Geometric realisations of quiver mutations

Anna Felikson (joint with Pavel Tumarkin)

Herstmonceux Castle, July 11-15 2016

• Quiver is a directed graph without loops and 2-cycles.

- Quiver is a directed graph without loops and 2-cycles.
- Mutation μ_k of quivers:
 - reverse all arrows incident to k;
 - for every oriented path through k do

- Quiver is a directed graph without loops and 2-cycles.
- Mutation μ_k of quivers:
 - reverse all arrows incident to k;
 - for every oriented path through k do

Quiver mutation is used in cluster algebras and connected to: representation theory, geometry of triangulated surfaces, Grassmannians, root systems, integrable systems, tropical geometry, Poisson geometry, combinatorics of polytopes...

Aim: construct and study geometric model for <u>all</u> mutation classes of Q, |Q|=3.

Tools:

- reflection groups [acyclic mutation types]
- π -rotation groups [cyclic mutation types]

Aim: construct and study geometric model for <u>all</u> mutation classes of Q, |Q|=3.

Tools:

- reflection groups [acyclic mutation types]
- π -rotation groups [cyclic mutation types]

- Q is of acyclic mut. type iff its mutation class contains a quiver without oriented cycles.
- Q is if cyclic mut. type otherwise.

$$Q = (p, q, r),$$
 mutation-cyclic
$$\begin{pmatrix} -2 & p & q \\ p & -2 & r \\ q & r & -2 \end{pmatrix} = (v_i, v_j)$$

$$Q=(p,q,r), \\$$
 mutation-cyclic

$$\begin{pmatrix} -2 & p & q \\ p & -2 & r \\ q & r & -2 \end{pmatrix} = (v_i, v_j)$$

$$\langle v_1, v_2, v_3 \rangle = \mathbb{R}^{2,1} :$$

$$\begin{array}{ccc}
x = (x_1, x_2, x_3) \\
y = (y_1, y_2, y_3)
\end{array} \Rightarrow (x, y) = x_1 y_1 + x_2 y_2 - x_3 y_3$$

$$Q = (p, q, r),$$
mutation-cyclic
$$\begin{pmatrix} -2 & p & q \\ p & -2 & r \\ q & r & -2 \end{pmatrix} = (v_i, v_j)$$

$$\langle v_1, v_2, v_3 \rangle = \mathbb{R}^{2,1} : \qquad x = (x_1, x_2, x_3) \\ y = (y_1, y_2, y_3) \qquad \Rightarrow (x, y) = x_1 y_1 + x_2 y_2 - x_3 y_3$$

For
$$x, y \in \mathbb{H}^2$$
 have: $(x, y) = 2 \cosh d_{x,y}$

$$Q = (p, q, r),$$
mutation-cyclic
$$\begin{pmatrix} -2 & p & q \\ p & -2 & r \\ q & r & -2 \end{pmatrix} = (v_i, v_j)$$

For $x, y \in \mathbb{H}^2$ have: $(x, y) = 2 \cosh d_{x,y}$

$$Q = (p, q, r),$$
mutation-cyclic
$$\begin{pmatrix} -2 & p & q \\ p & -2 & r \\ q & r & -2 \end{pmatrix} = (v_i, v_j)$$

For $x, y \in \mathbb{H}^2$ have: $(x, y) = 2 \cosh d_{x,y}$

 $Q \longrightarrow \text{three points} \quad x,y,z \quad \text{ on distances} \quad \operatorname{arcosh} \frac{p}{2}, \ \operatorname{arcosh} \frac{q}{2}, \ \operatorname{arcosh} \frac{r}{2}.$

Why exist?

$$Q = (p, q, r),$$
mutation-cyclic
$$\begin{pmatrix} -2 & p & q \\ p & -2 & r \\ q & r & -2 \end{pmatrix} = (v_i, v_j)$$

For $x, y \in \mathbb{H}^2$ have: $(x, y) = 2 \cosh d_{x,y}$

 $Q \longrightarrow \text{three points} \quad x,y,z \quad \text{ on distances} \quad \operatorname{arcosh} \frac{p}{2}, \ \operatorname{arcosh} \frac{q}{2}, \ \operatorname{arcosh} \frac{r}{2}.$

Why exist?

Lemma. (Beineke, Brüstle, Hille) $Q \text{ mutation-cyclic } \Rightarrow p, q, r \geq 2.$

 $Q \longrightarrow \text{points} \quad x, y, z \in \mathbb{H}^2 \quad \text{on distances} \quad \operatorname{arcosh} \frac{p}{2}, \ \operatorname{arcosh} \frac{q}{2}, \ \operatorname{arcosh} \frac{r}{2}.$

 $Q \quad \leadsto \quad \text{points} \quad x,y,z \in \mathbb{H}^2 \quad \text{on distances} \quad \operatorname{arcosh} \frac{p}{2}, \ \operatorname{arcosh} \frac{q}{2}, \ \operatorname{arcosh} \frac{r}{2}.$

Mutation: "partial π -rotation".

