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Graph symmetries

A graph is called vertex-transitive if its automorphism group
A has a single orbit on vertices, or edge-transitive if A has
a single orbit on edges, or arc-transitive (or symmetric) if A
has a single orbit on the set of arcs — where an arc is an
ordered pair (v, w) of adjacent vertices.

A graph that is regular and edge-transitive but not vertex-
transitive is semisymmetric. A graph that is vertex- and
edge-transitive but not arc-transitive is half-arc-transitive.
Semisymmetric graphs are bipartite, and half-arc-transitive
graphs are regular with even valency.

An s-arc is a path of length s in which any three consecutive
vertices are distinct, and a graph is s-arc-transitive if its
automorphism group A has a single orbit on s-arcs.



Semisymmetric graphs

These are edge-transitive & regular but not vertex-transitive.

As such, they are all bipartite, with the two parts being the

orbits of the automorphism group on orbits. The smallest

example is the 4-valent Folkman graph on 20 vertices:



Half-arc-transitive graphs

These are vertex- and edge- but not arc-transitive. As such,

they all have even valency > 2. (Cycles are arc-transitive.)

The smallest example is the 4-valent Holt graph (now aka

the Doyle graph), on 27 vertices:



Cayley graphs

A graph X admitting a group G of automorphisms that acts

regularly (sharply-transitively) on vertices is a Cayley graph.

If we fix a vertex v, and then let S be the subset of G

consisting of automorphisms that take v to a neighbour,

then we denote X by Cay(G,S), and call X a Cayley graph

for G relative to S. This gives another way to define it:

For the vertices of X take the elements of G, and for the

edges take all pairs {g, sg} where s ∈ S and g ∈ G. Then G

acts as a group of automorphisms by right multiplication.



Examples

• The cycle graph Cn is VT, ET and AT, and Cayley

• The complete graph Kn is VT, ET and AT, and Cayley:

Kn = Cay(G,G \ {1}) for every group G of order n.

• The complete bipartite graph Kn,n is VT, ET and AT,

and is Cay(G,H) whenever H ≤ G with |G| = 2n = 2|H|

but

• The Petersen graph, the Gray graph and the Hoffman-

Singleton graph are ET but are not Cayley graphs



Bi-Cayley graphs

A bi-Cayley graph is any graph that admits a group H of
automorphisms acting with two regular orbits of length |H|.

Example 1: Kn,n, with its two parts being orbits of H = Cn

Example 2: the Petersen graph, with two orbits of H = C5
(the vertices of the inner and outer ring, respectively):
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General form of bi-Cayley graphs

Let Γ be a bi-Cayley graph for the group H, which has the

two orbits H0 and H1 on vertices. We can label the vertices

of Γ as h0 and h1, where h runs through elements of H.

Then there are subsets R, L and S of H such that the edges

of Γ are of three possible forms:

• {h0, (xh)0} for x ∈ R and all h ∈ H, joining H0 to H0

• {h1, (yh)1} for y ∈ L and all h ∈ H, joining H1 to H1

• {h0, (zh)1} for z ∈ S and all h ∈ H, joining H0 to H1.

...........
................
....... .......... ......... ......... .......... ..................................

..............

..............

..............

..............

..............

..............
.

..............

..............

..............

..............

..............

..............

.................................. .......... ......... ......... .......... ..............
.........
..........

. .........................................................................................................
....................................................................... ............

............. ......................................................................

...........
................
....... .......... ......... ......... .......... ..................................

..............

..............

..............

..............

..............

..............
.

..............

..............

..............

..............

..............

..............

.................................. .......... ......... ......... .......... ..............
.........
..........

H0H1

RL S



Construction of bi-Cayley graphs

Let H be any group, and let R, L and S be subsets of H

with |R| = |L| such that 1H 6∈ R = R−1 and 1H /∈ L = L−1.

Define a graph Γ with vertex set being the union H0 ∪ H1

of two copies of H, and with edges of the form {h0, (xh)0},
{h1, (yh)1} and {h0, (zh)1} with x ∈ R, y ∈ L and z ∈ S.

Then this is a bi-Cayley graph, with H acting as a group of

automorphisms by right multiplication, and H0 and H1 as

its two regular orbits on vertices. Also WLOG 1H ∈ S.

