread of MDV between chickens on a farm is modelled with a 
compartmental model. The chicken population is split into three sub-
populations: susceptible, infected with the wild- type strain and in-
fected with the mutant strain. The number of susceptible chickens 
is denoted S, the number of wild- type infected chickens is denoted 
I1, and the number of chickens infected with a mutant virus is de-
noted I2. We assume that there is no superinfection or co- infection. 
Susceptible individuals can become infected following contact with 
viral particles, which are shed by infected birds.

The density of wild- type viral particles is denoted F1, and the 
density of mutant viral particles is denoted F2. The rate of infection 
of susceptible chickens is governed by the transmission rates σ1 and 
σ2 and is proportional to the current susceptible population size as 
well as either the density of wild- type viral particles in the barn or 
the density of mutant viral particles in the barn at that time. Chickens 
infected with the wild- type strain shed viral particles at rate κ1, and 
chickens infected with the mutant strain shed viral particles at a rate 
κ2. Once a chicken perishes, which occurs at a rate v1 for chickens 
infected with the wild- type strain and v2 for chickens infected with 
the mutant strain, ω1 or ω2 viral particles are released into the barn. 
We assume that there is no natural death and that v1 is the wild- type 
strain disease- induced death rate and v2 is the mutant strain disease- 
induced death rate.

Our model assumes that every chicken has been vaccinated and 
that the vaccine is highly effective at preventing the wild- type strain 
from causing disease and killing its host (v1 is assumed to be small). The 
viral particles leave the barn either through natural decay or through 
ventilation systems at rate δ1 for wild- type viral particles, and δ2 for 
mutant viral particles. The system of differential equations that model 
the spread of MDV between chickens on a broiler farm is referred to as 
the within-cohort dynamics and is given by equations (1a–1e).

The intercohort dynamics, equations (1f–1j), model the emptying 
and restocking of the barn. On day nT, where n = 1, 2, …, the broiler 
farm is emptied (the chickens go to slaughter), it is cleaned and then 
restocked with N new susceptible chickens. Because the time it 
takes to empty, clean and restock the farm is small relative to the 
cohort duration, we treat this intercohort period as occurring during 
an instant in time. Thus, we use the notation nT− and nT+ to denote 
the times immediately before and after the change of cohort, respec-
tively. The population numbers at the end of a cohort, directly before 
the moment of impulse, are determined by the differential equa-
tions (1a–1e). The population numbers directly after an impulse are 
determined by equations (1f–1j) and act as initial conditions for the 
next cohort. The proportion of wild- type viral particles and mutant 
viral particles that remain on the farm after it has been cleaned 
(after the impulsive condition) are denoted 0 ≤ γ1 ≤ 1 and 0 ≤ γ2 ≤ 1, 
respectively.
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2.1 | Impulsive model

By combining both the continuous dynamics, equations (1a–1e), and 
the discrete mapping, equations (1f–1j), we arrive at an impulsive set 
of differential equations, capable of tracking the spread and persis-
tence of two strains of the MDV in a barn over an indefinite number 
of cohorts. For T days, the model is described by equations (1a–1e), 
after which it is governed by equations (1f–1j) for an instant change in 
state, which models the emptying, cleaning and restocking. 

2.2 | Reduced impulsive model

In most cases, the rate of change of the viral particle population is 
fast relative to the dynamics of the susceptible and infected chick-
ens. Consequently, we separate the dynamics into “fast” and “slow” 
components. In particular, we suppose that the viral particle densi-
ties (both mutant and wild- type) in the barn reach a quasi- equilibrium 
quickly during the within- cohort dynamics, and this thereby allows us 
to reduce equations (1a–1e), to three equations. If we define the com-
posite parameters β1 = σ1(κ1 + v1ω)/δ1 and β2 = σ2(κ2 + v2ω)/δ2, then 
equations (1a–1e) reduce to: 

where we can view β1 and β2 as transmission rates.
To proceed further, we also need to reduce the intercohort jump 

in state, given by equation (1f–1j), to three equations in S, I1 and I2. In 
other words, we need to translate the number of viral particles remain-
ing at the end of a cohort, F1(nT−) and F2(nT−), into a number of suscep-
tible and infected chickens at the start of the next cohort, S(nT+), I1(nT+) 

and I2(nT+). To do so, we will explicitly model a process of viral particle 
decay and infection during the intercohort period. However, we will 
still suppose that this intercohort period is very short compared to the 
duration of a cohort.

