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Abstract

The methods of inclusive fitness provide a powerful analysis of the action of selection on social behaviour. The key component of this

analysis is the concept of relatedness R. In infinite populations, a standard method of calculating relatedness coefficients is through

coefficients of consanguinity using the notion of genetic identity by descent. In this paper, we show that this approach can also be made

to work in finite populations and we assume here that the population has a homogeneous structure, such as an island model. We

demonstrate that, under the assumption that genetic effects are small and additive, the resulting formulation of inclusive fitness is

equivalent to other significant measures of selection in finite populations, including the change in average allele frequency and fixation

probability. The results are illustrated for a model of the evolution of cooperation in a finite island population.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Much recent attention has been paid to theoretical
aspects of selection in finite structured populations
(Rousset and Billiard, 2000; Taylor et al., 2000; Proulx
and Day, 2001; Nowak et al., 2004; Wild and Taylor, 2004;
Lessard, 2005; Orzack and Hines, 2005). Even more
recently, attention has been focused on the evolution of
cooperation in a finite population where the population
structure is specified with a graph (Lieberman et al., 2005;
Ohtsuki et al., 2006; Ohtsuki and Nowak, 2006; Ohtsuki
et al., 2007; Taylor et al., 2007). In these studies, a standard
measure of the selective advantage of an allele is its fixation
probability (i.e. the probability that a single copy of the
allele ultimately reaches fixation). However, direct calcula-
tion of these fixation probabilities appears to be feasible
only when the population has a simple structure such as a
cycle; otherwise approximations need to be made (e.g. pair

approximations, Ohtsuki et al., 2006). The inclusive fitness
effect of an allele (Hamilton, 1964) can be exactly
calculated in more complex structures, however, and if
we are prepared to assume that selection is weak (an
approximation of another kind) then this provides an
accurate measure of relative fixation probability. This was
shown by Rousset and Billiard (2000) and our purpose here
is to provide an alternative approach to this important
result with slightly different assumptions (e.g. describing
population dynamics with the Moran model). As with
any inclusive fitness calculation, the cornerstone of our
approach is a careful formulation of relatedness (Michod
and Hamilton, 1980; Seger, 1981; Grafen, 1985; Rousset
and Billiard, 2000; Rousset, 2002; Grafen, 2006). Our main
result is that, under appropriate assumptions, relatedness
in finite structured populations can be calculated using the
concept of identity by descent. Moreover, the inclusive
fitness effect formulated using this relatedness then
provides an equivalent description of evolution in finite
populations to fixation probability.
For simplicity our results are formulated within a

homogenous population, that is, one in which each
individual ‘‘sees’’ the same structure, where structure refers
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to the flow of individuals (the pattern of dispersal), and
the network of fitness-determining interactions. An exam-
ple is a deme-structured population, finite or infinite,
with equal sized demes and a symmetric structure
within and between demes (Fig. 1). Internal asymmetries
(e.g. demes of different size) can be handled with our
methods, but require the use of relative reproductive values
(e.g. Taylor and Frank, 1996) and we leave that for future
work.

Section 2 presents some crucial technical results for
calculating covariances that will be necessary for
specifying relatedness correctly. Section 3 then formulates
the inclusive fitness effect of an allele, and specifies
relatedness using the results of Section 2. For the sake
of comparison and completeness, we present results
for finite and for infinite populations in both of these
sections. In Section 4, we then show that, under the
assumption of weak selection, the inclusive fitness effect
derived in Section 3 predicts relative fixation probability in
a finite structured population. Section 5 then provides an
example of the selective advantage of cooperation in an
island model.

2. Some preliminary technical results

As with many previous inclusive fitness analyses, our
treatment will be based on Price’s (1970) covariance
formulation of selection. This requires that one calculate
the genotypic covariance between various individuals
within the population. To do this directly we need to get
hold of the underlying allelic distribution and this can be
difficult. A standard alternative approach uses the notion
of identity by descent.
Suppose that at the locus of interest there are two alleles

A and B (called the two states of the gene) with per
generation mutation rates u1 from B to A and u2 from A to
B. We let an individual’s genotypic value x be the
frequency of A in its genotype, and we seek a formula
for cov(x, y), the covariance between the genotypic value of
two interacting individuals. This is often computationally
feasible only if the alleles are neutral (phenotypically
identical) and we assume that now.
We say that two genes at the same locus are identical by

descent (IBD) if they both descend from the same
mutational event with no intervening mutation, and we
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Nomenclature

B; B̄ individual birth rate, population-wide average
rate

D; D̄ individual death rate, population-wide aver-
age rate

BD, DB birth–death, death–birth protocols (the Mor-
an model—Section 4)

d phenotypic penetrance of allele A
dij probability an offspring of i displaces indivi-

dual j.
eij probability i will interact with j.
e probability of a birth in the population in a

small time interval
E( ) & cov(,) expectation and covariance over the

population in a fixed state
E[ � ] & cov[,] expectation and covariance for a finite

population with respect to the equilibrium
distribution defined over all population states