We denote this graph by BiCay(H,R,L, S).



Main focus of this work

This talk is a summary of the main points of some recent
work, written up in a 27-page paper. This project focussed
on bi-Cayley graphs that are edge-transitive, and especially
on normal bi-Cayley graphs — namely those where the group
induced by H on the vertices of V (Γ) is a normal subgroup
of the full automorphism group of Γ.

Main theorem

We showed that a finite connected normal edge-transitive bi-
Cayley graph can be either arc-transitive, half-arc-transitive
or semisymmetric, and moreover, that infinitely many exam-
ples of such graphs exist in each case.

[And we found out some other things along the way.]



Two-arc-transitive bi-normal Cayley graphs

Let Γ = Cay(G,S) be a Cayley graph for a group G, with

automorphism group A. Then Γ is a bi-normal Cayley graph

if the core H =
⋂
α∈AG

α of G in A has index 2 in G. Note

that this implies that Γ is a normal bi-Cayley graph over H.

In PAMS 133 (2005), Cai-Heng Li asked for a detailed de-

scription of bi-normal Cayley graphs that are 2-arc-transitive,

and also whether there are 3-arc-transitive examples.

Our first theorem provides answers to these two questions

(on the next slide). For this, we note that every arc-transitive

bi-normal Cayley graph is bipartite.



Two-arc-transitive bi-normal Cayley graphs (cont.)

Answers to questions by Li (2005):

Theorem [CFZZ]: Let Γ be a connected bi-Cayley graph

BiCay(H, ∅, ∅, S). Then NAut(Γ)(H) acts transitively on the

2-arcs of Γ if and only if the following conditions hold:

(a) ∃ an automorphism α of H such that Sα = S−1;

(b) the stabiliser of S\{1} in Aut(H) is transitive on S\{1};

(c) there exists an automorphism β of the group H such

that Sβ = s−1S for some s ∈ S \ {1}.

Also NAut(Γ)(H) is never transitive on the 3-arcs of Γ.



Special cases

For the rest of this project we considered examples and

properties of bi-Cayley graphs over abelian groups, dihedral

groups and metacyclic groups.

Such graphs may be called bi-abelian graphs, bi-dihedrants,

and bi-metacirculants respectively.

In the bi-abelian case, for example, it’s easy to prove this

Theorem: Every connected bi-Cayley graph over an abelian

group is vertex-transitive.



A family of bi-abelian graphs

Let H = 〈x〉 × 〈y〉 ∼= Cnm × Cm, where n and m are any

two positive integers with nm2 ≥ 3, and take S = {1, x, xλy}
where λ = 0 if n = 1, or if n > 1 take λ ∈ Z ∗n such that

λ2 − λ+ 1 ≡ 0 mod n.

Then the 3-valent graph Γm,n,λ = BiCay(H, ∅, ∅, {1, x, xλy})
is always arc-transitive and is sometimes 2-arc-transitive.

Moreover, every connected 3-valent normal edge-transitive

bi-Cayley graph over an abelian group is isomorphic to Γm,n,λ
for some m, n and λ as given above.

These graphs are also important for another reason ...



Trivalent edge-transitive graphs of small girth

A nice by-product of the study of bi-abelian graphs was a

complete classification of all 3-valent edge-transitive graphs

of girth at most 6. One key part of this was the following:

Theorem: Let Γ be a connected trivalent edge-transitive

graph of girth 6. Then either Γ ∼= Γm,n,λ for some m, n and

λ with nm2 > 9, or Γ is isomorphic to the Heawood graph,

the Pappus graph, the generalised Petersen graph P (8,3), or

the generalised Petersen graph P (10,3). In all these cases,

the graph Γ is arc-transitive, and also it follows that every

connected trivalent semisymmetric graph has girth ≥ 8.



Semisymmetric bi-dihedrants

On this particular topic, we began by proving that if Γ is a

connected semisymmetric bi-Cayley graph over the dihedral

group Dn = 〈 a, b | an = b2 = (ab)2 = 1 〉 for some n ≥ 3,

then the valency of Γ is at least 6.

Then we constructed a family of examples of bi-dihedrants,

and showed that infinitely many are semisymmetric.

