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How I like to think about this

η312 : {permutations} → {planar binary trees}.
• Lattice homomorphism from weak order to Tamari lattice.
• Fibers (preimages of trees) define a lattice congruence Θ312.
• In particular, fibers are intervals.
• The bottom elements are the 312-avoiding permutations.
• Fibers are counted by the Catalan numbers.
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Fibers of x 7→ (η312(x), η231(x)) are a congruence Θ312 ∧Θ231.
(meet of congruences = meet of set partitions)

Classes of Θ312 ∧Θ231 are counted by the Baxter numbers.

This is not what the talk is about.
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Twin binary trees in a broader context

Given a Coxeter group W and an orientation c of the Coxeter
diagram, construct the c-Cambrian congruence Θc on the weak
order on W .

• congruence classes counted by the Catalan number.
• W /Θc is the c-Cambrian lattice.

Define the c-biCambrian congruence to be Θc ∧Θc−1 .
(c−1 is the opposite orientation.)
In general, the number of classes of Θc ∧Θc−1 depends on the
choice of c .
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Given a Coxeter group W and an orientation c of the Coxeter
diagram, construct the c-Cambrian congruence Θc on the weak
order on W .

• congruence classes counted by the Catalan number.
• W /Θc is the c-Cambrian lattice.

Define the c-biCambrian congruence to be Θc ∧Θc−1 .
(c−1 is the opposite orientation.)
In general, the number of classes of Θc ∧Θc−1 depends on the
choice of c .

Example: Type An

c =

c−1 =

Congruence classes of Θc ∧Θc−1 are counted by the Baxter
number. (For other type-A cases, see Châtel-Pilaud 2014.)
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Bipartite biCambrian congruences

Some Coxeter diagrams are not paths. (No “linear” orientation!)
But there is a way to uniformly choose an orientation, because
every Coxeter diagram is bipartite.

Question: How many congruence classes in Θc ∧Θc−1 , for c
bipartite?
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Bipartite biCambrian congruences

Some Coxeter diagrams are not paths. (No “linear” orientation!)
But there is a way to uniformly choose an orientation, because
every Coxeter diagram is bipartite.

Question: How many congruence classes in Θc ∧Θc−1 , for c
bipartite?

Is this a good question?

Theorem (Barnard 2014, in Barnard-R. 2016).
The bipartite biCambrian congruence has

(

2n
n

)

classes in type An

and 22n−1 classes in type Bn.
1. Motivation and main result 4
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We start thinking about
(

2n
n

)

Lattice paths from (0, 0) to (n, n)

Antichains in this poset (n = 5)

Hmm...

1. Motivation and main result 5



Wishful speculation

Definition. The doubled root poset is two copies of the root
poset—one upside-down—identified at the simple roots.
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Wishful speculation

Definition. The doubled root poset is two copies of the root
poset—one upside-down—identified at the simple roots.

Question:

# antichains in the doubled root poset

?
=

# classes in the bipartite biCambrian congruence?

Of course not...Type B works...Computer checks...Rank 4...5...6...7...8...

1. Motivation and main result 6



Coxeter-biCatalan combinatorics

Theorem (Barnard-R. 2015)

# antichains in the doubled root poset

=

# classes in the bipartite biCambrian congruence
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Theorem (Barnard-R. 2015)

# antichains in the doubled root poset

=

# classes in the bipartite biCambrian congruence

The Coxeter-biCatalan numbers:

W An Bn Dn

biCat(W )
(2n
n

)

22n−1 6 · 4n−2 − 2
(2n−4
n−2

)

E6 E7 E8 F4 H3 H4 I2(m)

1700 8872 54066 196 56 550 2m
.
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Coxeter-biCatalan combinatorics

Theorem (Barnard-R. 2015)

# antichains in the doubled root poset

=

# classes in the bipartite biCambrian congruence

The Coxeter-biCatalan numbers:

W An Bn Dn

biCat(W )
(2n
n

)

22n−1 6 · 4n−2 − 2
(2n−4
n−2

)

E6 E7 E8 F4 H3 H4 I2(m)

1700 8872 54066 196 56 550 2m
.

