Factorisations of a group element, Hurwitz action and shellability

Vivien Ripoll

Universität Wien, Austria

Algebraic Combinatorics and Group Actions Herstmonceux Castle, UK July 13th, 2016

joint work with Henri Mühle (École Polytechnique, France)

Outline

- Framework and example: generated group, Hurwitz action on factorisations, shellability
- 2 Motivations: noncrossing partition lattices of reflection groups
- Some results and a conjecture: compatible order on the generators, Hurwitz-transitivity, shellability

Outline

- Framework and example: generated group, Hurwitz action on factorisations, shellability
- Motivations: noncrossing partition lattices of reflection groups
- 3 Some results and a conjecture: compatible order on the generators, Hurwitz-transitivity, shellability

Generated group and reduced decompositions

- \bullet (G,A) generated group
- $A \subseteq G$ generates G as a monoid
- Let $g \in G$. Write $g = a_1 a_2 \dots a_n$, with $a_i \in A$. Length of $g: \ell_A(g) :=$ minimal such n.

Reduced decompositions of g

$$\operatorname{Red}_A(g) := \{(a_1, \ldots, a_n) \mid a_i \in A, g = a_1 \ldots a_n\}, \quad \text{where } n = \ell_A(g).$$

Example.
$$G = S_4$$
 $A = T := \{\text{all transpositions } (i \ j)\}.$ $g = (1 \ 2 \ 3 \ 4)$ $\ell_T(g) = 3$ Reduced decompositions of g : $g = (12)(23)(34) = (23)(13)(34) = (13)(12)(34) = (13)(34)(12) = (14)(13)(12) = (34)(14)(12) = (34)(12)(24) = (34)(24)(14) = (24)(23)(14) = (23)(34)(14) = (23)(14)(13) = (12)(34)(24) = (12)(24)(23) = (24)(14)(23) = (14)(12)(23) = (14)(23)(13)$

Generated group and reduced decompositions

- \bullet (G,A) generated group
- $A \subseteq G$ generates G as a monoid
- Let $g \in G$. Write $g = a_1 a_2 \dots a_n$, with $a_i \in A$. Length of $g: \ell_A(g) :=$ minimal such n.

Reduced decompositions of g

$$\operatorname{\mathsf{Red}}_{A}(g) := \{(a_1,\ldots,a_n) \mid a_i \in A, g = a_1\ldots a_n\}, \quad \text{where } n = \ell_A(g).$$

Example.
$$G = S_4$$
 $A = T := \{\text{all transpositions } (i \ j)\}.$
 $g = (1 \ 2 \ 3 \ 4)$ $\ell_T(g) = 3$ Reduced decompositions of g :
 $g = (12)(23)(34) = (23)(13)(34) = (13)(12)(34) = (13)(34)(12)$
 $= (14)(13)(12) = (34)(14)(12) = (34)(12)(24) = (34)(24)(14)$
 $= (24)(23)(14) = (23)(34)(14) = (23)(14)(13) = (12)(34)(24)$
 $= (12)(24)(23) = (24)(14)(23) = (14)(12)(23) = (14)(23)(13)$

Generated group and reduced decompositions

- (G, A) generated group
- $A \subseteq G$ generates G as a monoid
- Let $g \in G$. Write $g = a_1 a_2 \dots a_n$, with $a_i \in A$. Length of $g: \ell_A(g) :=$ minimal such n.

Reduced decompositions of g

$$\operatorname{\mathsf{Red}}_A(g) := \{(a_1,\ldots,a_n) \mid a_i \in A, g = a_1\ldots a_n\}, \quad \text{where } n = \ell_A(g).$$

Example.
$$G = S_4$$
 $A = T := \{\text{all transpositions } (i \ j)\}.$

$$g = (1\ 2\ 3\ 4)$$
 $\ell_T(g) = 3$ Reduced decompositions of g :

$$g = (12)(23)(34) = (23)(13)(34) = (13)(12)(34) = (13)(34)(12)$$

= $(14)(13)(12) = (34)(14)(12) = (34)(12)(24) = (34)(24)(14)$
= $(24)(23)(14) = (23)(34)(14) = (23)(14)(13) = (12)(34)(24)$
= $(12)(24)(23) = (24)(14)(23) = (14)(12)(23) = (14)(23)(13)$