G probability that two alleles are identical by
descent (IBD), i.e. the coefficient of consan-
guinity between two given individuals

Gi coefficient of consanguinity between actor and
ith interactant

G* coefficient of consanguinity between two
individuals chosen at random from the
population (with replacement)

G0 coefficient of consanguinity between an in-
dividual and itself (for haploid individual
G0 ¼ 1)

s in a deme-structured population, probability a
breeder is native to the deme. Is also the

probability an offspring displaces an indivi-
dual in its native deme

m deme size
n number of demes in the population
N population size
p ¼ u1/u probability with which a mutation at birth

results in an A-allele under the contrived
mutation process (implicitly, the equilibrium
frequency of A in the absence of selection)

Q state transition matrix
r the probability an individual’s next interaction

is with its most recent offspring
R coefficient of relatedness
rA fixation probability of a single copy of allele

A.
Ti the proportion of time at equilibrium a finite

population spends in state i

u1, u2 the rate (or effective rate, under the contrived
process) of mutation from A to B, and from B
to A, respectively

u ¼ u1+u2 the symmetric rate of mutation under the
contrived mutation process

W individual fitness
WX first partial derivatives of W evaluated at

d ¼ 0
WI the inclusive fitness effect
x, y, x�, y� within-individual allele frequencies

(genotypic values)
x̄; ȳ population-wide average value of x and y,

respectively (in a finite population this de-
pends on the population state)

X, Xi phenotypic values

P.D. Taylor et al. / Journal of Theoretical Biology 249 (2007) 101–110102



Author's personal copy

define the coefficient of consanguinity G between two
individuals to be the probability that two genes chosen at
random, one from each individual, are IBD. We begin with
a common but dubious argument relating cov(x, y) to G.

Take two interactants with genotypic values x and y, and
choose a gene at random from each. Either the genes are
IBD (probability G) or they are not (probability 1�G). If
they are, then x ¼ y and the covariance is simply the
variance of x (assuming x and y have the same distribu-
tion). If they are not, they are independent and have
covariance 0. Thus

covðx; yÞ ¼ G varðxÞ þ ð1� GÞ0 ¼ G varðxÞ. (2.1)

There are two places where this argument makes dubious
assumptions. The first is the assumption that if the genes
are IBD then the covariance is the variance of x. If we are
given the condition that two genes are IBD, are their
conditional allele frequencies the same as the population-
wide frequencies? In fact, often they are not. The second is
the assumption that genes that are not IBD are indepen-
dent. This is also false in general, even in an infinite
population. For example, take an infinite island-structured
population with vanishingly little dispersal between islands,
so that almost all local genetic variation comes from
mutation which is itself rare. Then almost all islands
will be found in a state of fixation, release from which
will generally come with a mutation event. In that case, if
two alleles from the same island are not IBD, they are
almost certain to be different in state and therefore not
independent.

Though the argument yielding Eq. (2.1) is flawed, it
is a formula we would really like to be able to use, as

coefficients of consanguinity (in a homogeneous structured
population) can typically be calculated with recursive
methods. Fortunately, the argument for Eq. (2.1) can be
fixed with a careful organizational change.
Whenever we calculate a covariance there is an assumed

underlying probability distribution, and the first job is to
specify that. We will define what we call the equilibrium
distribution, and the precise description of this distribution
will be different in a finite and infinite population.
In the infinite population the distribution of alleles in the

population generally settles down to a time-invariant
distribution determined by a balance between mutation,
selection, and offspring dispersal. In that case, we take this
to be the equilibrium distribution.
The finite population analogue of this deserves a bit

more care. Let us define the state of the population to be
the distribution of alleles among the individuals. Under the
forces of selection, drift and mutation, this distribution of
alleles does not settle down to an asymptotic equilibrium as
in the infinite population case; rather the population
continually fluctuates among different states. To get an
‘‘overall’’ measure, we presumably want some sort of
average over all possible states, and the key question then is
how to appropriately weight the different states in this
calculation. We adopt here what is perhaps the most
obvious choice and weight each population state by the
relative amount of time the population spends in that state
if it is allowed to evolve for a very long-time. This
particular weighting was introduced by Rousset and
Billiard (2000) and was subsequently employed by Taylor
et al. (2000). We take this as the equilibrium distribution
for a finite population—the set of population states
endowed with the probability distribution determined by
letting a single population run for an infinite time.
Now when we come to calculate expectations or

covariances among random variables defined in a finite
population, it will be important to clearly distinguish
whether we are working within a single population state or
across all states endowed with this equilibrium distribution.
To signal this, we will use round brackets for the former
and square brackets for the latter. For example, in an
island model (Fig. 1), if x is the genotypic value of a
random individual in the population and y is the genotypic
value of a random deme-mate, then E(x) denotes the
expectation taken over all individuals in a particular
population state and cov(x, y) denotes covariance calcu-
lated over all pairs of deme-mates, again in a particular
state. Both of these quantities depend on the state. It will
be convenient to use the abbreviation x̄ ¼ EðxÞ for the
average genotypic value (also the average allele frequency)
in the population state. On the other hand, E½x� ¼ E½x̄�
denotes the expectation of x over all states and thus it is the
long-term average allele frequency. Similarly cov[x, y]
denotes the long-term genotypic covariance between deme-
mates.
To emphasize this key distinction, a standard result