A subclass of the 6-valent examples gave the answer to two

open questions posed by Marušič and Potočnik (in Europ. J.

Comb (2001)) on tetracirculants — which are graphs that

admit an automorphism acting with four cycles of the same

length on vertices.



A special family of bi-dihedrants

Let n and k be integers with n ≥ 5 and k ≥ 2, for which

there exists an element λ of order 2k in Z ∗n such that

1 + λ2 + λ4 + · · ·+ λ2(k−2) + λ2(k−1) ≡ 0 mod n.

Now let ci = 1+λ2 +λ4 + · · ·+λ2i and di = λci for all i ∈ Zk,

and in the dihedral group Dn = 〈 a, b | an = b2 = (ab)2 = 1 〉,
take S = S(n, λ,2k) = {aci : i ∈ Zk} ∪ {badi : i ∈ Zk}, and

define Γ(n, λ,2k) = BiCay(Dn, ∅, ∅, S).

Then Γ = Γ(n, λ,2k) is a connected edge-transitive bi-Cayley

graph of valency 2k. Also if k is even and λk ≡ −1 mod n,

then Γ is arc-transitive, but if k is odd and λk ≡ −1 mod n,

then Γ is semisymmetric.



Digression: Worthy and unworthy graphs

A graph is called unworthy [thanks to Steve Wilson] if two

of its vertices v and w have exactly the same neighbours:

•
•v

w .
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In this case, there exists an automorphism of the graph

that swaps v and w but fixes all others. It follows that the

stabiliser of an edge not incident with v or w is non-trivial.

Hence (in particular), every edge-regular graph is ‘worthy’.



Answer to questions by Marušič and Potočnik

A tetracirculant is a graph that admits an automorphism θ

acting with four cycles of the same length on vertices.

In their 2001 paper, Marušič and Potočnik constructed a

family of ‘generalised Folkman tetracirculants’, and asked:

Does this family include every semisymmetric tetracirculant?

or at least every semisymmetric tetracirculant Γ such that

the four orbits of 〈θ〉 are blocks of imprimitivity for Aut(Γ)?

Generalised Folkman tetracirculants are unworthy, but if

λ3 6≡ −1 mod n, then our graph Γ(n, λ,6) is a semisymmetric

tetracirculant that is edge-regular and hence ‘worthy’. Also

for Γ(n, λ,6) the four orbits of 〈θ〉 are blocks of imprimitivity,

and so the answer to both questions above is ‘No’.



Metacirculants

In doing this work, we were led to study a question posed in

JACo 28 (2008) by Marušič and Šparl about metacirculants.

A graph is a weak metacirculant if it admits a metacyclic

group of automorphisms acting transitively on vertices.

A graph Γ is an (m,n)-metacirculant if it has order mn, and

admits two automorphisms σ and τ such that

• σ has order n, and 〈σ〉 acts semi-regularly on V (Γ), while

• τ has order divisible by m, has a cycle of size m on V (Γ),

normalises 〈σ〉, and cyclically permutes the m orbits of 〈σ〉.

Clearly every (m,n)-metacirculant is a weak metacirculant.

Question: Is the converse also true?



Answer 1:

Li, Song and Wang claimed the converse is false, in a theo-

rem in a paper in JCTA (2013) stating that every non-split

metacyclic p-group (for p an odd prime) acts transitively on

the vertices of a half-arc-transitive 4-valent graph Γ, such

that Γ is a weak metacirculant but not a metacirculant.

Unfortunately they made a mistake in the first paragraph of

the proof of their main Theorem, and the theorem is wrong.

In fact:

Theorem [CFZZ]: Let Γ be any connected 4-valent half-

arc-transitive graph of order pn for some odd prime p. Then

Γ is weak metacirculant if and only if Γ is a metacirculant.



Answer 2 [Šparl and Antončič]:

Šparl and Antončič found two 4-valent weak metacirculants
of order 160 that are not metacirculants in the census of all
4-valent half-arc-transitive graphs up to order 1000 created
by Potočnik, Spiga and Verret (2015).

Answer 3 [CPZZ]:

Let Γ = BiCay(H,R,L, S), where H = 〈a〉 = C28,

and R = {a, a−1}, L = {a13, a−13} and S = {1, a, a6, a19}.