Hurwitz moves

Fix $g \in G$. Take $(a_1, \ldots, a_n) \in \text{Red}_A(g)$. For $1 \le i \le n-1$ define:

$$\begin{array}{llll} \sigma_{i} \cdot & (a_{1}, \ldots, a_{i-1}, & a_{i} & , & a_{i+1} & , a_{i+2}, \ldots, a_{n}) \\ & = & (a_{1}, \ldots, a_{i-1}, & a_{i}a_{i+1}a_{i}^{-1} & , & a_{i} & , a_{i+2}, \ldots, a_{n}) \end{array}$$

Assumption: For any $(a_1, \ldots, a_n) \in \text{Red}_A(g)$ and any $1 \le i \le n-1$, $a_i a_{i+1} a_i^{-1}$ and $a_{i+1}^{-1} a_i a_{i+1} \in A$. (e.g., A stable by conjugacy)

This defines an action on $Red_A(g)$ by the braid group B_n [Hurwitz action]

$$B_n = \langle \sigma_1, \dots, \sigma_{n-1} \mid \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \ \sigma_i \sigma_j = \sigma_j \sigma_i \text{ if } |i-j| > 1 \rangle_{grp}$$

Hurwitz moves

Fix $g \in G$. Take $(a_1, \ldots, a_n) \in \text{Red}_A(g)$. For $1 \le i \le n-1$ define:

$$\begin{array}{lll}
\sigma_{i} \cdot & (a_{1}, \ldots, a_{i-1}, & a_{i} & , & a_{i+1} & , a_{i+2}, \ldots, a_{n}) \\
&= & (a_{1}, \ldots, a_{i-1}, & a_{i}a_{i+1}a_{i}^{-1} & , & a_{i} & , a_{i+2}, \ldots, a_{n})
\end{array}$$

Assumption: For any $(a_1, \ldots, a_n) \in \text{Red}_A(g)$ and any $1 \le i \le n-1$, $a_i a_{i+1} a_i^{-1}$ and $a_{i+1}^{-1} a_i a_{i+1} \in A$. (e.g., A stable by conjugacy)

This defines an action on $\operatorname{Red}_A(g)$ by the braid group B_n [Hurwitz action]

$$B_n = \langle \sigma_1, \dots, \sigma_{n-1} \mid \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \ \sigma_i \sigma_j = \sigma_j \sigma_i \text{ if } |i-j| > 1 \rangle_{grp}$$

Hurwitz moves

Fix $g \in G$. Take $(a_1, \ldots, a_n) \in \text{Red}_A(g)$. For $1 \le i \le n-1$ define:

$$\begin{array}{lll}
\sigma_{i} \cdot & (a_{1}, \ldots, a_{i-1}, & a_{i} & , & a_{i+1} & , a_{i+2}, \ldots, a_{n}) \\
&= & (a_{1}, \ldots, a_{i-1}, & a_{i}a_{i+1}a_{i}^{-1} & , & a_{i} & , a_{i+2}, \ldots, a_{n})
\end{array}$$

Assumption: For any $(a_1, \ldots, a_n) \in \text{Red}_A(g)$ and any $1 \le i \le n-1$, $a_i a_{i+1} a_i^{-1}$ and $a_{i+1}^{-1} a_i a_{i+1} \in A$. (e.g., A stable by conjugacy)

This defines an action on $Red_A(g)$ by the braid group B_n [Hurwitz action].

$$B_n = \langle \sigma_1, \dots, \sigma_{n-1} \mid \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \ \sigma_i \sigma_j = \sigma_j \sigma_i \ \text{if} \ |i-j| > 1 \rangle_{\mathsf{grp}}$$

Hurwitz moves

Fix $g \in G$. Take $(a_1, \ldots, a_n) \in \text{Red}_A(g)$. For $1 \le i \le n-1$ define:

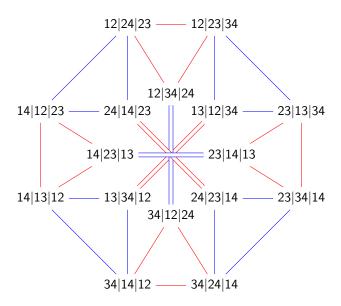
$$\begin{array}{lll}
\sigma_{i} \cdot & (a_{1}, \ldots, a_{i-1}, & a_{i} & , & a_{i+1} & , a_{i+2}, \ldots, a_{n}) \\
&= & (a_{1}, \ldots, a_{i-1}, & a_{i}a_{i+1}a_{i}^{-1} & , & a_{i} & , a_{i+2}, \ldots, a_{n})
\end{array}$$