(Ross, 1998) decomposes this long-term covariance as the
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Fig. 1. An example of Wright’s (1943) island model represented as a graph

with nodes representing individuals and edges representing interactions

between individuals. These interactions can be of two types, describing

fitness interactions and dispersal patterns of offspring. In this case there

are N ¼ 12 individuals divided up into m ¼ 3 demes of size n ¼ 4.
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sum of a ‘‘within-state’’ and a ‘‘between-state’’ component:

cov½x; y� ¼ E½covðx; yÞ� þ cov½EðxÞ; EðyÞ�. (2.2)

This decomposition plays a critical role in the proof of
Proposition 2.1 below. The reason for this is that selection
happens within the population at a particular moment, and
for this reason, the genotypic covariances we use to
measure selection (e.g. in Price’s (1970) formula) must be
taken within a state (Seger, 1981). To get an overall average
covariance, we then take the expectation of these over all
states, and that is the first term on the right in Eq. (2.2). On
the other hand, to get a valid argument for Eq. (2.1), the
covariance we need to work with turns out to be the long-
term measure found on the left in Eq. (2.2). The difficulty
in the argument (and much of the confusion!) comes from
the fact that these two covariance measures are not the
same.

The other ‘‘fix’’ we need is a technical modification of the
mutation process. Suppose that alleles A and B each
mutate at rate u ¼ u1+u2 and that they each mutate to A
with probability p ¼ u1/u and to B with probability
1–p ¼ u2/u. We will call this new process the contrived

mutation process. Under this process the effective rate at
which B mutates to A is pu ¼ u1 and the effective rate at
which A mutates to B is (1–p)u ¼ u2, so that as far as the

state of a gene is concerned, there is no distinction between

the population with the original mutation process and one

with this contrived process. In particular, this change in the
mechanism of mutation has no effect on the covariance of
genotypic values. The only difference is that, under this
higher contrived mutation rate, two genes are less likely to
be IBD than before because, for example, when A mutates
to A, we will no longer consider the new gene to be IBD to
the old. Henceforth our notion of IBD will assume this

contrived mutation rate. Our adoption of this new mutation
regime gives us the following key result which we prove in
the Appendix.

Proposition 2.1. Take the equilibrium distribution for both

the infinite and the finite population with two neutral alleles

A and B and the contrived mutation rate described above.

Suppose that ‘‘two’’ individuals (could be the same individual

twice), with genotypic values x and y, are chosen with respect

to the population structure, and take a random gene from

each. If the two genes are IBD then they are both A or B with

probability p or 1–p, respectively; if they are not IBD, then

they come from different mutational events and they are each

(independently) A or B with probability p or 1–p, respec-

tively. It follows from this that

Infinite population : covðx; yÞ ¼ Gx̄ð1� x̄Þ. (2.3)

Finite population : E½covðx; yÞ� ¼ ðG � G�ÞE½x̄�ð1� E½x̄�Þ.

(2.4)

Here G is the coefficient of consanguinity between the
individuals and G* is the coefficient of consanguinity of
two randomly chosen individuals in the population,

allowing for the possibility that the same individual is
chosen both times (sampling with replacement).

In Eq. (2.3), the covariance is over the population and in
Eq. (2.4) the covariance is conditional on the state and E[]
denotes the average over all states. In both cases, x̄ is the
average value of x in the population; in Eq. (2.4) this
average is conditional on the state. It is important to
emphasize that, in this Proposition, when two individuals
are chosen, they are chosen at the same moment (therefore
from the same state), but they could be taken at any time
(therefore from any state) according to the weighting
provided by the equilibrium distribution.

3. Inclusive fitness calculation

The previous section provides some crucial technical
results that will now be used to properly specify relatedness
and formulate the inclusive fitness effect of a mutant allele
A. Rather than assume neutrality, as in the previous
section, we now let selection act at a weak level. In
particular, we suppose that two ‘‘neighbours’’ interact, and
the behaviour of each is given by its phenotypic value X

which in turn is correlated with its genotypic value x. We
let A have a small effect d on the behaviour of an individual
in the following way: we let the allele B have genic value 0
and the allele A have genic value 1, and suppose that an
individual with genotypic value x has infinitesimal pheno-
typic change dX ¼ dx. Under diploidy, this effect would be
called additive.
We assume that population dynamics follow the well-

