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ABSTRACT
We propose a stochastic SIS model to include both a Gaussian and Pois-
sonian perturbation to account for noise and anomalies in the transmis-
sion rate. Conditions are given for stability to the disease free equilib-
rium and for positive Harris recurrence with a unique invariant measure
for the endemic.

1. Introduction

For many infectious diseases, the rate at which susceptible individuals contract the infec-
tion undergoes large stochastic perturbations. For example, large-scale public gatherings at
social events can result in a sudden influx of new infections beyond what would be expected
through typical transmission routes. Likewise, large-scale social avoidance (as might occur if
media reports of disease spread instill panic) can result in a sudden and temporary decease in
the rate of infection. Such events are not well modeled by Brownian motion. Instead, events
of this type are captured by a Poisson term. The epidemiological model analyzed in this
paper is stochastically perturbed with an Itô and Poisson intergral, where the Poisson inte-
gral captures the effects of “anomalies,” rare events that have an impact on the transmission
rate.

Many authors have considered continuous time stochastic epidemiological models [1–5],
however, none of these models have considered anomalies that affect the system. Kuske et al.
[5] investigated an SIR model perturbed by multiple Itô integrals. Using a linear approxima-
tion, the authors give conditions for an epidemic to occur, where this event is mathematically
described by the existence of a unique stationarymeasure, and this measure is able to be given
explicitly. Roa et al. [1] consider a stochastic SIR model with a nonlinear incident rate, and
after analyzing the deterministic model, they perturb the system with a two Itô integrals. The
authors then show that these systems are well defined and give conditions for almost sure con-
vergence to the endemic and the disease free equilibrium. Yu et al. [3] analyze a White noise
two-group SIR model with a stationary deterministic equilibrium, and determine sufficient
conditions for the endemic equilibrium to be stochastically stable. The models examined in
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28 A. VLASIC AND T. DAY

[2, 5] are very close to the model considered in this article. This model is explored in detail
below.

2. Well-posedmodel

We consider the following SIS model:

S′(t ) = −βS(t )I(t ) − µS(t ) + µ + λI(t )
I′(t ) = βS(t )I(t ) − (λ+ µ)I(t ), (1)

where, S(t ) and I(t ) denote the frequencies of the susceptible and infected at time t , and
S(t ) + I(t ) = 1. The constant µ represents the birth and death rate (newborns are assumed
to be susceptible), λ represents the recovery rate for the individuals that are infected, and we
take β as the average number of contacts per day.

For the SIS model, if β > µ + λ, then an epidemic will occur, and if β ≤ µ + λ then the
process will converge to the disease-free equilibrium. In other words, if β ≤ µ + λ then the
point (1, 0) is globally asymptotically stable, and if β > µ + λ then the point (µ+λ

β
, 1 − µ+λ

β
)

(the endemic equilibrium) is globally asymptotically stable.
For the event of an anomaly affecting the transmission rate, we momentarily denote this

quantity as h. However, this value may not always be the same. To account for this, we
take h(x) as a function that determines the impact of the anomaly on the population when
the impact has “strength” x ∈ R, that is, how much the anomaly affects the population. We
assume this anomaly happens with a Poisson distribution, say N, with intensity measure
ν(·). The intensity for the Poisson process is the value ν(R). For any interval of time, the
total impact to the population is

∫ t
0

∫
R h(x)N(ds, dx). To make sense of this integral, for

any B ∈ B(Rd\{0}), (the Borel σ -algebra) N(t,B) is Poisson process with intensity ν(B),
where the anomaly has “strength” x, where x is strictly in B. The integral accounts for all
possible anomalies that may affect the dynamic. The net effect over this time interval is∫ t
0 S(s−)I(s−)

∫
R h(x)N(ds, dx), where I(s−) denotes the left limit.

For the triple (%,F, P), we assume that {Ft}t∈R+ is a right-continuous filtration, and that
F0 contains all of the null sets of F . Define N(dt, dy) as a Poisson measure with ν(·) as it’s
intensity measure, and takeW (t ) as standard Brownian motion independent of the Poisson
measure. We assume that ν(R) < ∞, (which implies that ν is a Lévy measure), and denote
Ñ(dt, dy) := N(dt, dy) − ν(dy)dt . In our setting, “dt” represents the Lebesgue integral. See
[6–8] for further information.