Assumption: For any $(a_1, \ldots, a_n) \in \text{Red}_A(g)$ and any $1 \le i \le n-1$, $a_i a_{i+1} a_i^{-1}$ and $a_{i+1}^{-1} a_i a_{i+1} \in A$. (e.g., A stable by conjugacy)

This defines an action on $Red_A(g)$ by the braid group B_n [Hurwitz action].

$$B_n = \left\langle \sigma_1, \dots, \sigma_{n-1} \mid \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \ \sigma_i \sigma_j = \sigma_j \sigma_i \text{ if } |i-j| > 1 \right\rangle_{\mathsf{grp}}$$

Example: Hurwitz graph of Red_T ((1 2 3 4))



The prefix poset

Prefix order

Equip G with a partial order \leq_A :

$$x \leq_A y \Leftrightarrow x$$
 is a **prefix** of a reduced decomposition of $y \Leftrightarrow \ell_A(x) + \ell_A(x^{-1}y) = \ell_A(y)$

Prefix poset of g

$$[e,g]_A := \{x \in G \mid x \leq_A g\}$$

- $[e,g]_A$ is a graded poset (by ℓ_A)
- maximal chains in $[e,g]_A \longleftrightarrow$ geodesics from e to g in the Cayley graph of $(G,A) \longleftrightarrow$ reduced decompositions of g
- for $x, y \in [e, g]_A$: $x \leq_A y$ if and only if a reduced decomposition of x is a **subword** of a reduced decomposition of y. [by assumption on conjugacy-stability]

The prefix poset

Prefix order

Equip G with a partial order \leq_A :

$$x \leq_A y \Leftrightarrow x$$
 is a **prefix** of a reduced decomposition of $y \Leftrightarrow \ell_A(x) + \ell_A(x^{-1}y) = \ell_A(y)$

Prefix poset of g

$$[e,g]_A := \{x \in G \mid x \leq_A g\}$$

- $[e,g]_A$ is a graded poset (by ℓ_A)
- maximal chains in $[e,g]_A \longleftrightarrow$ geodesics from e to g in the Cayley graph of $(G,A) \longleftrightarrow$ reduced decompositions of g
- for $x, y \in [e, g]_A$: $x \leq_A y$ if and only if a reduced decomposition of x is a **subword** of a reduced decomposition of y. [by assumption on conjugacy-stability]

The prefix poset

Prefix order

Equip G with a partial order \leq_A :

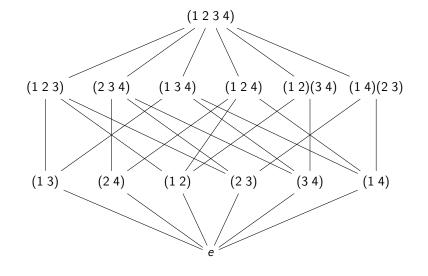
$$x \leq_A y \Leftrightarrow x$$
 is a **prefix** of a reduced decomposition of $y \Leftrightarrow \ell_A(x) + \ell_A(x^{-1}y) = \ell_A(y)$

Prefix poset of *g*

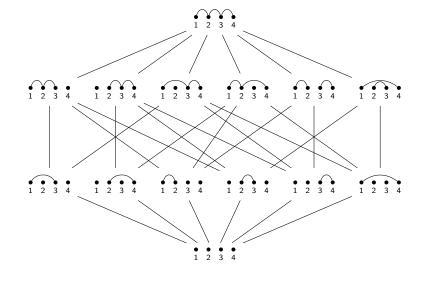
$$[e,g]_A := \{x \in G \mid x \leq_A g\}$$

- $[e,g]_A$ is a graded poset (by ℓ_A)
- maximal chains in $[e,g]_A \longleftrightarrow$ geodesics from e to g in the Cayley graph of $(G,A) \longleftrightarrow$ reduced decompositions of g
- for $x, y \in [e, g]_A$: $x \leq_A y$ if and only if a reduced decomposition of x is a **subword** of a reduced decomposition of y. [by assumption on conjugacy-stability]

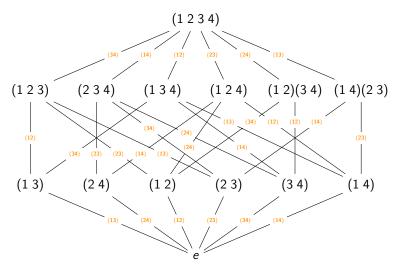
Example: $[e, (1 2 3 4)]_T$ in (S_4, T)