 π -rotation $R_y(x) =$ "rotation of x around y by $\pi'' = -x - (x,y)y$

$$\mu_k(v_i) = \begin{cases} -v_i - (v_i, v_k)v_k, & \text{if } i \to k \text{ in } Q \\ v_i, & \text{otherwise} \end{cases}$$

 $Q \quad \leadsto \quad \text{points} \quad x,y,z \in \mathbb{H}^2 \quad \text{on distances} \quad \operatorname{arcosh} \frac{p}{2}, \ \operatorname{arcosh} \frac{q}{2}, \ \operatorname{arcosh} \frac{r}{2}.$

Mutation: "partial π -rotation".

 π -rotation $R_y(x) =$ "rotation of x around y by $\pi'' = -x - (x,y)y$

$$\mu_k(v_i) = \begin{cases} -v_i - (v_i, v_k)v_k, & \text{if } i \to k \text{ in } Q \\ v_i, & \text{otherwise} \end{cases}$$

Thm 1. If $v_1, v_2, v_3 \in \mathbb{H}^2$, then the values $2 \cosh d_{v_i, v_j}$ change under mutations in the same way as the weights of the arrows in Q, i.e.

$$r' + r = pq, 2\cosh d_{r'} + 2\cosh d_r = 2\cosh d_p \cdot 2\cosh d_q$$

2. Acyclic mutation classes via reflections

$$Q = (p, q, -r),$$
 acyclic
$$\begin{pmatrix} 2 & -p & -q \\ -p & 2 & -r \\ -q & -r & 2 \end{pmatrix} = (v_i, v_j)$$

$$\langle v_1, v_2, v_3 \rangle = \mathbb{H}^2, \mathbb{E}^2, \mathbb{S}^2 \text{ (proj model)} \qquad |(v_i, v_j)| = \begin{cases} 2 \cosh d_{ij}, & \text{if } v_i^{\perp} \cap v_j^{\perp} = \emptyset, \\ 2 \cos \alpha_{ij}, & \text{if } v_i^{\perp} \cap v_j^{\perp} \neq \emptyset, \end{cases}$$

Mutation: "partial reflection":
$$\mu_k(v_i) = \begin{cases} v_i - (v_i, v_k) v_k, & \text{if } i \to k \text{ in } Q \\ -v_k, & \text{if } i = k \\ v_i, & \text{otherwise} \end{cases}$$

Thm 2. (Barot, Geiss, Zelevinsky' 2006)
The values (v_i, v_j) change under mutations in the same way as the weights of the arrows in Q.

Thm 3. Every Q of rank 3 has a realization.

Thm 3. Every Q of rank 3 has a realization.

Idea of Pf:

- if Q is mut.-acyclic \rightarrow by <u>reflections</u> [Seven; Speyer-Thomas]

Thm 3. Every Q of rank 3 has a realization.

Idea of Pf:

```
- if Q is mut.-acyclic \to by <u>reflections</u> [Seven; Speyer-Thomas] - if Q is mut.-cyclic \Rightarrow p,q,r\geq 2\Rightarrow there are 3 pts in \mathbb{H}^2 iff d_p+d_q\geq d_r ...... what if...... d_p+d_q< d_r?
```

Thm 3. Every Q of rank 3 has a realization.

Idea of Pf:

- if Q is mut.-acyclic \rightarrow by <u>reflections</u> [Seven; Speyer-Thomas]

-if Q is mut.-cyclic $\Rightarrow p,q,r\geq 2 \Rightarrow$ there are 3 pts in \mathbb{H}^2 iff $d_p+d_q\geq d_r$ what if...... $d_p+d_q< d_r$?

Three lines in \mathbb{H}^2 : realization by <u>reflections!</u>

- Thm 1,2: "If Q has a geometric realization then it works for the whole mutation class"
- Thm 3. Every Q of rank 3 has a realization.

Thm 3'.

- 1. Q mut.-acyclic $\Rightarrow Q$ has realization by <u>reflections</u>.
- 2. Q mut.-cyclic $\Rightarrow Q$ has realization by π -rotations.
- 3. Q has both realizations \Leftrightarrow Q=(p,q,r) with $p,q,r\geq 2$ and $d_p+d_q=d_r$.

$$p, q, r \in \mathbb{R}.$$
 $(p, q, r) \to (p, q, pq - r).$

$$p, q, r \in \mathbb{R}.$$
 $(p, q, r) \to (p, q, pq - r).$

Def. A quiver is of finite mutation type if it is mutation equivalent to fin. many other quivers.