Then Γ has valency 6, and an easy MAGMA computation
shows Γ is half-arc-transitive, with Aut(Γ) ∼= (C7×Q8)oC3.

In particular, Γ is weak metacirculant (of order 56), but it
is not difficult to show that it is not a metacirculant.



Answer 3b [CPZZ]:

The last example is the first member of an infinite family of

examples of ‘non-metacirculant’ weak metacirculants.

Let p be any prime congruent to 1 mod 6, and let H = 〈x〉
be the cyclic group C4p of order 4p, with generator x. Next

let r be any square root of −3 mod p, and use the CRT to

find an integer t such that t ≡ r mod p and t ≡ 3 mod 4

— e.g. (r, t) = (6,19) when p = 13.

If R = {x, x−1}, L = {x2p−1, x2p+1} and S = {1, x, xt, x2p+t+1},
then BiCay(H,R,L, S) is a 6-valent half-arc-transitive weak

metacirculant with automorphism group (Cp×Q8)oC3, but

is not an (m,n)-metacirculant for any m and n.



Bi-metacirculants

A bi-metacirculant is a bi-Cayley graph over a metacyclic

group, and a bi-p-metacirculant is a bi-Cayley graph over a

metacyclic p-group.

— e.g. the smallest graph B(2,6,9) in a family of half-arc-

transitive graphs constructed by Bouwer (1970) is a 4-valent

bi-Cayley graph over a metacylic group of order 27.

Theorem [CFZZ]: If Γ is a 4-valent vertex- and edge-

transitive bi-Cayley graph over a non-abelian metacyclic p-

group H, then R(H) is normal in Aut(Γ).

Theorem [CFZZ]: There exist 4-valent half-arc-transitive

bi-p-metacirculants of order 2p3, for every odd prime p.



Construction

For any odd prime p, let H be the metacyclic group of order

p3 with presentation 〈 a, b | ap2
= bp = 1, b−1ab = a1+p 〉, and

then let Γp = BiCay(H, ∅, ∅, S) where S = {1, a2, apb2, a2−pb2}.

Then Γp is a 4-valent half-arc-transitive bi-p-metacirculant

(of order 2p3) over Cp2 o1+p Cp, and is also an edge-regular

Cayley graph for every such p.

Note: There is also another family of 4-valent half-arc-

transitive bi-p-metacirculants based on the same group when

p ≡ 1 modulo 4, but these graphs are not Cayley graphs.



Summary

Arc-transitive case: There exists an arc-transitive 3-valent

bi-Cayley graph over Cnm×Cm for any m and n with nm2 ≥ 3

Semi-symmetric case: There exist semisymmetric bi-dihedrants

of valency 2k for every odd integer k ≥ 3

Half-arc-transitive case: There exist 4-valent half-arc-transitive

bi-p-metacirculants of order 2p3 for every odd prime p

... and answers to some open questions along the way.
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Abstract:

Cayley graphs form an important class of vertex-transitive

graphs, which have been the object of study for many decades.

These graphs admit a group of automorphisms that acts

regularly (i.e. sharply-transitively) on vertices. On the other

hand, there are many important vertex-, edge- or arc-transitive

graphs that are not Cayley graphs, such as the Petersen

graph, the Gray graph, and the Hoffman-Singleton graph.



In this talk, I will describe some recent developments in the

theory of bi-Cayley graphs, which are graphs that admit

a group H of automorphisms acting semi-regularly on the

vertices, with two orbits (of the same length). These include

the Petersen graph and the Gray graph, and many more

besides.

We focus mainly on the case where the group H is nor-

mal in the full automorphism group of the graph, and have

produced infinite families of examples in each of three sub-

classes of bi-Cayley graphs, namely those that are arc-transitive,

half-arc-transitive or semisymmetric, respectively.

In doing this, we found the answer to a number of open

questions about these and related classes of graphs, posed



by Li (in Proc. American Math. Soc. 133 (2005)), Marušič

and Potočnik (in European J. Combinatorics 22 (2001))

and Marušič and Šparl (in J. Algebraic Combinatorics 28

(2008)). Also we found and corrected an error in a recent

paper by Li, Song and Wang (in J. Combinatorial Theory,

Series A 120 (2013)).