During the intercohort period, the viral particles will decay expo-
nentially at per capita rates δ1 and δ2 for wild- type and mutant parti-
cles, respectively. Therefore, using ϕ1(τ) andϕ2(τ) to denote the num-
ber of wild- type and mutant particles remaining at time τ during the 
intercohort period, we have 

where we have assumed that time τ = 0 corresponds to imme-
diately after cleaning. Based on our quasi- equilibrium assump-
tion, the density of viral particles in the barn at the end of a 
cohort is given by F1(nT−)= I1(nT

−)(κ1+v1ω1)∕δ1=
β1
σ1
I1(nT

−) and 
F2(nT

−)= I2(nT
−)(κ2+v2ω2)∕δ2=

β2
σ2
I2(nT

−). Therefore, ϕ1(τ) andϕ2(τ) 
can be written as 

Now we suppose that a new cohort of completely suscepti-
ble chickens is moved into the barn at time τ = 0, and some chick-
ens become infected during this intercohort period, as the popu-
lation of viral particles rapidly decay. Specifically, we suppose that 
dS∕dτ=−σ1ϕ1(τ)S(τ)−σ2ϕ2(τ)S(τ) during this period. Thus, solving this 
equation, we see that at time τ during the intercohort period, the num-
ber of susceptible chickens is 

As the decay of viral particles is fast (i.e., δ1 and δ2 are large), the 
number of susceptible chickens remaining at the end of the interco-
hort phase can be approximated as 

Furthermore, if very few chickens become infected during this 
intercohort phase (i.e., −γ1β1

δ1
I1(nT

−)+
−γ2β2
δ2

I2(nT
−) is relatively small), 

then we can further approximate this as 

We therefore take this to be the number of susceptible chickens at 
the beginning if the next cohort, S(nT+). Likewise, the total number of 
infected chickens at the beginning of the next cohort is approximately: 

Again, treating the intercohort period as being very short relative 
to the cohort duration, we then arrive at a three- dimensional impul-
sive differential equation model, given by: 

(1a)
dS(t)

dt
=−σ1S(t)F1(t)−σ2S(t)F2(t),

(1b)
dI1(t)

dt
=σ1S(t)F1(t)−v1I1(t),

(1c)
dI2(t)

dt
=σ2S(t)F2(t)−v2I2(t) t ≠ nT, for n=1, 2,… ,

(1d)
dF1(t)

dt
=κ1I1(t)+v1ω1I1(t)−δ1F1(t),

(1e)
dF2(t)

dt
=κ2I2(t)+v2ω2I2(t)−δ2F2(t),

(1f)S(nT+)=N,

(1g)I1(nT
+)=0,

(1h)I2(nT
+)=0 t=nT, for n=1, 2,… ,

(1i)F1(nT
+)=γ1F1(nT

−),

(1j)F2(nT
+)=γ2F2(nT

−).

(2)

dS(t)

dt
=−β1S(t)I1(t)−β2S(t)I2(t)

dI1(t)

dt
=β1S(t)I1(t)−v1I1(t)

dI2(t)

dt
=β2S(t)I2(t)−v2I2(t)

ϕ1(τ)=γ1F1(nT
−)e−δ1τ and ϕ2(τ)=γ2F2(nT

−)e−δ2τ,

ϕ1(τ)=γ1
β1
σ1

I1(nT
−)e−δ1τ and ϕ2(τ)=γ2

β2
σ2

I2(nT
−)e−δ2τ.

S(τ)=Ne
−

γ1β1
δ1

I1(nT
−)−

γ2β2
δ2

I2(nT
−)
e

γ1β1
δ1

I1(nT
−)e−δ1τ +

γ2β2
δ2

I2(nT
−)e−δ2τ

.

Ne
−

γ1β1
δ1

I1(nT
−)−

γ2β2
δ2

I2(nT
−)
.

N

(

1−
γ1β1
δ1

I1(nT
−)−

γ2β2
δ2

I2(nT
−)

)

.

