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G is a group acting on a set X of cardinality > 1
usually assume G is faithful (or reduce to that case)

Definition 1

A base for Gon X is a subset B of X such that g € G trivial on
Bimplies g is trivial on X.

The base size is the minimal cardinality of a base.
If bis small, then so is G.

Note that if | X| = n, then |G| < b"
If X is a variety, then dim G < bdim X.

Moreover, computationally having a small base is very efficient.
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Based on results from several papers, we have:

If G is a finite simple group acting primitively on X, then either
the action is "standard" or b < 7.

There is one example of base size 7 but infinitely many of base
size 6 (coming from algebraic groups).

A relatively recent approach — instead of producing a base,
show most subsets of size b are a base. Used by

Cameron-Kantor to show the base size is 2 for G = S, with n
large and the action not standard.
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Related problem: We say G has a regular orbit on X if Gx = 1
for some x € X.

Note that G has base size b on X if and only if G has a regular
orbit on X,

Regular orbits come up in many situations — in particular in the
k(GV) problem of Brauer.

Ongoing program to determine the base size for G almost
simple acting primitively on X. Done in many cases by various
authors.

From now on, we will assume G is a simple algebraic group
and X is an irreducible variety. There is a close relation
between the base size for the algebraic group and the base
size for the finite simple groups of Lie type.

We say a generic stabilizer has a given property if this holds for
a nonempty open subset of the variety.



We consider two main cases:




We consider two main cases:
@ X = G/H where H is a maximal closed subgroup of G.



We consider two main cases:
@ X = G/H where H is a maximal closed subgroup of G.
© X s a (rational) irreducible finite dimensional G-module.



We consider two main cases:
@ X = G/H where H is a maximal closed subgroup of G.
© X s a (rational) irreducible finite dimensional G-module.



We consider two main cases:
@ X = G/H where H is a maximal closed subgroup of G.
© X s a (rational) irreducible finite dimensional G-module.

New invariants in addition to b; b° is the smallest size where
some (and so generic) stabilizer of b° points is finite
b' is the smallest size where the generic stabilizer is trivial

Clearly B° < b < b'.



We consider two main cases:
@ X = G/H where H is a maximal closed subgroup of G.
© X s a (rational) irreducible finite dimensional G-module.

New invariants in addition to b; b° is the smallest size where
some (and so generic) stabilizer of b° points is finite
b' is the smallest size where the generic stabilizer is trivial

Clearly B° < b < b'.

Burness-Guralnick-Sax| have determined in almost all cases in
case (1) b9, b, b'. Often they are all 2. We use the classification
of maximal closed subgroups.



We consider two main cases:
@ X = G/H where H is a maximal closed subgroup of G.
© X s a (rational) irreducible finite dimensional G-module.
New invariants in addition to b; b° is the smallest size where

some (and so generic) stabilizer of b° points is finite
b' is the smallest size where the generic stabilizer is trivial

Clearly B° < b < b'.

Burness-Guralnick-Sax| have determined in almost all cases in
case (1) b9, b, b'. Often they are all 2. We use the classification
of maximal closed subgroups.

Example: Assume characteristic not 2, 7 an involution inverting
a maximal torus T. H = Cg(7) and X = G/H. Then generically
the stabilizer of two points is conjugate to T[2] (2-torsion in T).

However, there always is a regular orbit on X2.

Thus, b = b° = 2 but b' = 3.



Now we come to linear actions.
In char 0, studied by A. M. Popov, Vinberg, V. Popov, etc.

Richardson: If G is reductive and X is a smooth affine variety in
characteristic 0, then generic stabilizers exist (i.e. there is an
open sub variety where all point stabilizers are conjugate). Fails
in positive characteristic.



Now we come to linear actions.
In char 0, studied by A. M. Popov, Vinberg, V. Popov, etc.

Richardson: If G is reductive and X is a smooth affine variety in
characteristic 0, then generic stabilizers exist (i.e. there is an
open sub variety where all point stabilizers are conjugate). Fails
in positive characteristic.

Burness-G-Liebeck-Testerman: most of the time, generic
stabilizers are trivial in all cases, generic stabilizers exist.



Another example (question of Reichstein) H is the normalizer of
atorus. X = G/H. Then b= b' = b® = 2 unless G = PGL; in
which case generically a stabilizer in X? has order 2



Another example (question of Reichstein) H is the normalizer of
atorus. X = G/H. Then b= b' = b® = 2 unless G = PGL; in
which case generically a stabilizer in X? has order 2

Main tool: try to show that for any g € G of prime order (or
unipotent in char 0), we have dim V9 + dim g% < dim V.