Formula:
∏n

i=1
h+ei−1

ei
. Only works for An, Bn, H3, I2(m)

2. Coxeter-biCatalan combinatorics 7



Coxeter-biCatalan combinatorics (continued)

Ordinary Coxeter-Catalan combinatorics features, among other
things:

• Noncrossing partitions,
• Nonnesting partitions (antichains in the root poset),
• clusters of almost pos. roots (e.g. ∆-ations of a polygon),
• sortable elements.

In the Coxeter-biCatalan world, there are
• twin noncrossing partitions,
• twin nonnesting partitions (antichains in the doubled root

poset),• twin clusters,
• twin sortable elements,
• bisortable elements.

2. Coxeter-biCatalan combinatorics 8



Plan for the rest of the talk

• Details of the definitions

• Example

• If time allows, some idea of the proof.
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Plan for the rest of the talk

• Details of the definitions

• Example

• If time allows, some idea of the proof.

In case time does not allow, a few brief comments on the proof:

• The Coxeter-biCatalan result depends on the analogous
Coxeter-Catalan result, but not in a trivial way.

• Emily Barnard proved the type-A (and B) case in a way that
provided a lot of insight and showed the way to a general proof.
(Typically, type A proofs may not be so helpful for general-type
proofs.)

2. Coxeter-biCatalan combinatorics 9



Orienting rank-two parabolics

Given a Coxeter group W and an orientation c of the Coxeter
diagram, we first orient each rank-two parabolic root subsystem.
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Given a Coxeter group W and an orientation c of the Coxeter
diagram, we first orient each rank-two parabolic root subsystem.

What is a rank-two parabolic root subsystem? Intersect the root
system with a plane (and get a subset that spans the plane).

For the symmetric group Sn, roots are ei − ej for i 6= j . Rank-two
parabolic root subsystems are {±(ei − ej ),±(ei − ek),±(ej − ek)}
for i < j < k ..
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Orienting rank-two parabolics

Given a Coxeter group W and an orientation c of the Coxeter
diagram, we first orient each rank-two parabolic root subsystem.

What is a rank-two parabolic root subsystem? Intersect the root
system with a plane (and get a subset that spans the plane).

For the symmetric group Sn, roots are ei − ej for i 6= j . Rank-two
parabolic root subsystems are {±(ei − ej ),±(ei − ek),±(ej − ek)}
for i < j < k ..

To orient them, we define a skew-symmetric bilinear form ωc . On
simple roots, this is the usual symmetric bilinear form, but with a
sign coming from c .
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Orienting rank-two parabolics

Given a Coxeter group W and an orientation c of the Coxeter
diagram, we first orient each rank-two parabolic root subsystem.

What is a rank-two parabolic root subsystem? Intersect the root
system with a plane (and get a subset that spans the plane).

For the symmetric group Sn, roots are ei − ej for i 6= j . Rank-two
parabolic root subsystems are {±(ei − ej ),±(ei − ek),±(ej − ek)}
for i < j < k ..

To orient them, we define a skew-symmetric bilinear form ωc . On
simple roots, this is the usual symmetric bilinear form, but with a
sign coming from c .

In the symmetric group, for i < j < k we orient either
ei − ej → ei − ek → ej − ek or ei − ej ← ei − ek ← ej − ek
depending on the sign of ωc(ei − ej , ej − ek).

In fact, this depends only on whether c has sj−1 → sj or sj−1 ← sj .
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c-aligned elements

For each rank-two parabolic root subsystem, the inversion set of
w ∈W is “built up from one side or the other.”

[insert hand-waving here]

An element w ∈W is c-aligned if, for every rank-two parabolic
root subsystem, the inversion set of w is built up in the direction
given by the orientation of the rank-two parabolic root subsystem.
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An element w ∈W is c-aligned if, for every rank-two parabolic
root subsystem, the inversion set of w is built up in the direction
given by the orientation of the rank-two parabolic root subsystem.

In the symmetric group Sn:

Choosing an orientation c corresponds to choosing a barring of
each i ∈ {2, . . . , n − 1} as:

i “upper barred” sj−1 ← sj , or
i “lower barred” sj−1 → sj .
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c-aligned elements

For each rank-two parabolic root subsystem, the inversion set of
w ∈W is “built up from one side or the other.”