I1(nT
+)=N

γ1β1
δ1

I1(nT
−) and I2(nT

+)=N
γ2β2
δ2

I2(nT
−).
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where a1 = Nγ1β1/δ1 << 1 and a2 = Nγ2β2/δ2 << 1.

3  | RESULTS

We begin our analysis of (3) by first demonstrating the existence of a 
“mutant- free” solution, in which mutant infections are entirely absent 
from the population (i.e., I2(t) = 0 for all t), and the wild- type strain is 
endemic. We define as follows:

If 0 < v1 << 1 and Λ > 1, then the wild- type strain, in the absence 
of the mutant strain, is endemic in the population and the popula-
tion densities described by (3) converge to stable periodic orbits (see 
Figure (1) and (Rozins & Day, 2016) for proof). The functions describ-
ing the periodic orbits are denoted S*(t) and I∗

1
(t) for the susceptible 

and wild- type- infected populations, respectively, and we will denote 

the periodic solution in the absence of mutants as (S*(t), I*(t), 0). Once 
at the stable periodic solution, the number of susceptible chickens and 
the number of infected chickens at the start of every cohort will be 
constant (i.e., S*(nT+) = S*((n + 1)T+) and I∗

1
(nT+) = I∗

1
((n+1)T+) for all n). 

Also note that the exact equations describing the periodic solutions 
S*(t) and I∗

1
(t) will depend on the initial conditions S(0) and I1(0).

3.1 | Mutant invasion

Suppose that infections with the mutant strain of the virus are com-
pletely absent from the barn, and that infections with the wild- type 
strain are endemic and have reached a stable periodic orbit (i.e., Λ > 1, 
v1 << 1, S(t) = S*(t), I1(t) = I∗

1
(t) and I2(t) = 0). Now suppose that at time 

t = mT+, the start of the mTth cohort, (m = n − 1), a mutant strain of the 
virus emerges in the barn, and the density of chickens infected with 
the mutant strain is denoted I2(mT+). We assume I2(mT+) is very small 
relative to the flock size. This mutant strain will fail to invade if the 
number of chickens infected with the mutant strain decreases from 
the mTth cohort to the (m + 1)Tth cohort: 

The introduction of a small number of chickens infected with the 
mutant strain acts as a perturbation to the periodic orbit (S*(t), I*(t), 0). 
An evolutionary stable strategy (ESS) is a strategy which, if adopted by 
a population in a given environment, cannot be invaded by any alter-
native strategy that is initially rare. Therefore, the wild- type strain is 
an ESS if (S*(t), I*(t), 0) is stable in this perturbed system. We can use 
inequality (4) to characterize the ESS.

Consider the third differential equation in (3). If we integrate over 
the mTth cohort duration, we can determine the number of chickens 
infected with the mutant strain of the virus at the end of the cohort: 

Using the sixth equation in (3), the above can be then transformed 
into the number of chickens infected with the mutant strain of the 
virus, directly after the moment of impulse, 

For the mutant virus to fail to invade, we therefore require: 

Now consider the second differential equation in (3), which 
describes the rate of change of chickens infected with the wild- type 
strain during a cohort. If we divide both sides by I1(t) and integrate, 
we arrive at: 

(3)

dS

dt
=−β1S(t)I1(t)−β2S(t)I2(t)

dI1
dt

=β1S(t)I1(t)−v1I1(t) t ≠ nT, for n=1, 2,…

dI2
dt

=β2S(t)I2(t)−v2I2(t)

S(nT+)=N−a1I1(nT
−)−a2I2(nT

−)

I1(nT
+)=a1I1(nT

−) t=nT, for n=1, 2,…

I2(nT
+)=a2I2(nT

−)

Λ=a1e
Nβ1T−

v1a1(e
Nβ1T−1)

β1N
.

(4)I2(mT
+)> I2((m+1)T+).

I2((m+1)T−)= I2(mT
+)eβ2 ∫

(m+1)T−

mT+
S(t) dt− v2T.

(5)I2((m+1)T+)=a2I2(mT
+)eβ2 ∫

(m+1)T−

mT+
S(t) dt− v2T.