known Moran process (Moran, 1958, 1962) with fecundity
selection. Thus the fecundity of an individual determines its
probability of producing an offspring. We let individual
fecundity depend on the genotype of the individual and of
certain neighbours (determined by the population struc-
ture) whose behaviour affects the fitness of the individual.
In a differential time interval dt, the probability that an
individual gives birth will have the form Bdt, and the
probability that an individual is displaced by an offspring
will have the form Ddt, where, in general, B and D depend
on the fecundity of the individual and of others in the
population. Mathematically we regard them as differenti-
able functions of the phenotypes Xi of all interactants
(including the individual itself): B ¼ B(X1, X2, y, Xn) and
D ¼ D(X1, X2, y, Xn) but we will generally suppress these
variables. Since every birth results in a death, B̄ ¼ D̄.
We now calculate the effect of the deviant behaviour on

the population-wide allele frequency in a single population
(finite or infinite). In differential time dt the change in the
average allele frequency will be

dx̄ ¼ E½Bdtðð1� uÞxþ upÞ �Ddtx�, (3.1)

dx̄ ¼ EðxW Þdt� u½EðxBÞ � pB̄�dt, (3.2)

where we take fitness to be W ¼ B–D. In Eq. (3.1) the birth
term for an x-individual is split into two pieces; when there
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is no mutation (probability 1–u) the offspring allele is A
with probability x; otherwise (probability u) it is A with
probability p. Rearranging Eq. (3.2):

dx̄=dt ¼ covðx; W Þ � u½covðx; BÞ þ ðx̄� pÞB̄� (3.3)

using the fact that W̄ ¼ 0. Not unexpectedly, Eq. (3.3) has
the form of the covariance formula of Price (1970). Price
pointed out the need for a ‘‘second’’ term in cases such as
non-random meiosis and fertilization in which the allele
frequency among gametes differs from the parental
genotype. Mutation has exactly this effect and accounts
for the final term in Eq. (3.3).

Now we write fitness, to first order in d, in a Taylor
expansion in terms of the genotypic values xi:

W ¼ 1þ
X

i

W X i
dX i ¼ 1þ d

X
i

W X i
xi þ oðdÞ. (3.4)

Here the subscripts on W denote partial derivatives, and
these are evaluated at d ¼ 0, and we take mean fitness in a
neutral population to be 1. The ‘‘weak selection’’ assump-
tion that d is small is standard for inclusive fitness
arguments (Hamilton, 1964; Charnov, 1977) and the results
we obtain are valid to first order in d. Now putting
Eq. (3.4) into Eq. (3.3), we get

dx̄=dt ¼ d
X

i

W X i
covðx; xiÞ

� u½covðx; BÞ þ ðx̄� pÞB̄� þ oðdÞ. ð3:5Þ

Eq. (3.5) describes allele frequency change in a single
population. In the infinite population case, that is all we
have, but in a finite population we will want to take an
expectation over the equilibrium distribution of all
population states. Henceforth we treat these two cases
separately.

Infinite population: In a neutral population, genotype has
no effect on fitness, so that d ¼ 0 ¼ cov(x, B), and if we set
dx̄=dt ¼ 0 in Eq. (3.5), we get x̄ ¼ P; at equilibrium, the
neutral allele frequency is determined by the relative
mutation rates. When d is increased above zero and
selection is allowed to act, we generally take the mutation
rate u to be much smaller than d, so that its effects
are negligible beside those of selection. We then write
Eq. (3.5) as

dx̄=dt ¼ d varðxÞW I þ oðdÞ þOðuÞ, (3.6)

where

W I ¼
X

i

W X i
Ri (3.7)

is the inclusive fitness effect of the interaction, and Ri is the
relatedness of the focal individual to the ith interactant:

Infinite pop: Ri ¼
covðx; xiÞ

varðxÞ
¼

Gi

G0
. (3.8)

In Eq. (3.8) we use the neutral (d ¼ 0) distribution to
calculate the genotypic covariances. The error introduced
will be of order d, and when this is inserted into the d-term
in Eq. (3.6), it can be absorbed into the o(d) term at the

end. We have also used Eq. (2.3) to write Ri in terms of
coefficients of consanguinity, writing G0 as the coefficient
of the focal individual with itself. Eq. (3.6) gives us the
following result.

Proposition 3.1. In an infinite population at the neutral

equilibrium, with negligible mutation rates, the inclusive

fitness WI predicts the direction of change of mutant allele

frequency when the action d of this allele is increased above

zero.

Finite population: Eq. (3.5) gives us the rate of change of
the population-wide allele frequency, and in a finite
population this will depend on the particular population
state. Following Eq. (2.4), we take the expectation of
Eq. (3.5) over all population states:

E dx̄=dt
� �

¼ d
X

i

W X i
E covðx; xiÞ½ �

� uE ðx̄� pÞB̄
� �

þ oðdÞ þ oðuÞ, ð3:9Þ

E dx̄=dt
� �

¼ d
X

i

W X i
E covðx; xiÞ½ � � uðE½x̄� � pÞE½B̄�

þ oðdÞ þ oðuÞ. ð3:10Þ

In Eq. (3.9) we have used the fact that cov(x, B) goes to
zero as w approaches zero, because for small u the
equilibrium distribution is almost entirely concentrated at
the two fixation states at which the birth rate B is the same
for all individuals. Thus this term in Eq. (3.5) is absorbed
into the o(u) term in Eq. (3.9). In Eq. (3.10) we have used
the fact that cov½ðx̄� pÞ; B̄� ¼ 0 since the average birth rate
B̄ is the same in all population states.
As in Eq. (3.6), we write Eq. (3.10) as