For the stochastic perturbations, define σ 2 as the variance of the Brownian motion, and
h(y) as the affect of random jumps in the population. We assume that h(y) is continuously
differentiable onR, and that min h(y) > −1, and max h(y) < 1. For the SIS model, equation
(1) becomes the right-continuous stochastic differential equation

dS(t ) = (−βS(t )I(t ) − µS(t ) + µ + λI(t ))dt − σS(t )I(t )dW (t )

+
∫

R
h(y)S(t−)I(t−)N(dt, dy),

dI(t ) = (βS(t )I(t ) − (λ+ µ)I(t ))dt + σS(t )I(t )dW (t )

−
∫

R
h(y)S(t−)I(t−)N(dt, dy). (2)
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STOCHASTIC ANALYSIS AND APPLICATIONS 29

Gray et al. [4] analyzed an SIS model very similar to the one we are considering, but only
considered an Itô integral for their stochastic forcing term. While both underlying determin-
istic models assume a population of expected size, sayN, Gray et al. [4] assume that the num-
ber of new infections in [t, t + dt ) is βS(t )I(t )dt , while equation (2) assumes this number
is βS(t ) I(t )N dt . The authors found that for RS

0 :=
βN
µ+λ − σ 2N2

2(µ+λ) , if R
S
0 < 1 then the process will

converge almost surely to the disease free equilibrium, and if RS
0 > 1, the process is recurrent

(and hence an epidemic occurs), and admits a unique invariant measure. Due to the slight
differences in assumptions, we found very similar results, where the continuous stochastic
version of equation (2) (i.e., h ≡ 0) yields RS

0 = β

µ+λ − σ 2

2(µ+λ) . However, these results are only
supplementary to our analysis of the right-continuous process.

In this article, we will show that equation (2) is well defined, and we give conditions for
stability of the disease free equilibrium, as well as giving conditions for a strong epidemic.
The term strong refers to the type of recurrence. Since the recurrent property tells us that the
process will return to a neighborhood of the deterministic endemic equilibrium in finite time,
this represents a more natural dynamic of an epidemic.

Given that the initial condition is in the interior of the simplex, we will show that for all
finite time, equation (2) is almost surely in the simplex. Define K(t ) = (S(t ), I(t )), &2 =
{(x1, x2) ∈ R2 : x1, x2 > 0 and x1 + x2 = 1}, and [·, ·] as the standard quadratic variation.
Throughout this article, we take the bold x := (x1, x2) as a vector, take x as a one-dimensional
dummy variable, and define x0 as the one-dimensional initial condition. For simplicity, we
define Sc(t ) and Ic(t ) as the continuous part of the process.

Proposition 2.1. For all finite t, given that x ∈ &2, Px(K(t ) ∈ &2) = 1.

Proof. Consider the mapping on the simplex G((x1, x2)) = x1 + x2, and define U (t ) =
G(K(t )). Itô’s lemma yields

dU (t ) = ∂G
∂y1

(K(t ))dSc(t ) + 1
2
∂G
∂y2

(K(t ))dIc(t ) + 1
2
∂2G
∂y21

(K(t ))[dSc(t ), dSc(t )]

+ 1
2
∂2G
∂y22

(K(t ))[dIc(t ), dIc(t )] + 1
2
∂2G
∂y1∂y2

(K(t ))[dSc(t ), dIc(t )]

+ 1
2
∂2G
∂y2∂y1

(K(t ))[dIc(t ), dSc(t )] +
∫

R
[G(K(t ) + (h(y)S(t−)I(t−),

− h(y)S(t−)I(t−))) − G(K(t ))]N(dt, dy)
= (−βS(t )I(t ) − µS(t ) + µ + λI(t ))dt − σS(t )I(t )dW (t ) + (βS(t )I(t )

− (λ+ µ)I(t ))dt + σS(t )I(t )dW (t ) +
∫

R
[(S(t ) + h(y)S(t−)I(t−) + I(t )

− h(y)S(t−)I(t−)) − (S(t ) + I(t ))]N(dt, dy)
= ( −µ(S(t ) + I(t )) + µ)dt.

Thus, if the process is in &2, then dU (t ) = ( −µ(S(t ) + I(t )) + µ)dt = (−µ + µ)dt = 0.
Therefore, if K(t ) ∈ &2 thenU (t ) = 1.

Finally, we show that K(t ) does not hit or jump over the boundary in finite time. Define
(((x1, x2)) = log(x2/x1) for (x1, x2) ∈ &2 (and notice that ( is a homeomorphic mapping
from&2 → R), take τ as the first time K(t ) leaves the open simplex (i.e., such that I(τ ) ≤ 0
or S(τ ) ≤ 0), and Z(t ) := ((K(t )) for t < τ . We will apply [9, theorem 2.1] to the process
Z(t ) in order to show this Z(t ) does not explode in finite time, that is, Px(τ = ∞) = 1. By
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30 A. VLASIC AND T. DAY

Itô’s lemma we have

dZ(t ) = ∂(

∂x1
(K(t ))dSc(t ) + ∂(

∂x2
(K(t ))dIc(t ) + 1

2
∂2(

∂x21
(R(t ))[dSc(t ), dSc(t )]