Another example (question of Reichstein) H is the normalizer of
atorus. X = G/H. Then b= b' = b® = 2 unless G = PGL; in
which case generically a stabilizer in X? has order 2

Main tool: try to show that for any g € G of prime order (or
unipotent in char 0), we have dim V9 + dim g% < dim V.

For some applications, you want to know that Gy is generically
trivial as a group scheme. This can be checked by considering
the Lie algebra of G.



Another example (question of Reichstein) H is the normalizer of
atorus. X = G/H. Then b= b' = b® = 2 unless G = PGL; in
which case generically a stabilizer in X? has order 2

Main tool: try to show that for any g € G of prime order (or
unipotent in char 0), we have dim V9 + dim g% < dim V.

For some applications, you want to know that Gy is generically
trivial as a group scheme. This can be checked by considering
the Lie algebra of G.

BGLT: if dim V > dim G, then Gy is generically finite.



Another example (question of Reichstein) H is the normalizer of
atorus. X = G/H. Then b= b' = b® = 2 unless G = PGL; in
which case generically a stabilizer in X? has order 2

Main tool: try to show that for any g € G of prime order (or
unipotent in char 0), we have dim V9 + dim g% < dim V.

For some applications, you want to know that Gy is generically
trivial as a group scheme. This can be checked by considering
the Lie algebra of G.

BGLT: if dim V > dim G, then Gy is generically finite.

BGLT and Garibaldi-G show that usually if dimV > dim G, then
the generic stabilizer is trivial as a group scheme.
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symmetric square. A generic stabilizer is SO, and so a generic
stabilizer in SO, on L(2)\1) is the intersection of SO, with a
generic conjugate in SL, — note that SO, is the centralizer of an
involution inverting a maximal torus. So a generic stabilizer is
the 2-torsion in a maximal torus.
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In characteristic 0, if the generic stabilizer is finite, then there is
a regular orbit (usually unique).

In positive characteristic, this is usually true. Two
counterexamples:
@ G = SL, in characteristic 3 and dim V = 20;

Q@ G=SlL,and V=L L@ or L* ® L@ where L is the
natural module and L(9 is the Frobenius twist.

A result noted in Claborn, Kirwan, Mumford: C[V]€ is free if and
only if the generic stabilizer is not trivial (proof is by comparing
lists).
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Next we give an example about essential dimension.
Quoting Reichstein: "Informally speaking, the essential
dimension of an algebraic object is the minimal number of
independent parameters one needs to describe it. "

If G is a simple group of adjoint type of rank at least 2, then the
essential dimension of G is at mostdim G — 2rankG — 1.

1. This was proved by Lemire in characteristic 0.

2. Without the —1 proved by Burness-G-Saxl (following a
Reichstein suggestion).

3. As stated a result of Garibaldi-G (using BGS).



It turns out for most simple algebraic groups over an
algebraically closed field, the essential dimension is bounded
above by dim G. The exception comes out of a beautiful result
of Brosnan-Reichstein-Vistoli who give exponential lower
bounds for Spin and Half Spin groups (in characteristic not 2)
and essentially show in characteristic 0, the lower bounds are
the right answer (for n > 15).



It turns out for most simple algebraic groups over an
algebraically closed field, the essential dimension is bounded
above by dim G. The exception comes out of a beautiful result
of Brosnan-Reichstein-Vistoli who give exponential lower
bounds for Spin and Half Spin groups (in characteristic not 2)
and essentially show in characteristic 0, the lower bounds are
the right answer (for n > 15).

In positive odd characteristic, this is also true. It follows from
GG that for 15 < n # 16, the half spin or spin groups act
generically freely on the half spin or spin modules. This uses
the inequality ed(G) < dim X — dim G where G acts generically
freely on the variety X and the action is verbal (any linear
module is verbal).

This gives an upper bound which equals the lower bound of
BRV.
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Let H be a simple algebraic group with V an irreducible
module. Suppose that H < G < SL(V). Then with a small
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Another application of generic stabilizers: stabilizers of
homogeneous polynomials.

Theorem 4

Let H be a simple algebraic group with V an irreducible
module. Suppose that H < G < SL(V). Then with a small
number of exceptions, k|V]¢ has smaller transcendency
degree than k[V]".




Another application of generic stabilizers: stabilizers of
homogeneous polynomials.

Theorem 4

Let H be a simple algebraic group with V an irreducible
module. Suppose that H < G < SL(V). Then with a small
number of exceptions, k|V]¢ has smaller transcendency
degree than k[V]".

This implies that for almost all f € k[V]", H is the connected
component of the stabilizer in GL(V) of f.

A very special case is a 125 year old question of Cartan (new
even over C).

Let f be the degree 8 invariant of Eg(k) acting on its Lie
algebra. Then the stabilizer in GL(V) of fis just ug x Eg(k).