E½dx̄=dt� ¼ dE½varðxÞ�W I � uðE½x̄� � pÞE½B̄�

þ oðdÞ þ oðuÞ, ð3:11Þ

where as in Eq. (3.7), the inclusive fitness effect is

W I ¼
X

i

W X i
Ri,

where the relatedness between interactants has the form:

Finite pop: Ri ¼
E½covðx; xiÞ�

E½varðxÞ�
¼

Gi � G�

G0 � G�
. (3.12)

As in Eq. (3.8) the covariances are calculated using the
neutral (d ¼ 0) distribution. Note that the infinite popula-
tion relatedness (Eq. (3.8)) can be regarded as a special case
of Eq. (3.12) because, in an infinite population, G* ¼ 0. As
a check on Eq. (3.12) note that if recipient i is a random
member of a finite population (who could be the actor with
probability 1/N) then Gi ¼ G* and hence Ri ¼ 0. Average
relatedness in a finite population is zero. This is expected—
a gift of fitness which is spread out evenly over the entire
population cannot, on average, be of net benefit to any
individual.
For a finite population, the equilibrium distribution is a

long-term steady state, and E½dx̄=dt�, the average rate of
increase of the allele frequency, must be zero. Setting this
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to be zero in Eq. (3.11), and taking the limit as u

approaches zero, we get

dW I ¼ KðE½x̄� � pÞ þ oðdÞ, (3.13)

where K ¼ E½B̄�½lim
u!0

E½varðxÞ�=u��1. The simplest way to
show that this limit exists and is finite is to jump ahead and
refer to the eigenvector analysis in Section 4. Using row 2
and row 3 of the matrix in Eq. (4.1), we argue that at
equilibrium, T0+ ¼ O(u1) and TN– ¼ O(u2). It follows
that the probability of being unfixed is O(u). Since
var(x) ¼ 0 in either of the fixation states, we deduce that
E[var(x)] ¼ O(u).

As a check on Eq. (3.13) note that with neutral alleles
(d ¼ 0) the equilibrium allele frequency is E[x̄] ¼ p, as
expected. Eq. (3.13) tells us that the inclusive fitness effect
WI has the same sign as E½x̄� � p. This is an IBD analogue
of a result of Rousset and Billiard (2000, Eq. 15) and we
state it as a proposition.

Proposition 3.2. In a finite population, for sufficiently small

additive selective effects d4 0, the inclusive fitness effect WI

will predict the side of the neutral equilibrium on which

the new equilibrium (determined by the selection–mutation

balance) will occur.

Numerical simulations that we have run in small deme-
structured populations illustrate this (Taylor et al., 2000).

4. The connection between inclusive fitness and fixation

probability

Here we tie our analysis of inclusive fitness in a finite
structured population to fixation probability. For simpli-
city, we work with an asexual haploid population of fixed
size N, with two alleles A and B. Population dynamics are
stochastic and follow the Moran process as described in
Section 3.

To simplify the analysis, we reduce the state space of the
population to four population states. States 0 and N will be
the fixation states of ‘‘all B’’ and ‘‘all A’’, respectively. The
remaining two states we call 0+ and N–, defined as
follows. When the population leaves state 0, we assign it to
state 0+ where it remains until it hits either state 0 or state
N. Similarly when the population leaves state N, we assign
it to state N� where it remains until it hits either state 0 or
state N. Thus, the states 0+ and N� are made up of many
different sub-states of the state space for the original model
of interest. With the ordering of these new states [0, 0+,
N�, N], the state transition matrix corresponding to a
small time interval has the form:

Q ¼

1� u1� hð1� rAÞ krB 0

u1� 1� h 0 0

0 0 1� k u2�

0 hrA kð1� rBÞ 1� u2�

2
66664

3
77775, (4.1)

where entry qij gives the probability of moving from
state j to i.