+ 1
2
∂2(

∂x22
(K(t ))[dIc(t ), dIc(t )] + 1

2
∂2(

∂x1∂x2
(K(t ))[dSc(t ), dIc(t )]

+ 1
2
∂2(

∂x2∂x1
(K(t ))[dIc(t ), dSc(t )] +

∫

R
[((K(t ) + (h(y)S(t−)I(t−),

− h(y)S(t−)I(t−))) −((K(t ))]N(dt, dy)

= −1
S(t )

((−βS(t )I(t )−µS(t )+µ + λI(t ))dt − σS(t )I(t )dW (t )) + 1
I(t )

((βS(t )I(t )

− (λ+ µ)I(t ))dt + σS(t )I(t )dW (t )) + σ 2

2S2(t )
S2(t )I2(t )dt + −σ 2

2I2(t )
S2(t )I2(t )dt

+
∫

R

[
log

(
I(t ) − h(y)S(t−)I(t−)

S(t ) + h(y)S(t−)I(t−)

)
− log(I(t )/S(t ))

]
N(dt, dy)

=
(
βI(t )+µ+ −µ

S(t )
−λ I(t )

S(t )

)
dt+σ I(t )dW (t )+(βS(t ) − (λ+ µ))dt + σS(t )dW (t )

+ σ 2

2
I2(t )dt + −σ 2

2
S2(t )dt +

∫

R
log

(
1 − h(y)S(t−)

1 + h(y)I(t−)

)
N(dt, dy)

=
(
β(−1

1 (Z(t ))+µ+ −µ

(−1
2 (Z(t ))

−λeZ(t )+β(−1
2 (Z(t )) − (λ+ µ) + σ 2

2
(−1

1 (Z(t ))2

+ −σ 2

2
(−1

2 (Z(t ))2
)
dt + σ ((−1

1 (Z(t )) +(−1
2 (Z(t )))dW (t )

+
∫

R
log

(
1 − h(y)(−1

2 (Z(t ))
1 + h(y)(−1

1 (Z(t ))

)
N(dt, dy),

where, for x ∈ R,(−1(x) = 1
1+ex (1, e

x) := ((−1
1 (x),(−1

2 (x)).
Now, forB defined as the infinitesimal generator of Z(t ) and the functionV (x) = 1 + x2

(where x ∈ R), we derive the following inequality:

BV (x) =
(
β(−1

1 (x) + µ + −µ

(−1
2 (x)

− λex + β(−1
2 (x) − (λ+ µ) + σ 2

2
(−1

1 (x)2

+ −σ 2

2
(−1

2 (x)2
)
2x + σ 2((−1

1 (x) +(−1
2 (x))2

+
∫

R

[(
x + log

(
1 − h(y)(−1

2 (x)
1 + h(y)(−1

1 (x)

))2

− x2
]

ν(dy)

≤
[

σ 2((−1
1 (x) +(−1

2 (x))2 +
∫

R
log

(
1 − h(y)(−1

2 (x)
1 + h(y)(−1

1 (x)

)2

ν(dy)

]

+(2β(−1
1 (x)+2β(−1

2 (x)+σ 2(−1
1 (x)2+2

∫

R
log

(
1 − h(y)(−1

2 (x)
1+h(y)(−1

1 (x)

)
ν(dy)) · x

:= ϕ1(x) + ϕ2(x) · x.

Noting that 0 ≤ (−1
1 (x),(−1

2 (x) ≤ 1, and log(
1−h(y)(−1

2 (x)
1+h(y)(−1

1 (x)
)≤log( 1−min h(y)

1+min h(y) ), one can see that there
exists a constantK such that 3 · maxx∈R{ϕ1(x),ϕ2(x)} < K. Thus, for−1 ≤ x ≤ 1,BV (x) ≤
K ≤ KV (x). Also for |x| > 1, BV (x) ≤ ϕ1(x) + ϕ2(x) · x ≤ ϕ1(x) + ϕ2(x) · x2 ≤ KV (x).
Therefore, invoking [9, theorem 2.1], we may conclude that Px(τ = ∞) = 1. !
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STOCHASTIC ANALYSIS AND APPLICATIONS 31

3. Analysis of the disease-free equilibrium

Since I(t ) = 1 − S(t ), we are able to focus the analysis on S(t ). We may rewrite S(t ) as

dS(t ) = (−βS(t )(1 − S(t )) − µS(t ) + µ + λ(1 − S(t )))dt − σS(t )(1 − S(t ))dW (t )

+
∫

A
h(y)S(t−)(1 − S(t−))N(dt, dy). (3)

Since our analysis is simplified to a one-dimensional process, we set x ∈ (0, 1) for the rest of
the article, and define L as the infinitesimal generator for S(t ).