(6)
∫

(m+1)T−

mT+

S(t) dt<
Tv2− ln (a2)

β2
.

(7)ln
( I1((m+1)T−)

I1(mT)
+

)

=β1 ∫

(m+1)T−

mT+

S(t) dt−v1T.

F IGURE  1 Phase portrait of model (3) with I2(t) = 0 for all t and 
Λ > 1. The stable periodic orbit is jump continuous, with the jump 
highlighted by the dashed line. The arrow shows the direction of the 
orbit. We have set the parameter values N = 40,000, T = 42, a1 = 0.1, 
v1 = 0.1 and β1 = 7.2 × 10−6. The parameter values N and T are taken 
from the literature (Sheppard, 2004), while all other parameter values 
are fixed at values that satisfy Λ > 1
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It is assumed that the introduction of chickens infected with the 
mutant strain of the virus will leave the periodic obit, I∗

1
(t), unchanged 

over the first cohort duration, and thus, I1(mT+) = I1((m + 1)T+), the 
number of chickens infected with the wild- type strain, at the start of 
the second cohort, is exactly the number of chickens infected with the 
wild- type strain at the start of the initial cohort. Therefore,  
I1((m + 1)T+) = I1(mT+) = a1I1((m + 1)T−) and I1((m+1)T−)

I1(mT
+)

= 1

a1
. Thus, (7) can 

be rewritten as, 

If we substitute the above into (6), we get: 

Therefore, the wild- type strain can withstand invasion by any 
other strain provided that inequality (8) is satisfied. This means that 
the ESS is the strain that maximizes: 

3.2 | The evolutionary stable virulence level

Expression (9) is a measure of pathogen fitness. The numerator in (9) 
is a measure of pathogen transmission and can be viewed as the ben-
efit of an increase in virulence, while the denominator is a measure of 
host death rate and can be viewed as the cost of virulence. The disease- 
induced death rate is v, while −ln (a)/T can be thought of as an effective 
death rate due to cleaning and loss during the intercohort period. Over 
the intercohort period, a proportion, a, of the infected chickens survive 
while the rest die. This can be viewed as an instant of mortality for the 
pathogen, but suppose instead that this instant of mortality was instead 
spread out over the cohort period as a constant mortality rate, μ. The 
proportion of pathogens alive at the end of a cohort is e−μT; therefore, 
μ = −ln (a)/T.

It is assumed that the amount of pathogen within the chicken is 
related to the level of virulence of the disease. Higher levels of vir-
ulence result from a higher density of pathogen within the infected 
chicken, and as a result, this will affect the shedding rate and hence the 
transmission rate. Therefore, it is assumed that the shedding rate, κ(v), 
is a function of virulence, v. This assumption is supported by Atkins 
et al. (2011), who found that the long- term shedding rate is higher for 
strains of higher virulence. Recall that: 

As the transmission rate, β, is a function of κ, and κ is a function of 
virulence level, we can write the transmission rate as a function of vir-
ulence, β(v). Also if we let k = Nγ/δ, we can write a = kβ(v). Therefore, 
(9) can be rewritten as: 

As the function κ(v) is unknown, so too is the function β(v), but we 
assume that it is an increasing function of v and concave down. This 
is the standard transmission–virulence trade- off assumption (Alizon, 
Hurford, Mideo, & Van Baalen, 2009). In other words, increases in 
transmission can only come at a “cost” of an increase in virulence.

If we take the first derivative of (10), we arrive at: 

where μ(v∗)=− 1

T
ln (kβ(v∗)) and v* is the ES virulence level, which max-

imizes (10). An equation very similar to (11) can be derived from the 
classical epidemiological model used to study virulence evolution. 
A classical model that includes terms for transmission, β, pathogen- 
induced death, v, and background host mortality, μ, has a reproductive 
ratio of: 

The reproductive ratio is a measure of pathogen fitness. By max-
imizing R0 (i.e., taking the first derivative and setting it equal to zero), 
we arrive at, 

an equation very similar to (11). Both (11) and (12), along with the 
transmission–virulence trade- off curve, can provide insights into how 
virulence evolves with changes to background host mortality, μ, or in 
the case of (11), cohort duration.