The transition matrix (4.1) can be derived as follows.
First, if we denote the probability that there will be a birth
in the given small time interval by e (which will be
proportional to dt), then columns 1 and 4 follow from the
definition of u1 and u2. Next consider column 2. Define rA
as the probability that beginning with a single A-bearing
individual the population hits state N before it hits
state 0. Similarly define rB as the probability that beginning
with a single B-bearing individual the population hits
state 0 before it hits N. Note that, if u ¼ 0, these are the
standard fixation probabilities. Next we define h as
the probability that the population leaves state 0+ in the
next move. This quantity will depend on the distribution
among the many sub-states making up state 0+, and we
take this distribution to be the population equilibrium
distribution described in Section 2. Entry q1,2 should
then be h multiplied by the probability that the system hits
state 0 (as opposed to state N) at the point of exit
from state 0+. Similarly, entry q4,2 should be h multiplied
by the probability of hitting state N, at the point of
exit from state 0+. Now a standard result says that
the ratio of the transition probabilities q4,2 to q1,2
is the same as the ratio of the ultimate probabilities that
0+ will move to N or to 0. We know that this ratio of
ultimate probabilities is rA/(1–rA), and therefore the ratio
of q4,2 to q1,2 must equal rA/(1–rA). This gives column 2.
Column 3 can be derived analogously, defining k as the
probability that the population leaves state N� in the next
move.
With transition matrix (4.1) we can now proceed by

defining Ti to be the long-term proportion of time the
population spends in state i. The equilibrium state
distribution vector [Ti] is the right eigenvector of Q for
the eigenvalue 1. It follows easily from the eigenvector
equations that

TN=u1

T0=u2
¼

rA
rB

. (4.2)

Take note that both the T’s and the r’s in Eq. (4.2) depend
on the mutation rate, and we are primarily interested
in the values of rA and rB in the limit as the mutation rate,
u, approaches zero. In this limit, the population will be
entirely concentrated in the two fixation states, with TN ¼

E½x̄�; and T0 ¼ 1� E½x̄�. Since u1/u2 ¼ p/(1–p), we can
conclude that, in the u ¼ 0 limit, E½x̄�4p precisely when
rA4rB.
Putting this together with Proposition 3.2, we get

Proposition 4.1. If selection is weak and gene action is

additive (d is small enough), then in the limit as mutation rate

u approaches zero, the three conditions below are equivalent:

rA4rB, (4.3)

E½x̄�4p, (4.4)

W I40. (4.5)
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This provides an alternative route to an important result of
Rousset and Billiard (2000).

5. Application to cooperation in homogeneous graphs

A striking application of the general theory is found in a
recent studies of cooperative behaviour in an asexual
haploid population in which individuals are represented as
inhabiting the nodes of a finite graph satisfying a general
homogeneity condition (Taylor et al., 2007, Grafen and
Archetti, in preparation). For any two individuals, i and j,
let dij be the probability that the next offspring of i will
replace j (the population size remains constant) and let eij

be the probability that the next fitness interaction of i will
be with j, and assume that these are symmetric, dij ¼ dji and
eij ¼ eji. We suppose that dii ¼ eii ¼ 0, and note thatP

jdij ¼
P

jeij ¼ 1. An isomorphism of the graph is a
permutation of the nodes that preserves the edge weights
dij and eij. The graph is called transitive if given any pair of
nodes i and j, there is an isomorphism mapping i to j.
Roughly speaking, a graph is transitive if it ‘‘looks the
same’’ from any node. Two common examples of such
graphs are found in finite stepping-stone populations
(cycles) and finite island models. Taylor et al. (2007) use
an inclusive fitness analysis to obtain simple general
conditions for the fixation of an altruistic allele in such a
population under a Moran model (Section 3). They assume
a slightly stronger condition, bi-transitivity, but Grafen
and Archetti (in preparation) extends their results to
transitive graphs (and also remove the assumption that
dii ¼ eii ¼ 0).

We let the fecundity fi of individual i be determined
through fitness interactions with neighbours (determined
by the eij) and we consider two versions of fecundity
selection. In the BD process, births are allocated to the
population at a fixed, fitness-independent rate and are
given to individual i with relative probability fi, replacing a
neighbour j of i with probability dij. In the DB process,
individuals die at a fixed, fitness-independent, rate and a
death at node j is replaced by an offspring from node i with
relative probability fidij. Take note that the fi measure
fecundity, but this is only one component of fitness, the
other being mortality (from replacement).

Let an altruist give fecundity benefit b to an interactant
at cost c. Then, in a population of size N, the inclusive
fitness condition (Eq. (4.5)) that the altruistic allele be
favoured is

BD protocol : co�
1

N � 1
b, (5.1)

DB protocol : co
Nr� 2

N � 2
b, (5.2)

where r ¼
P

jdijeij and is (by the transitive condition)
independent of i. The parameter r can be interpreted as the
average d—weight of the edge from the focal individual
to its next interactant. It is surprising that condition

(Eq. (5.1)) is independent of both the offspring dispersal
probabilities dij and the interaction probabilities eij. It is
therefore independent of the population structure (pro-
vided it is transitive) and is the same as for a random
mixing population (dij ¼ eij ¼ 1/(N–1)). This provides an
extension of an infinite-population result of Wilson et al.
(1992) and Taylor (1992a ,b). Condition (5.2) has the
familiar form of a condition for cooperation; it says that
the cost must be small and the benefit large. Condition (5.1)
however, tells us that under the BD protocol, conventional
forms of cooperation can never evolve. The condition can
hold with a positive benefit if c is negative (giving a benefit
to the actor), a form of mutualism, or with positive cost if b

is negative (doing harm to the recipient), a form of spite. It
is remarkable that this condition is so general, applying in a
large number of homogeneous structured populations in
which direct calculation of fixation probabilities would be
infeasible.
As a particular example, consider an island model