For the lemma below, we define τϵ = inf{t ≥ 0 : S(t ) ≥ 1 − ϵ}. We will show that the hit-
ting time τϵ has finite expectation, and then apply this result to the analysis of the disease free
equilibrium

Lemma 3.1. For any initial condition 0 < x0 < 1, we have Ex0 [τϵ] < ∞.

Proof. We follow the proof of [10, theorem 4.2]. Define f (x) = eγ − eγ x for γ > 0 and x ∈
(0, 1), and fix an arbitrarily small ϵ > 0. Dynkin’s formula yields

Ex0 [ f (S(τϵ ∧ T ))] = f (x0) + Ex0

[∫ τϵ∧T

0
L f (S(t ))dt

]
.

We now determine an appropriate upper bound for L f (S(t )). To adjust for the possibility
of the process jumping out of the interval, we define ϵ0 = sup{S(τϵ )}. Since the process does
not hit the boundary in finite time, ϵ0 < 1 a.s. We see that

L f (x) = −γ (−βx(1 − x) − µx + µ + λ(1 − x))eγ x − γ 2σ 2x2(1 − x)2

2
eγ x

+
∫

R

[
eγ x − eγ (x+h(y)x(1−x))] ν(dy)

= γ

(
βx − µ − λ− γ σ 2x2(1 − x)

2

)
(1 − x)eγ x +

∫

R
[eγ x − eγ (x+h(y)x(1−x))]ν(dy)

Recalling the inequality −ex ≤ −1 − x, we have the inequality
∫

R
[eγ x − eγ (x+h(y)x(1−x))]ν(dy) = eγ x

∫

R
[1 − eγ h(y)x(1−x)]ν(dy)

≤ eγ x
∫

R
[1 − 1 − γ h(y)x(1 − x)]ν(dy)

= −γ eγ xx(1 − x)
∫

R
h(y)ν(dy).

Thus,

L f (x) ≤ γ

(
βx − x

∫

R
h(y)ν(dy) − γ σ 2x2(1 − x)

2
− µ − λ

)
(1 − x)eγ x

Now, take γ large enough so that βx − x
∫
R h(y)ν(dy) − γ σ 2x2(1−x)

2 − µ − λ < 0 for all x ∈
[0, 1 − ϵ0], and define

α := min
x∈[0,1−ϵ0]

∣∣∣∣βx − x
∫

R
h(y)ν(dy) − γ σ 2x2(1 − x)

2
− µ − λ

∣∣∣∣ .

Thus, L f (x) ≤ −γϕ(1 − x)eγ x. Noting that −eγ x ≤ −1, we conclude that 0 ≤ Ex0 [S(τϵ ∧
T )] ≤ f (x0) − ϵ0γαEx0 [τϵ ∧ T]. Therefore, taking T → ∞, the bounded convergence the-
orem yields Ex0 [τϵ] < ∞. !
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32 A. VLASIC AND T. DAY

Theorem3.1. Suppose that
∫
R h(y)ν(dy) < 0 and σ 2

2 ≤ β. Ifβ < µ + λ+
∫
R h(y)ν(dy), then

for initial condition x ∈ &2,

Px
(
lim
t→∞

K(t ) = (1, 0)
)

= 1.

Proof. In our proof we employ the stochastic Lyapunov method to the process S(t ), defined
by equation (3). For x ∈ (0, 1), define g(x) = 1 − x as our Lyapunov function. Thus,

Lg(x) = (−βx(1 − x) + µ(1 − x) + λ(1 − x))(−1) +
∫

R
[{1 − (x + h(y)x(1 − x))}

−(1 − x)]ν(dy)

= −
(

−βx+µ+λ+
∫

R
h(y)ν(dy)x

)
(1 − x) ≤−

(
−β+µ+λ+

∫

R
h(y)ν(dy)

)
(1 − x).

Therefore, [11, theorem 4 and remark 2] tells us that for an ϵ > 0, there exists a neighborhood
of (1, 0), sayU , such that

Px
(
lim
t→∞

K(t ) = (1, 0)
)

≥ 1 − ϵ,

for x ∈ U ∩&2.
Now, take an arbitrary ϵ > 0 and x ∈ &2, and define the setM = {limt→∞ K(t ) = (1, 0)}.

The strong Markov property yields

Px(M) = Ex[EK(τϵ )[χM]] ≥ 1 − ϵ.