In integer case:

$$p, q, r \in \mathbb{R}.$$
 $(p, q, r) \to (p, q, pq - r).$

Thm 4. A real quiver Q, |Q|=3 is of finite mutation type if Q is mut.-equivalent to $Q'=(2\cos\pi t_1,2\cos\pi t_2,2\cos\pi t_3)$, where (t_1,t_2,t_3) is one of the following:

$$p, q, r \in \mathbb{R}.$$
 $(p, q, r) \to (p, q, pq - r).$

Thm 4. A real quiver Q, |Q|=3 is of finite mutation type if Q is mut.-equivalent to $Q'=(2\cos\pi t_1,2\cos\pi t_2,2\cos\pi t_3)$, where (t_1,t_2,t_3) is one of the following:

- \bullet (0,0,0);
- $(\frac{1}{n}, \frac{1}{n}, 0)$, where $n \in \mathbb{Z}_+$;
- $(\frac{1}{3}, \frac{1}{3}, \frac{1}{2})$, $(\frac{1}{3}, \frac{1}{4}, \frac{1}{2})$, $(\frac{1}{3}, \frac{1}{5}, \frac{1}{2})$, $(\frac{1}{5}, \frac{2}{5}, \frac{1}{2})$, $(\frac{1}{3}, \frac{2}{5}, \frac{1}{2})$.

$$p, q, r \in \mathbb{R}.$$
 $(p, q, r) \to (p, q, pq - r).$

Thm 4. A real quiver Q, |Q|=3 is of finite mutation type if Q is mut.-equivalent to $Q'=(2\cos\pi t_1,2\cos\pi t_2,2\cos\pi t_3)$, where (t_1,t_2,t_3) is one of the following:

 \bullet (0,0,0);

Markov quiver

- $(\frac{1}{n}, \frac{1}{n}, 0)$, where $n \in \mathbb{Z}_+$;
- $(\frac{1}{3}, \frac{1}{3}, \frac{1}{2})$, $(\frac{1}{3}, \frac{1}{4}, \frac{1}{2})$, $(\frac{1}{3}, \frac{1}{5}, \frac{1}{2})$, $(\frac{1}{5}, \frac{2}{5}, \frac{1}{2})$, $(\frac{1}{3}, \frac{2}{5}, \frac{1}{2})$. A_3 B_3 H_3

$$p, q, r \in \mathbb{R}.$$
 $(p, q, r) \to (p, q, pq - r).$

Thm 4. A real quiver Q, |Q|=3 is of finite mutation type if Q is mut.-equivalent to $Q'=(2\cos\pi t_1,2\cos\pi t_2,2\cos\pi t_3)$, where (t_1,t_2,t_3) is one of the following:

Markov quiver

- \bullet (0,0,0);
- $(\frac{1}{n}, \frac{1}{n}, 0)$, where $n \in \mathbb{Z}_+$;
- $(\frac{1}{3}, \frac{1}{3}, \frac{1}{2})$, $(\frac{1}{3}, \frac{1}{4}, \frac{1}{2})$, $(\frac{1}{3}, \frac{1}{5}, \frac{1}{2})$, $(\frac{1}{5}, \frac{2}{5}, \frac{1}{2})$, $(\frac{1}{3}, \frac{2}{5}, \frac{1}{2})$. A_3 B_3 H_3 $H_3^{(1)}$ $H_3^{(2)}$

Two finite type mutation classes:

	Acyclic	Cyclic
$H_3^{(1)}$	$(2\cos\frac{\pi}{5}, 2\cos\frac{2\pi}{5}, 0)$ $(1, 1, -2\cos\frac{2\pi}{5})$	$(2\cos\frac{2\pi}{5}, 2\cos\frac{2\pi}{5}, 1)$
$H_3^{(2)}$	$(2\cos\frac{\pi}{3}, 2\cos\frac{2\pi}{5}, 0)$ $(2\cos\frac{2\pi}{5}, 2\cos\frac{2\pi}{5}, -2\cos\frac{2\pi}{5})$	$(2\cos\frac{1\pi}{5}, 2\cos\frac{2\pi}{5}, 1)$ $(1, 1, 2\cos\frac{\pi}{5})$

Exchange graph for $H_3^{(1)}$:

4. Markov constant

Def. [Beineke, Brüstle, Hille]

For Q=(p,q,r), a $Markov\ constant$ is $C(Q)=p^2+q^2+r^2-pqr$.

4. Markov constant

Def. [Beineke, Brüstle, Hille]

For Q=(p,q,r), a $Markov\ constant$ is $C(Q)=p^2+q^2+r^2-pqr$.

- \bullet C(Q) is mutation-invariant;
- ullet C(Q) controls geometry of the realization:
 - if $p, q, r \geq 2$, triangle ineq. $\Leftrightarrow C(Q) \leq 4$;
 - if Q mut.-acyclic, $C(Q) < 4/=4/>4 \Leftrightarrow \text{refl. in } \mathbb{S}^2/\mathbb{E}^2/\mathbb{H}^2$.
 - if Q is mut.-cyclic, C(Q) controls geometry of $g=R_1\circ R_2\circ R_3$: $C(Q)<0/=0/>0 \Leftrightarrow g$ is hyperbolic/parabolic/elliptic.

4. Markov constant: $C(Q) = p^2 + q^2 + r^2 - pqr$.

4. Markov constant: $C(Q) = p^2 + q^2 + r^2 - pqr$.

THANKS!