(Fig. 1) with n demes each with m nodes, so that N ¼ nm.
Let an offspring stay in its native deme with probability s

and migrate to another deme with probability 1–s. This
gives us edge weights dij ¼ s/(m–1) within a deme.
If interactions are at random within each deme, so that
eij ¼ 1/(m–1) within a deme, then r ¼ s/(m–1). If we set
s ¼ 3/4 and m ¼ 4, then r ¼ 1/4 and condition (5.2) can be
rewritten as

b4
N � 2

n� 2
c. (5.3)

If we let population size increase, keeping deme size and
migration probability fixed, we get

n ¼ 3 demesðN ¼ 12Þ b410c,

n ¼ 8 demesðN ¼ 32Þ b45c,

n ¼ 1 demesðN ¼ 1Þ b44c.

As the population grows, cooperation is increasingly
favoured.

6. Discussion

The purpose of this paper is to provide, for a finite
population, a rigorous foundation for Proposition 4.1
which, under an assumption of weak selection and additive
gene effects, relates standard notions of selective advan-
tage, fixation probability and average allele frequency to
Hamilton’s (1964) notion of inclusive fitness. This result
has great practical significance, as in many cases inclusive
fitness is much easier to calculate and to work with than are
fixation probability and average allele frequency. It is
interesting to note that a direct link between fixation
probability (Eq. (4.3)) and inclusive fitness effect (Eq. (4.5))
is hard to obtain; the connection works through average
allele frequency change (Eq. (4.4)).
In our development of the ideas, we have discussed both

finite and infinite populations, partly for completeness
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sake, and partly to allow a comparison of concepts such as
relatedness. In both cases weak selection and additivity of
gene action and phenotypic effects on fitness are key
assumptions. In an infinite population, the inclusive fitness
WI predicts the direction of change of mutant allele
frequency when the action of this allele is altered from
the neutral behaviour (Proposition 3.1). In a finite
population, we need to work with the balance between
mutation and selection, and the inclusive fitness WI

predicts the side of the neutral equilibrium on which the
new selective equilibrium will occur (Proposition 3.2).

Identity by descent: Relatedness is defined in terms of
genotypic covariance and the calculation of these covar-
iances requires knowledge of the allelic distribution. In a
structured population this can be difficult to get hold of.
An elegant way around this problem is to condition on the
IBD status of the alleles (Eq. (2.1)). For this approach to
work, we want IBD alleles to have the population-wide
allele frequency and non-IBD alleles to be independent.
Unfortunately, neither of these conditions generally holds.
This has led some authors to suggest alternative IBD
notions that guarantee that equations like Eq. (2.1) hold
(Rousset (2002) and references therein). The coefficient G

presented in this paper can be placed among these
‘‘alternative’’ IBD measures. Establishing a proper theore-
tical basis for this requires a bit of careful technical work
and this is the mandate of Section 2. A key step is the
introduction of the contrived mutation rate. This reformu-
lation has no effect on allelic states, but alters only the
question of when two genes are to be considered IBD. In
this sense, it is a purely technical device to allow us to prove
rigorous theorems that connect relatedness to identity by
descent.

In Section 3, we convert Price’s equation for allele
frequency change into an inclusive fitness formulation
using relatedness coefficients, which turn out to be
quotients of covariances (the middle terms in Eqs. (3.8)
and (3.12)). In order to be able to express these in terms of
coefficients of consanguinity, we need the technical work of
Section 2.

The role of mutation: In many ways in this analysis,
mutation itself plays a purely technical role. In an infinite
population you can often do without mutation altogether.
In a finite population, it serves two essential purposes.
First, with no mutation, all coefficients of consanguinity
are 1 and relatedness (Eq. (3.12)) is of the form 0/0.
The purpose of mutation is to resolve the 0/0 limit,
but in the end, it cancels out (to first order) and our
expression for R is independent of u. Secondly, with no
mutation, the population will eventually become fixed
for one allele or the other and selection cannot act.
Thus mutation is essential to provide the equilibrium
distribution. However, a very small mutation rate is
sufficient to do the job, and indeed our main result,
Proposition 4.1, makes sense in the limit as u approaches
zero. [Of the main entities in Proposition 4.1, the inclusive
fitness and the fixation probabilities are defined without

mutation, and the equilibrium allele frequency is defined in
the zero mutation limit.]