Since ϵ was arbitrary, the theorem follows. !
Remark 3.1. [11, theorem 4] is stated for a jump-diffusion with a compensated Poisson mea-
sure. However, since we assumed that ν(R) < ∞, we may rewrite equation (3) as

dS(t ) =
(

−βS(t )I(t )−µS(t )+µ+λI(t )+
∫

R
h(y)S(t−)I(t−)ν(dy)

)
dt − σS(t )I(t )dW (t )

+
∫

R
h(y)S(t−)I(t−)Ñ(dt, dy),

and, thus, we may apply this theorem. The infinitesimal generator remains unchanged.

Corollary 3.1. Suppose that
∫
R h(y)ν(dy) > 0 and σ 2

2 ≤ β, and there exists a constant 0 <

ϱ < 1 such that β < µ + λ+ ϱ
∫
R h(y)ν(dy). Then

Px
(
lim
t→∞

K(t ) = (1, 0)
)

= 1.

Proof. Taking a neighborhoodU = {(x1, x2) ∈ &2 : x1 > ϱ} and g(x) defined in theorem3.1,
we have that

Lg(x) ≤ −
(

−β + µ + λ+ ϱ

∫

R
h(y)ν(dy)

)
(1 − x).

[11, theorem 4 and remark 2] gives us, for x ∈ U ,

Px
(
lim
t→∞

K(t ) = (1, 0)
)

≥ 1 − ϵ,

for some ϵ. The rest of the proof follows as the one given in theorem 3.1. !

The inequalities derived in theorem 3.1 are very natural and intuitive, however, they lack
the variance term σ 2

2 . To include the variance, a different method is applied to analyze the
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STOCHASTIC ANALYSIS AND APPLICATIONS 33

process. The inequality is very similar, however, the jump term only includes the values of
h(y) that are negative. Under an appropriate large variance and relatively small jump function,
this inequality would give a better bound.

Following Gray et al. [4], we derive conditions for I(t ) to almost surely flow to zero expo-
nentially. We use equation (2) and the equality I(t ) = 1 − S(t ) to simplify the analysis.

Theorem 3.2. If σ 22 ≤ β and β ≤ µ + λ+ σ 2

2 +
∫

{y∈R:h(y)≤0} h(y)ν(dy) then

lim sup
t→∞

log(I(t )) ≤ β − µ − λ− σ 2

2
−

∫

{y∈R:h(y)≤0}
h(y)ν(dy) < 0 a.s.,

hence, I(t ) tends to zero exponentially almost surely.

Proof. From the generalized Itô’s formula, we see that

log(I(t )) =
∫ t

0
(β(1 − I(s)) − µ − λ− σ 2

2
(1 − I(s))2)ds +

∫ t

0
σ (1 − I(s))dB(s)

+
∫ t

0

∫

R
(log(I(s) − h(y)(1 − I(s))I(s)) − log(I(s)))N(ds, dy),

recalling that ds is the Lebesgue integral. Considering the integrand in the Lebesgue integral,
we have

β(1 − I(s)) − µ − λ− σ 2

2
(1 − I(s))2

= β − µ − λ− σ 2

2
+

(
σ 2

2
− β

)
I(s) − σ 2

2
I(s)2 ≤ β − µ − λ− σ 2

2
.

Furthermore, for the integrand in the Poisson integral we have,

log(I(s) − h(y)(1 − I(s))I(s)) − log(I(s))
= log(1 − h(y)(1 − I(s))) ≤ −h(y)(1 − I(s)) ≤ −h(y),

where the last inequality holds if h(y) ≤ 0. Taking the two inequalities above, we see that

lim sup
t→∞

1
t
log(I(t )) ≤ β − µ − λ− σ 2

2
+ lim sup

t→∞

1
t

∫ t

0
σ (1 − I(s))dB(s)

+ lim sup
t→∞

1
t

∫ t

0

∫

{y∈R:h(y)≤0}
−h(y)N(ds, dy).

The Law of Large Numbers for Martingales (see [12]) tells us that lim supt→∞
1
t

∫ t
0 σ (1 −

I(s))dB(s) = 0, and [6, theorem 36.5] tells us that

lim sup
t→∞

1
t

∫ t

0

∫

{y∈R:h(y)≤0}
−h(y)N(ds, dy) = −

∫

{y∈R:h(y)≤0}
h(y)ν(dy).

Thus,

lim sup
t→∞

1
t
log(I(t )) ≤ β − µ − λ− σ 2

2
−

∫

{y∈R:h(y)≤0}
h(y)ν(dy) < 0,

and, therefore, I(t ) almost surely converges to 0 exponentially. !
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34 A. VLASIC AND T. DAY

3.1. Conditions for an epidemic

Define Ŝ(t ) as the continuous stochastic differential equation of (2), hence,

dŜ(t ) = (−βŜ(t )(1 − Ŝ(t )) − µŜ(t ) + µ + λ(1 − Ŝ(t )))dt − σ Ŝ(t )(1 − Ŝ(t ))dW (t ).