In Figure (2), we illustrate how virulence evolution can be 
inferred, geometrically, from the transmission–virulence trade- off 
curve. The left hand side of (12) is the slope of the transmission–
virulence trade- off curve at the ES virulence level. Therefore, for 
a fixed background host mortality, μ, the ES virulence level can be 
found by drawing a line from μ, tangent to the curve β(v). This line 
will have slope β(v*)/(v* + μ). The point of tangency corresponds to 
the ES virulence level, v*, for that fixed background host mortality, 
μ. As can been seen in Figure (2), as the value of μ decreases, the 
slope of the line tangent to the curve, β(v), increases, and thus v* 
decreases.

3.2.1 | Cohort duration

Increasing the cohort duration, T, decreases the ES virulence level, 
v* (see Figures 2–4, and the Appendix S1). This relationship is 
 illustrated in Figure (2), where we have a typical trade- off curve 
for virulence evolution. For a fixed cohort duration, evolution will 
favour a transmission and virulence combination that maximizes 
parasite fitness (10). As the cohort duration increases, the effec-
tive death rate, μ(v*), decreases, and as a result, the slope of the 
line tangent to the curve, β(v), will increase, corresponding to a 
smaller v* value (see Figure 2). Biologically, this relationship is due 
to the increase in parasite life expectancy, given an increase in 
cohort duration.

∫

(m+1)T−

mT+

S(t) dt=
v1T− ln (a1)

β1
,

(8)
β1

v1−
ln (a1)

T

>
β2

v2−
ln (a2)

T

(9)
β

v− ln (a)

T

.

β=
σ(κ+vω)

δ
and a=

Nγ

δ
β,

(10)
β(v)

v−
ln (kβ(v))

T

.

(11)
dβ(v∗)

dv
=

β(v∗)

v∗+μ(v∗)+ 1

T

,

R0=
β(v)

v+μ
.

(12)
dβ(v∗)

dv
=

β(v∗)

v∗+μ
,
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As the cohort duration increases, the lifespan of the chicken 
increases, and thus, the life span of and MDV within the chicken is 
also extended. With an increase in life span, the parasite’s ESS will 
transition to become less virulent, a strategy better suited for a lon-
ger life span. Therefore, increasing the cohort duration, T, is similar 
to decreasing background host mortality, which has traditionally been 
shown to select for lower virulence (Cressler, McLeod, Rozins, Van Den 
Hoogen, & Day, 2016).

3.2.2 | Flock size and cleaning effort

The evolutionary stable virulence level, v*, decreases with an increase 
in flock density (an increase in N), and/or a decrease in cleaning (in-
crease in γ; see Figures 2–4 and the Appendix S1). This relationship 
is illustrated in Figure (2); as N or γ increase, the effective death rate, 
μ(v*), decreases. This results in the line tangent to the curve, β(v), 

becoming more steep, which implies the ES virulence level, v*, de-
creases. Biologically, the increase in virulence is due to an increase in 
parasite life span that results from an increase in N or γ.

Increasing the density of chickens, (i.e., increasing N), or decreas-
ing the cleaning effort between cohorts, (i.e., increasing γ), increases 
parasite survival throughout the intercohort period and thus increases 
the life span of the pathogen (i.e., increasing N and/or γ, increases  
1/(v − ln (kβ(v))/T)). In traditional models of virulence evolution, this is 
a similar effect to a decrease in background host mortality (Cressler 
et al., 2016), and hence why we have referred to μ(v) = ln (kβ(v))/T as 
an effective death rate. As background host mortality increases, the 
lifespan of the pathogen decreases, and thus, the cost of being very 
virulence decreases.

3.2.3 | Extensions and robustness of results

The measure of pathogen fitness, (9), was derived from the reduced 
model (3), not the full model (1). Therefore, the results from the 
previous section have been produced under the quasi- equilibrium 
assumption. This assumes that the rate of change of viral particles 
is much faster than the rate of change of susceptible and infected 
chickens; it assumes that δ and κ are large relative to the other 
 parameter values.