Weak selection and synergistic effects: Note that the
assumption that fitness can be expanded in a Taylor series
in terms of phenotypic deviations (Eq. (3.4)) implies that
synergistic effects, arising when both interactants are
deviant (Queller, 1985), are second order in d and can be
ignored. In that sense, additivity of gene action is a
consequence of our assumption of weak selection. To
clarify this further, there are two forms of weak selection in
the literature the one we use here assumes that alleles have
a small effect on behaviour, and therefore on fitness; the
alternative notion, e.g. Nowak et al. (2004), allows alleles
to have a large effect on behaviour, but assumes that these
behavioural changes have a small effect on fitness. Under
our assumption, when two deviant individuals interact, the
fitness effect on each is (to first order in d) the sum of the
effects of each deviation; under the alternative assumption,
this is not the case and we must account for possible
synergistic fitness effects in the interaction (Queller, 1985).
As an example, suppose that interactions can be modelled

as a 2-person game with matrix A ¼
a11 a12

a21 a22

" #
, where aij

is the incremental payoff to strategy i against strategy j,
and let us suppose that the resident is 1 and the deviant is 2.
Weak selection in the alternative sense requires only that
all entries of the matrix be small (Nowak et al., 2004), but
weak selection in our sense requires that the fitness effect of
the interaction of two deviants be the sum of the individual
effects, this is, that a22�a11 ¼ (a12�a11)+(a21�a11), or
more precisely, that a11+a22�a12�a21 is o(d). For example,
this is the case for the cooperative behaviour example of
Section 6, which can be modelled with the matrix

b� c �c

b 0

� �
. It can be shown (e.g. Wild and Traulsen,

2007; Taylor et al. in prep.) that the fixation probability
condition (4.3) that rA4rB is equivalent to the condition
rA41/N4rB under our assumption of weak selection
which implies the matrix game is additive, but not
otherwise. For example, even with small aij, one can have
rA and rB both greater than 1/N or both less than 1/N
(Nowak et al., 2004; Ohtsuki et al., 2007).
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Appendix A

A.1. Proof of Proposition 2.1

The argument for this proposition hinges on the
observation that every local configuration occurs many
times, either in different corners of the infinite population
or at different instants in the (infinite) life of the finite
population, and a mutational event can be thought of as
happening in many of these corners (infinite pop) or at
many different instants (finite pop) and a proportion p of
these will result in an A allele and a proportion 1–p of these
will result in a B allele. For example, suppose that two
A-genes are IBD. Then the mutational event which created
their common ancestor occurred either in a corner (infinite
pop), or at an instant (finite pop) for which in a large
number of identical corners or instants the same mutation
event produced the two alleles A and B with probabilities p

and 1–p. A similar argument shows that if two genes are
not IBD, then each of them will be paired, in that situation,
with A or B with probability p or 1–p, respectively. For this
argument to work it is crucial that the alleles be neutral and
are therefore under identical forces (of mutation and drift)
so that the potential trajectory of a gene is independent of
its state.

Now take an infinite population. First we choose
random genes x� and y� from the two individuals. Now
either x� and y� are IBD (probability G) or they are not
(probability 1–G). It follows from the argument above that,
in the first case, they are both A with probability p and
both B with probability 1–p, for a covariance of p(1–p). In
the second case they are independent, giving a covariance
of 0. Thus

covðx; yÞ ¼ covðx�; y�Þ

¼ Gpð1� pÞ þ ð1� GÞ0 ¼ Gx̄ð1� x̄Þ, ðA:1Þ

where we have used the fact that at equilibrium, average
allele frequency is x̄ ¼ p. Note that for the second equality
we have used the covariance decomposition principle with
two classes, the class in which x� and y� are IBD and the
class in which they are not. Over both classes, x� and y�

have mean x̄ so the covariance of the class averages is zero,
and Eq. (A.1) displays the average within-class covariance
only. Finally, to obtain the first equality, under haploidy
this is trivial, and under diploidy this again uses the
covariance decomposition theorem where the classes are
pairs of individuals and x and y are the class averages.
The within-class covariance is always zero as x� and
y� are chosen at random in each individual. This gives us
Eq. (2.3).

In the finite population, the argument is exactly the same
provided we use the equilibrium distribution on the space
of all states of the population. We get

cov½x; y� ¼ GE½x̄�ð1� E½x̄�Þ. (A.2)

The reason for this is that what we needed to make the
infinite population argument work was that every possible

allelic configuration (from all possible mutational and
parental sampling trajectories) be represented with its
appropriate probability and to get the same situation in a
finite population we need the full set of possible population
states, each with its appropriate frequency.
Now recall Eq. (2.2):

cov½x; y� ¼ E½covðx; yÞ� þ cov½x̄; ȳ�.

If we eliminate cov[x, y] from (A.2) and Eq. (2.2), we get

E½covðx; yÞ� ¼ GE½x�ð1� E½x�Þ � cov½x̄; ȳ�. (A.3)

The last term, cov[x̄; ȳ], can be calculated with the
observation that if x and y are chosen independently
within the finite population, then cov(x, y) in (A.3) will be
zero in every state. Since in this case G ¼ G*, we have

var½x̄� ¼ cov½x̄; ȳ� ¼ G�E½x̄�ð1� E½x̄�Þ (A.4)

and we get an interesting formula for the variance of the
average allele frequency, x̄, in a finite population. Putting
Eq. (A.4) into Eq. (A.3), we get Eq. (2.4).
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