We will show that the process is positive Harris recurrent, which is a very strong property.
This is a close representation of the dynamic of an endemic since the recurrent characteristic
tells us, for any initial condition, that the process will almost surely return to a neighborhood
of the deterministic endemic equilibrium. It will be shown that the majority of the mass of
the invariant measure lies in a neighborhood of µ+λ

β
, where the size of the neighborhood is

contingent on the size of the stochastic perturbations.
We denote µ+λ

β
as p for simplicity. For δ > 0, define the neighborhoodUδ := (p− δ, p+

δ) ∩ [0, 1]. Throughout this section, we utilize the Kullback–Leibler distance centered at
(p, 1 − p), which we define as ϕ(x) = p log(p/x) + (1 − p) log((1 − p)/(1 − x)), for x ∈
(0, 1).

Proposition 3.1. If β ≥ σ 2

2 + µ + λ then Ŝ(t ) is recurrent. Moreover, the invariant measure,
denoted as π (·), exists, is unique, and for δ > 0, π (Uδ ) ≥ 1 − σ 2 pm

2βδ2 , where pm := max{p, 1 −

p} and σ
2

√
2pm
β

< δ.

Proof. By [13, theorem 16], we will analyze when q(x) :=
∫ x
Ŝ(0) exp{−2

∫ y
z0

α(z)
γ 2(z)dz}dy, where

z0 ∈ (0, 1). First, we notice that

exp
{
−2

∫ y

z0

α(z)
γ 2(z)

dz
}

= exp
{−2
σ 2

∫ y

z0

((µ + λ) − βz)(1 − z)
z2(1 − z)2

dz
}

= exp
{−2
σ 2

∫ y

z0

[
(µ + λ) − β

z
+ (µ + λ) − β

1 − z
+ (µ + λ)

z2

]
dz

}

= C exp
{
ln

(
z
2β−2(µ+λ)

σ2 (1 − z)
2(µ+λ)−2β

σ2
)
+2(µ+λ)σ 2z

}

= Cz
2β−2(µ+λ)

σ2 (1 − z)
2β−2(µ+λ)

σ2 exp
{
2(µ + λ)

σ 2z

}
,

where C = exp{ln(z
− 2β−2(µ+λ)

σ2
0 (1 − z0)− 2(µ+λ)−2β

σ2 ) − exp{ 2(µ+λ)
σ 2z0

}}. Considering the function
with respect to z, exp{ 2(µ+λ)

σ 2z }, one can see that q(0) = −∞. Since the functions with respect

to z, z
2β−2(µ+λ)

σ2 and exp{ 2(µ+λ)
σ 2z }, are bounded on the interval [Ŝ(0), 1], we may conclude

q(1) = ∞ if and only if 2(µ+λ)−2β
σ 2 ≤ −1. But 2(µ+λ)−2β

σ 2 ≤ −1 if and only if β ≥ σ 2

2 + µ + λ.
Thus, q(1) = ∞ by our assumption on β .

Now, for γ̃ (x) := q′(q−1(x))γ (q−1(x)), we need to determine that
∫ 1
0 [γ̃ (x)]−2dx < ∞.

Using the equality q′(q−1(x)) = 1/(q−1)′(x), and for the function g(x), where g′(x) =
γ −2(x), we see that

∫ 1

0
[γ̃ (x)]−2dx =

∫ 1
0 [γ

−2(q−1(x))(q−1)′(x)](q−1)′(x)dx =
∫ q−1(1)
q−1(0) g

′(z)dz.

Since 0 < q−1(0) < q−1(1) < 1, we are able to conclude from [13, theorem 1.17] that the
process is recurrent, and π (·) exists and is unique.
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STOCHASTIC ANALYSIS AND APPLICATIONS 35

To finish the second statement of the theorem, we apply the infinitesimal generator of Ŝ(t ),
which we call L, to ϕ(x). Thus, for x ∈ (0, 1), we find that

Lϕ(x) = ((µ + λ) − βx)(1 − x)
x − p

x(1 − x)
+ σ 2

2
x2(1 − x)2

x2 − 2px + p
x2(1 − x)2

= −β
x

(x − p)2 + σ 2

2
(x2 − 2px + p) ≤ −β(x − p)2 + σ 2pm

2
.

For an initial condition x0 ∈ (0, 1),

0 ≤ Ex0 [ϕ(Ŝ(t ))] = ϕ(x0) + Ex0

[∫ t

0
Lϕ(Ŝ(u))du

]
≤ ϕ(x0)

−βEx0

[∫ t

0
(Ŝ(u) − p)2du

]
+ t

σ 2pm
2

,

which implies

Ex0

[∫ t

0
(Ŝ(u) − p)2du

]
≤ ϕ(x0)/β + t

σ 2pm
2β

.