[insert hand-waving here]

An element w ∈W is c-aligned if, for every rank-two parabolic
root subsystem, the inversion set of w is built up in the direction
given by the orientation of the rank-two parabolic root subsystem.

In the symmetric group Sn:

Choosing an orientation c corresponds to choosing a barring of
each i ∈ {2, . . . , n − 1} as:

i “upper barred” sj−1 ← sj , or
i “lower barred” sj−1 → sj .

A permutation is c-aligned if it avoids the patterns 312 and 231.

Linear orientations: 312-avoiding or 231-avoiding permutations.
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Cambrian congruences

Weak order: Containment order on inversion sets.

For the symmetric group, you go down by a cover by undoing an
inversion involving adjacent entries. For example 25341 ·> 23541.

Fact (nontrivial): Fix c . For each w ∈W , there exists a unique
(weak order) maximal c-aligned element πc

↓(w) below w .

The c-Cambrian congruence Θc sets v ≡ w iff πc
↓(v) = πc

↓(w).

The bottom elements of Θc are the c-aligned elements.
(These coincide with the c-sortable elements.)

3. Details on the definition 12



Root poset

Partial order on the positive roots with α ≤ β if and only if β − α
is in the nonnegative span of the simple roots.

Example:

S6 B3 D4
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Root poset

Partial order on the positive roots with α ≤ β if and only if β − α
is in the nonnegative span of the simple roots.

Example:

S6 B3 D4

For fixed c ,

# c-aligned elements = # Θc -classes

= # antichains in the root poset

• This number is the W -Catalan number.
• First equality: by definition.
• Second: central mystery of Coxeter-Catalan combinatorics.
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Doubled root poset and biCambrian congruences

Definition. The doubled root poset is two copies of the root
poset—one upside-down—identified at the simple roots.
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Definition. The c-biCambrian congruence is Θc ∧Θc−1 .
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Doubled root poset and biCambrian congruences

Definition. The doubled root poset is two copies of the root
poset—one upside-down—identified at the simple roots.

Definition. The c-biCambrian congruence is Θc ∧Θc−1 .

Theorem (Barnard-R. 2015)

# antichains in the doubled root poset

=

# classes in the bipartite biCambrian congruence
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Example: W = S4 (type A3)

1234

2134 1324 1243

2314 3124 2143 1342 1423

2341 3214 3142 2413 1432 4123

3241 2431 3412 4213 4132

3421 4231 4312

4321

1234

2134 1324 1243

2314 3124 2143 1342 1423

2341 3214 3142 2413 1432 4123

3241 2431 3412 4213 4132

3421 4231 4312

4321
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Cambrian congruence

classes in gray
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(6
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= 20 antichains
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Proof idea: Double-positive Catalan numbers

Proposition. The number of antichains in the root poset for W
with full support is

Cat+(W ) =
∑

J⊆S

(−1)|S|−|J| Cat(WJ). (1)

Proposition. The number of antichains in the root poset for W
with full support containing no simple roots is

Cat++(W ) =
∑

J⊆S

(−1)|S|−|J| Cat+(WJ). (2)

Theorem. For any finite Coxeter group W with simple generators
S , the number of antichains in the doubled root poset is

∑

2|S\(I∪J)| Cat++(WI ) Cat
++(WJ),

where the sum is over all ordered pairs (I , J) of pairwise disjoint

subsets of S .
4. Idea of the proof 16



Proof idea: Double-positive Catalan numbers (continued)

Definition. The bottom elements of the c-biCambrian congruence
classes are called c-bisortable elements.

The proof concludes by showing that for bipartite c only, the
c-bisortable elements are also counted by

∑

2|S\(I∪J)| Cat++(WI ) Cat
++(WJ),

This involves fun lattice theory like canonical join representations.

It also involves the combinatorics of c-sortable and c−1-sortable
elements.
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Bipartite biCambrian fans
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Bipartite biCambrian fans

Polytopal. (Minkowski

sum of associahedra)
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Bipartite biCambrian fans

Polytopal. (Minkowski

sum of associahedra)

Simplicial?

Theorem (Barnard-R.).

Yes for A and B.
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Thanks for listening.
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