In Figure (4), we explore the impact the quasi- equilibrium assump-
tion has on the accuracy of the predictions made with (9). We ran a 
series of simulations with the original model (1), while violating the 
quasi- equilibrium assumption. To determine the most successful strain, 
we found the strain that could withstand invasion by any other strain. 
For example, we would fix the cohort duration, say T = 10 days (as in 
Figure 4a), and let a wild- type strain go to an endemic state. Once the 
wild- type strain reached a stable periodic orbit, a rare mutant strain 
is introduced (see Figure 5 for example). If the rare mutant overtook 
and replaced the wild- type strain, it would become the new wild- type 
strain. If the mutant failed to replace the wild- type strain, then the 
wild- type strain successfully avoided invasion. We continue to do this 
for 1,000 random mutant strains of MD, each one either successfully 
invading and becoming the new wild- type strain, or not. After investi-
gating the 1,000 strains, we are left with the most successful strain of 
the 1,000 investigated, and this is a good approximation for the ESS 
for T = 10. Once we find the ESS for T = 10, we fix a new value of T 
and repeat the procedure.

Eventually, as can be seen in Figure (4), we arrive at a trend similar 
to that found analytically with (9); as T increases, v* decreases. We 
repeat this procedure for a range of different flock sizes, N, as well as 
for a range of cleaning efforts, γ. Again, the simulation results are qual-
itatively consistent with those found analytically; as N or γ increases, 
v* decreases.

4  | DISCUSSION

Over the past 60 years, MD has experienced continual evolution 
towards greater virulence. The only defence against the very lethal 

F IGURE  2 The transmission–virulence trade- off curve (in black) 
is the boundary of all possible combinations of transmission and 
virulence. Given a fixed background death rate, μ, evolution will 
favour a transmission and virulence combination that maximizes 
parasite fitness. We can geometrically predict virulence evolution 
from the trade- off curve. The derivative β′(v*) = β(v*)/(v* + μ), (12), 
is the slope of the curve, β(v), at the ES virulence level, v*. It is the 
ratio of transmission (on the y- axis) over the duration of infection 
(on the x- axis). Therefore, for fixed μ, the ES virulence level can be 
found by drawing a line from μ, tangent to the curve. The point 
along the line, tangent to the curve, is v*. Consider the orange 
line, which is the slope of β(v) at the second (larger) v* value. This 
slope corresponds to a greater μ value. As μ decreases, the slope 
of the line (now the blue line) increases and the point at which 
the line is tangent to the curve β(v) is farther to the left, and this 
point corresponds to a smaller ES virulence level. In other words, a 
decrease in background host mortality decreases virulence
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disease is vaccination. The most recent generation of vaccines are 
highly effective, but there is growing concern that they will lose effi-
cacy and the industry will experience extensive losses as it has histori-
cally (Davison & Nair, 2005; Nair, 2005).

In this paper, we derive an impulsive differential equation model 
that models the spread of two strains of MDV on a single broiler farm, 
over an indefinite number of cohorts. We found that when the cohort 
duration, T, or the density of chickens, N, are increased, evolution 
favours less virulent strains of the virus. We also found that as the 
number of viral particles that survive the intercohort period increases, 
modelled with γ, evolution favours less virulent strains of the virus.

An increase in carry- over of viral particles from one cohort to the 
next could result from a decrease in cleaning of the barn or a decrease 
in time between cohorts. The longer a barn remains empty, the longer 
is the period of time that the MDV has to decay. According to our 
model, substandard cleaning of the barn between cohorts and hurried 
restocking will favour less virulent strains of the virus. As the number 
of viral particles that remain in the barn between cohorts increases, 
the effective death rate due to cleaning and loss during the intercohort 
period decreases, and thus, the relative cost the virus pays for host 
mortality increases.

Short intercohort times have a number of benefits, one of which is 
economic; farms profit only when they stock chickens. In addition to 
economic benefits, short intercohort times, and less intense cleaning 
of the barn, may benefit chicken health. Introducing newly hatched 
chicks into a dirty broiler farm has the benefit of exposing them to 
healthy bacteria left behind in the chickens faeces from the previ-
ous cohort. This could help develop a rich microflora of the intestinal 
tract that promotes health and acts as a barrier to harmful bacteria 
like salmonella (Nurmi & Rantala, 1973), a bacteria which infects both 
chickens and humans. There is however a risk of also infecting the 
very susceptible chicks with harmful pathogens left behind in the dirty 
barn, so care would have to be taken if changes in management were 
to happen.