Now for σ
2 pm
2β < δ2, the complement ofUδ , denoted byUC

δ , we see that

π (UC
δ ) = lim

t→∞

1
t
Ex0

[∫ t

0
1UC

δ
(Ŝ(u))du

]
≤ lim

t→∞

1
t
Ex0

[∫ t

0

(Ŝ(u) − p)2

δ2
du

]

≤ σ 2pm
2βδ2

.

Therefore, π (Uδ ) ≥ 1 − σ 2pm
2βδ2 . !

Notice that the inequality π (Uδ ) ≥ 1 − σ 2pm
2βδ2 is not necessary since we are able to explicitly

write out the distribution of the invariant measure (see [13]). However, the inequality is nice
comparison to the analogous inequality given in the following theorem, and we are able to see
the effect jumps have on the dynamic.

For themain theorem below, we defineH(y) = max{−ph(y)
1+h(y) ,

(1−p)h(y)
1−h(y) }, and forU δ denoting

the closure of a neighborhood δ about p, we define τU δ as the first time S(t ) enters this space.
The proof of this theorem utilizes [14, theorem 5.2].

Theorem 3.3. Assume that β ≥
∫
R H(y)ν(dy) + σ 2

2 + µ + λ, and there exists δ > 0 where

δ >

√
σ 2 pm+

∫
R H(y)ν(dy)
2β and Uδ ⊂ [0, 1]. Then, Ex0 [τU δ ] ≤ ϕ(x0)

βδ2− σ2 pm
2 −

∫
R H(y)ν(dy)

, S(t ) is recur-

rent, the invariant measure, denoted as πJ(·), exists, is unique, and πJ(Uδ ) ≥ 1 −
σ 2pm+

∫
R H(y)ν(dy)
2βδ2 .

Proof. Taking the function ϕ as above, for x ∈ (0, 1), we see that

Lϕ(x) = ((µ + λ) − βx)(1 − x)
x − p

x(1 − x)
+ σ 2

2
x2(1 − x)2

x2 − 2px + p
x2(1 − x)2

+
∫

R

[
p log

(
p

x + h(y)x(1 − x)

)
+ (1 − p) log

(
1 − p

1 − x − h(y)x(1 − x)

)

− p log
( p
x

)
− (1 − p) log

(
1 − p
1 − x

)]
ν(dy)
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36 A. VLASIC AND T. DAY

= −β
x

(x − p)2 + σ 2

2
(x2 − 2px + p) +

∫

R

[
p log

(
1

1 + h(y)(1 − x)

)

+ (1 − p) log
(

1
1 − h(y)x

)]
ν(dy)

≤ −β(x−p)2+ σ
2pm
2

+
∫

R

[
p log

(
1

1+h(y)(1−x)

)
+(1 − p) log

(
1

1−h(y)x

)]
ν(dy).

Using the inequality log(x) ≤ x − 1, we see that

p log
(

1
1 + h(y)(1 − x)

)
+ (1 − p) log

(
1

1 − h(y)x

)
≤ p

(
1

1 + h(y)(1 − x)
− 1

)

+(1 − p)
(

1
1 − h(y)x

− 1
)

= p
−h(y)(1 − x)
1 + h(y)(1 − x)

+ (1 − p)
h(y)

1 − h(y)x
≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−ph(y)
1 + h(y)

if h(y) ≤ 0

(1 − p)h(y)
1 − h(y)

if h(y) > 0
.

Thus, Lϕ(x) ≤ −β(x − p)2 + σ 2 pm
2 +

∫
R H(y)ν(dy). Now for δ > 0 that holds our assump-

tion, and x ∈ [0, 1]\Uδ , Lϕ(x) ≤ −βδ2 + σ 2 pm
2 +

∫
R H(y)ν(dy). By our assumption on δ,

ϕ(S(t )) − t(−βδ2 + σ 2 pm
2 +

∫
R H(y)ν(dy)) is a super martingale for t ∈ [0, τU δ ), and there-

fore, ϕ(x) ≥ (βδ2 − σ 2 pm
2 −

∫
R H(y)ν(dy))Ex0 [τU δ ].

We now show that S(t ) holds the properties in [14, theorem5.2]. To show theψ-irreducible
condition (page 1674 [14]), we define the Borel measure ψ (O) = M(O ∩Uδ ), where M is
the Lebesgue measure, and ηO :=

∫ ∞
0 1{S(t )∈O}dt , (which is the occupancy time). Since Uδ is

strictly in the simplex, the strong Markov property tells us that S(t ) is recurrent inUδ . Thus,
if ψ (O) > 0 then Ex0 [ηO] > 0 for x0 ∈ (0, 1).

