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Quiver mutation is used in cluster algebras and connected to: representation

theory, geometry of triangulated surfaces, Grassmannians, root systems, integrable

systems, tropical geometry, Poisson geometry, combinatorics of polytopes...



Aim: construct and study
geometric model for all mutation classes of @, |Q| = 3.

Tools:

- reflection groups [acyclic mutation types]
- m-rotation groups [cyclic mutation types]




Aim: construct and study
geometric model for all mutation classes of @, |Q| = 3.

Tools:

- reflection groups [acyclic mutation types]
- m-rotation groups [cyclic mutation types]

(2 is of acyclic mut. type
iIff its mutation class contains a quiver without oriented cycles.

@ is if cyclic mut. type
otherwise.
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1. Cyclic mutation classes via m-rotations

_ -2 p q
Q=(pa1), . b 27 ) = (i)
mutation-cyclic g =2
<U17 /UZ, /U3> — R2’1 : L = (371,1’2,3]3)

= (377 y) = T1Y1 + T2Y2 — T3Y3
y = (Y1, Y2,Y3)

near ¢ T2 = {7 € R | (2,2) = —2}
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For z,y € H? have:  (z,y) = 2coshd,,
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1. Cyclic mutation classes via m-rotations

_ -2 p q
Q) = r
(pa q, )7| p -2 7 (vi’ Uj)
mutation-cyclic g r -2

For z,y € H® have: (x,y) = 2cosh dz .y

() ~> three points x,y,z on distances arcosh £, arcosh, arcoshz.
Why exist?

Lemma. (Beineke, Bristle, Hille)
() mutation-cyclic = p,q,r > 2.
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1. Cyclic mutation classes via m-rotations

(Q ~> points z,y,z € H? on distances arcosh §, arcosh , arcoshz.

Mutation: “partial m-rotation”.

m-rotation Ry(:c) — “rotation of x around y by 7" = —2x — (33, y)y

—v; — (v, v)vg, if1—kin @

k(Vi) =
H(i) Vi, otherwise

Thm 1. If v1, vy, v3 € H?, then the values 2 cosh dvi,vj change under
mutations in the same way as the weights of the arrows in @, i.e.

r' 4+ r = Dq, 2 cosh dr,a/ + 2 cosh dr = 2 cosh dp - 2 cosh dq



2. Acyclic mutation classes via reflections

2 —-p —q
— —r
Q= (p,q,—7), . o2 | = (s
acyclic —q —-r 2
(v1, V9, v3) = HZ% E2, S? (proj model) (01, 0;)| = 4 2 COsh sy foi Ny =0,
1,525 %3 ’ ’ Pro) oo 2 cos oy, ifvfﬂvf;é@,
rvi — (vi, vp)vg, if1— kinQ
Mutation: “partial reflection”: pi(vy) = { —uy, ifi =k
| Vis otherwise

Thm 2. (Barot, Geiss, Zelevinsky' 2006)
The values (v;, v;) change under mutations
in the same way as the weights of the arrows in ().
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Thm. If |Q| = 3, then the domains do not intersect.



Thm 1,2: “If () has a geometric realization
then it works for the whole mutation class”

Thm 3. Every () of rank 3 has a realization.



Thm 1,2: “If () has a geometric realization
then it works for the whole mutation class”

Thm 3. Every () of rank 3 has a realization.
|dea of Pf:

-if ) is mut.-acyclic — by reflections  [Seven; Speyer-Thomas]




Thm 1,2: “If () has a geometric realization
then it works for the whole mutation class”

Thm 3. Every () of rank 3 has a realization.
|dea of Pf:

- if Q IS mut.—acyclic — by reflections [Seven; Speyer-Thomas|
-if ) is mut.-cyclic = p,q,r > 2 =

there are 3 pts in H? iff d, + d, > d,

................ what if....... dp +d, < d,?




Thm 1,2: “If () has a geometric realization
then it works for the whole mutation class”

Thm 3. Every () of rank 3 has a realization.
|dea of Pf:

-if ) is mut.-acyclic — by reflections  [Seven; Speyer-Thomas]
-if @ is mut.-cyclic = p,q,7 > 2 =
there are 3 pts in H? iff d, + d, > d, d,
................ what if....... dp, +d, < d,?

Three lines in HZ: d;
realization by reflections! /7~ |




Thm 1,2: “If () has a geometric realization
then it works for the whole mutation class”

Thm 3. Every () of rank 3 has a realization.

Thm 3.
1. () mut.-acyclic = @ has realization by reflections.
2. () mut.-cyclic = @ has realization by w-rotations.
3. () has both realizations <
Q = (p,q,r) with p,q,r > 2 and d, + d, = d,.




3. Non-integer quivers

p,q,r € R. (p,q,7) = (p,q¢,pg — 7).



3. Non-integer quivers

p,q,r € R. (p,q,7) = (p,q¢,pg — 7).

Def. A quiver is of finite mutation type
iIf it is mutation equivalent to fin. many other quivers.

In integer case:

Ag A2 Markov



3. Non-integer quivers

p7Q7r€R- (p7Q7r)_>(p7Q7pq_r)'

Thm 4. A real quiver Q, |Q| = 3 is of finite mutation type
if () is mut.-equivalent to @)’ = (2 coswty, 2 coswta, 2 cos wt3),
where (t1,%2,t3) is one of the following:
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3. Non-integer quivers

p,q,r €R. (p,q,7) = (p,q,pqg — 7).

Thm 4. A real quiver Q, |Q| = 3 is of finite mutation type
if () is mut.-equivalent to Q" = (2 cosnty, 2 cos wty, 2 cos Tt3),
where (t1,%2,t3) is one of the following:

e (0,0,0); Markov quiver
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n,%,()), where n € Z;
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Two finite type mutation classes:

Acyclic Cyclic

H3(1) (2cos T,2cos 2F,0) (2cos 2=, 2cos 27, 1)
(1,1, —2cos 2F)

H?()Q) (2cos %,2cos 2F, 0) (2cosE,2cos 28, 1)

(2cos 2=, 2cos 2, —2cos 2F)  (1,1,2cos )







4. Markov constant

Def. [Beineke, Briistle, Hille]
For Q = (p,q,7), a Markov constant is C(Q) = p* + ¢*> +r? — pqr.



4. Markov constant

Def. [Beineke, Briistle, Hille]
For Q = (p,q,7), a Markov constant is C(Q) = p* + ¢*> +r? — pqr.

e ('(Q) is mutation-invariant;

e ('(Q) controls geometry of the realization:

— if p,q,r > 2, triangle ineq. & C(Q) < 4;

— if Q mut.-acyclic, C(Q) <4/ =4/ > 4 & refl. in S?/E?/H?.

— if Q) is mut.-cyclic, C'(Q) controls geometry of g = Ri0 R0 R3:
C(Q) <0/ =0/ >0 <« g is hyperbolic/parabolic/elliptic.



4. Markov constant:

C(Q) =p*+¢* + 1% —pqr.

(2 is mutation-acyclic

S, p.q.r <2 E2 [H?

!

0
n

g i1s hyperbolic parabolic

elliptic

() i1s mutation-cyclic, p,q,r > 2



4. Markov constant: C(Q) = p? + ¢ + % — pgr.

(2 is mutation-acyclic

S, p.q.r <2 [E2 [H2

0
n

g i1s hyperbolic parabolic elliptic

() i1s mutation-cyclic, p,q,r > 2

THANKS!