The cohort durations for broilers have only gotten shorter over 
the years. Advances in nutrition and selection have almost halved 
the average broiler cohort duration from what it was 60 years ago 
(Anthony, 1998). We found that increasing the cohort duration can 
select for lower virulence strains of MDV, a result also found by Atkins 
et al. (2012), and supported by the historical trend towards greater vir-
ulence as cohort durations have shortened (Atkins et al., 2012). As the 
cohort duration increases, the lifespan of the chicken increases, and so 

F IGURE  3 Evolutionary stable virulence level, v*, for varying levels of T, N, γ and functions of κ(v). Each row of plots assumes the same 
function for κ. The plots are produced by maximizing (9). Top row: κ(v)=

√

40v and in the bottom row: κ(v) = ln (v + 1). In each column of plots, 
we investigate 100 different values of that parameter value (T, N or γ). For each of the 100 values per plot, we hold all parameters fixed while we 
solve for v*. Increases in T, N and γ all lead to lower ES virulence levels. Parameters are fixed at ω = 0.03, σ = 0.02, δ = .5, γ = 0.15, N = 40,000 
and T = 42 unless otherwise stated
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too does the lifespan of the parasites exploiting the host. Therefore, as 
cohort duration increases, the cost of host death increases, and selec-
tion will favour less virulent strains of MD.

Today broiler farms can hold tens of thousands of chickens at a sin-
gle time (Sheppard, 2004). Intuition might suggest that overcrowded 
barns would select for more virulent strains of MD; the cost of host 
death would be small due to the abundance of hosts. However, we 
found that as the density of chickens in a barn increases, evolution 
will select for less virulent strains of MD. This is due to the increase 
in lifespan of the pathogen that results from an increase in N. As 
the density increases (i.e., N increases), more viral particles make 
it through the intercohort period, resulting in a longer lifespan for 
the pathogen on average. As this “effective” lifespan of the parasite 
increases, host mortality becomes more costly, and hence, the evo-
lutionary stable virulence level decreases. This increased exploitation 
time selects for less virulent viral strains that are able to exploit the 
host for a longer period of time. While increasing the density helps 
fight the evolution towards greater virulence, Atkins et al. (2013) 
found that increasing the stocking density increases the probabil-
ity of a MDV outbreak, while Rozins and Day (2016) found that an 

increase in stocking density made MD eradication from a barn more 
difficult to achieve.

If eliminating disease from a barn is the objective, then long cohort 
durations, densely populated barns and dirty barns are the exact oppo-
site of what you want. Although MD spread can be prevented with 
extreme cleanliness practices and extensive air filtration (Grunder, 
Gavora, Spencer, & Turnbull, 1975; Rozins & Day, 2016), it may not be 
economically feasible at a larger scale. If disease elimination is not pos-
sible through intensive cleaning of the barn between cohorts, it may 
select for more virulent strains of the virus as we have shown here. 
Similarly, increasing either the population density or cohort duration 
will make disease elimination on a farm more difficult (Rozins & Day, 
2016).

Assumptions were made in the analysis of model (1), one being the 
quasi- equilibrium assumption. The impact this assumption has on the 
mutant- free, stable periodic orbit (see Figure 1) is discussed in Rozins 
and Day (2016). The quasi- equilibrium assumption was also necessary 
in the derivation of (9), which is a measure of pathogen fitness, and 
from which our analytical results are based. To explore whether the 
quasi- equilibrium assumption affects the results derived from (9), we 

F IGURE  4 Simulations for determining the evolutionary stable virulence level, v*, for varying levels of T, N and γ. In plot (a), we find the 
evolutionarily stable virulence level for T = 10. Using model (1), we sequentially introduce 1,000 unique randomly chosen mutants into the 
barn. The solid line is the current wild- type strain of MD in the barn. The line jumps up or down when a mutant strain successfully invades and 
becomes the new wild- type strain. After investigating the 1,000 random mutants, we have a good approximation for the ES virulence level, and 
we have produced the single red dot in plot (b). Each dot in figures (b–d) is found by performing a similar simulation to the one in plot (a), but 
for varying values of T, N and γ. All other parameters values are held at ω = 0.03, σ = 0.02, κi=