To show the aperiodic condition ([14, p. 1675]), we use the set Uδ . Before we show this
condition holds, wewill note that since we assumed the Poissonmeasure is independent of the
Wiener processes, the jumps are only dependent on time. We first note that since ν(R) < ∞,
for every time t , there is a positive (but very small) probability that there has not been a jump.
Under this event, the process has the form of Ŝ(t ). Independence of the Brownian and Poisson
terms coupled with proposition 3.1 tells us there exists a time T , such that for any t ≥ T and
x ∈ Uδ , Pt (x,Uδ ) > 0, that is, the transition probability at some time is always positive.

To finish the proof, we give a function V , where V ≥ 1, is unbounded off of level sets,
and there exists c, b ∈ R+ such that LV (x) ≤ −cV (x) + b, (see [14, p. 1679]). DefineV (x) =
− log(x) + 1. Then

LV (x) = ((µ + λ) − βx)(1 − x)
−1
x

+ σ 2

2
x2(1 − x)2

1
x2

+
∫

R
[− log(x + h(y)x(1 − x)) + 1 + log(x) − 1]ν(dy)
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STOCHASTIC ANALYSIS AND APPLICATIONS 37

Figure . For simulations, the initial condition are S0 = .6 and I0 = .4: parameter values are a) β = .3,
σ = .1, λ = .3,µ = .1, ν(R) = 1, and h(y) ≡ −.1; and b) β = .45, σ = .1, λ = .3,µ = .1, ν(R) = 1, and
h(y) ≡ .1.

= β

x
(x − p)(1 − x) + σ 2

2
(1 − x)2 +

∫

R
log

(
x

x + h(y)x(1 − x)

)
ν(dy)

= β

x
(x − p)(1 − x) + σ 2

2
(1 − x)2 −

∫

R
log(1 + h(y)(1 − x))ν(dy)

≤ β

x
(x − p)(1 − x) + σ 2

2
− log(1 + hmin)ν(R)

=
(
β(x − p)(1 − x)

xV (x)
+ σ 2

2V (x)
− log(1 + hmin)ν(R)

V (x)

)
V (x)

Noting that β(x−p)(1−x)
xV (x) → −∞ and σ 2

2V (x) − log(1+hmin )ν(R)

V (x) → 0 as x → 0, and β(x−p)(1−x)
xV (x) +

σ 2

2V (x) − log(1+hmin )ν(R)

V (x) → σ 2 − log(1 + hmin)ν(R) as x → 1, one can see there exists constants
c, b ∈ R+, such that LV (x) ≤ −cV (x) + b. Thus, the invariant measure πJ(·) exists and is
unique.

Following the proof in proposition 3.1 yields πJ(Uδ ) ≥ 1 − σ 2pm+
∫
R H(y)ν(dy)
2βδ2 . !

The simulations below agree with the conclusion of the theorems. Figure 1 shows for
both cases that the disease free equilibrium is globally asymptotically stable. Figure 1a holds
the hypotheses of theorem 3.2, where the jump function negative. While Figure 1b has the
assumption that the jump function is positive, and holds the hypotheses of corollary 3.1.

Figure 2 shows the recurrent nature of the process, simulating an epidemic. As before, the
simulations display the dynamics when the jump function is a negative or positive. Notice the
prominence of the process showing the strength of the recurrence.
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38 A. VLASIC AND T. DAY

Figure . As in Figure , the initial condition are S0 = .6 and I0 = .4: parameter values are a) β = .4, σ =
.2, λ = .2, µ = .15, ν(R) = .3, and h(y) ≡ −.1, and b) β = .5, σ = .2, λ = .2, µ = .15, ν(R) = .3, and
h(y) ≡ .1.

4. Conclusion

In this article, we have shown that anomalies in the transmission rate have a significant
influence in the epidemiological dynamics. The condition for the disease free equilibrium
in theorem 3.1 are rather intuitive, except the variance does not show up in the equality. With
the Lyapunov exponent method, another inequality for the disease free equilibrium is given.
These two conditions display quite well the complexity that is added to the dynamics.

For an endemic equilibrium to occur, the inequality in theorem 3.3 gives a condition for the
process to be positive recurrence with a unique invariant measure. Since this is the strongest
type of recurrence, the endemic is also strong. Although this condition does give an inter-
val for which β has not been characterized, it implies the possibility of different strengths of
recurrence, and hence, of the endemic. This is in contrast to themodel with just an Itô pertur-
bation. This further displays the complexity that anomalies add to the system, and emphasizes
the importance of including them when considering the transmission rate.
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