√

40vi, δ = 0.5, γ = 0.15, N = 40,000 and T = 42, 
unless otherwise stated
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ran a series of simulations while allowing δ and κ to be small (i.e., a 
violation of the quasi- equilibrium assumption). We found that for both 
small and large δ and κ, the results from Section 2 hold, an increase in 
cohort duration, T, and/or flock size, N, or a decrease in intercohort 
cleaning, (increase in γ), all select for less virulent strains of MD (see 
Figure 4).

Another assumption made in our analysis has to do with the 
shape of the transmission–virulence trade- off curve. The shape of 
the transmission–virulence trade- off is not known. Although there 
has been an upsurge in support that transmission increases with 
virulence (Alizon et al., 2009), whether the curve is concave up, 
or concave down, is of debate. Our results rely on the curve being 
concave down, and given the biological constraints on the parame-
ters, we feel that this assumption is reasonable. Our assumption is 
that as virulence increases, there is a limit to the number of inclu-
sion bodies the host can support, and thus, transmission also has 
an upper limit, and thus, the curve is concave down, approaching 
a horizontal asymptote. Atkins et al. (2012), in a study of MDV 
evolution, found that fitness was maximized at intermediate viru-
lence levels, also in accord with the standard virulence–transmis-
sion trade- off (Atkins et al., 2012). We should note that alterna-
tive assumptions on life- history traits could have been made. For 
example, others have assumed a trade- off between virulence and 
the rate at which free- living viral particles decay outside the host 
(Caraco & Wang, 2008).

One significant difference between the model presented in this 
paper, and other models exploring virulence evolution, is that we allow 
for cohorts of limited duration. This explicitly allows us to study the 
impact cohort duration and intercohort dynamics have on evolution. In 
fact, often infectious disease models with both continuous dynamics 
describing the “within- cohort” period, and discrete dynamics describ-
ing an “intercohort” period, assume that the within- cohort period is of 
infinite duration (Dwyer, Dushoff, Elkinton, & Levin, 2000; May, 1985). 
While these other models appear very similar to ours, the resulting 
dynamics are vastly different (Dwyer et al., 2000; May, 1985). The 
significant difference is that the MD model presented in this paper 
has a fixed population size at the start of every cohort. In general, 
host–pathogen populations in the wild are not constrained in the same 
way that domesticated livestock–pathogen populations are. Farmers 
have complete control over the number of livestock occupying their 
farm at a given time. Unlike domesticated livestock, populations in the 
wild are at the mercy of available resources, pathogens and predators, 
and as a result may grow or shrink. Mathematically, this results in our 
model converging to a stable periodic orbit, while these other similar 
models exhibit chaotic behaviour.

We have seen the continuous evolution in virulence and an ability 
to overcome the vaccine- induced immune response with each newly 
introduced vaccine. Vaccines are providing only a temporary relief and 
eventually a viral strain able to bypass the vaccine- induced immune 
response will emerge. Slowing evolution, as opposed to investment in 

F IGURE  5 Numerical results for model (3). (a) The mutant- free system converging to the stable periodic orbit. Note that near the stable 
periodic orbit, each cohort will start with approximately the same number of susceptible chickens and the same number of infected chickens as 
the previous cohort. We have set β1 = 4.0 × 10−6, v1 = 0.001, T = 42, N = 40,000, a1 = 0.01 (b) The rare mutant strain invading and replacing the 
resident strain. β1 = 4.0 × 10−6, β2 = 5.0e − 06, v1 = 0.001, v2 = 0.005, T = 42, N = 40,000, a1 = 0.01, a2 = 0.01. Note that the interval width at the 
moments of impulse T, 2T and 3T are exaggerated, and not to scale, in an effort to emphasize the intercohort dynamics
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new vaccines, has been shown to be more effective at combating the 
emergence of new resistance pathogens (McClure & Day, 2014). In 
this paper, we show that the evolution towards higher virulence can be 
slowed with longer cohort durations, larger flock sizes and less inten-
sive cleaning of the barn.
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