$[e, (1\ 2\ 3\ 4)]_T$ in $(S_4, T) \simeq \text{Noncrossing partitions}$



Example: $[e, (1 \ 2 \ 3 \ 4)]_T$ in (S_4, T)



Notes: {maximal chains of
$$[e,g]_A$$
} \longleftrightarrow Red_A (g)
 $\forall x \leq_A y, [x,y]_A \simeq [e,x^{-1}y]_A$

Definition

A graded poset P is EL-shellable if there exists a labelling of the edges (by a totally ordered set) such that for any interval $I \subseteq P$:

- there is a unique increasingly labelled maximal chain of I
- this is the lexicographically smallest among all maximal chains.

P EL-shellable \Rightarrow P shellable [Björner-Wachs] \Rightarrow nice topology: the order complex is homotopy-equivalent to a wedge of spheres, ...

Definition

A graded poset P is EL-shellable if there exists a labelling of the edges (by a totally ordered set) such that for any interval $I \subseteq P$:

- there is a unique increasingly labelled maximal chain of I
- this is the lexicographically smallest among all maximal chains.

P EL-shellable $\Rightarrow P$ shellable [Björner-Wachs]

 \Rightarrow nice topology: the order complex is homotopy-equivalent to a wedge of spheres, \dots

Definition

A graded poset P is EL-shellable if there exists a labelling of the edges (by a totally ordered set) such that for any interval $I \subseteq P$:

- there is a unique increasingly labelled maximal chain of I
- this is the lexicographically smallest among all maximal chains.

P EL-shellable $\Rightarrow P$ shellable [Björner-Wachs]

 \Rightarrow nice topology: the order complex is homotopy-equivalent to a wedge of spheres, \dots

Definition (Read at your own risk)

A graded poset P is shellable if its order complex is shellable, i.e.: there is a total order on the maximal chains $C_1 \prec \cdots \prec C_r$ such that $\forall i < j, \ \exists k < j \ \text{with} \ C_i \cap C_j \subseteq C_k \cap C_j$, and the chains C_k and C_j differ by only one element.

Definition

A graded poset P is EL-shellable if there exists a labelling of the edges (by a totally ordered set) such that for any interval $I \subseteq P$:

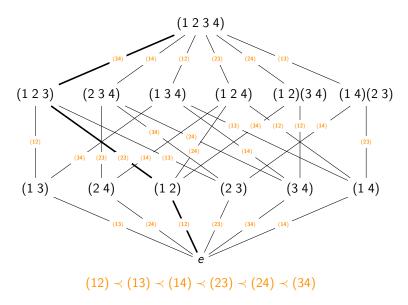
- there is a unique increasingly labelled maximal chain of I
- this is the lexicographically smallest among all maximal chains.

P EL-shellable $\Rightarrow P$ shellable [Björner-Wachs]

 \Rightarrow nice topology: the order complex is homotopy-equivalent to a wedge of spheres, \dots

 \sim **General question 2 :** Is $[e,g]_A$ EL-shellable?

Example: $[e, (1 \ 2 \ 3 \ 4)]_T$ in (S_4, T)



Outline

- Framework and example: generated group, Hurwitz action on factorisations, shellability
- 2 Motivations: noncrossing partition lattices of reflection groups
- Some results and a conjecture: compatible order on the generators, Hurwitz-transitivity, shellability

Motivation

- ullet W : finite Coxeter group, or well-generated complex reflection group
- T : set of all reflections of W
- c : Coxeter element of W
- W-noncrossing partitions: interval $[e,c]_T$ in (W,\leq_T) $\sim NC_W(c)$

Motivation

- ullet W: finite Coxeter group, or well-generated complex reflection group
- T : set of all reflections of W
- c : Coxeter element of W
- W-noncrossing partitions: interval $[e,c]_{\mathcal{T}}$ in $(W,\leq_{\mathcal{T}})$ \sim NC $_W(c)$

Theorem (Deligne, 1974; Bessis-Corran, 2006; Bessis, 2006)

For any well-generated complex reflection group W, and any Coxeter element $c \in W$, the braid group $B_{\ell_T(c)}$ acts transitively on $Red_T(c)$.

- Uniform proof only for Coxeter groups
- Crucial property used to construct a nice presentation of W, via its braid group and its dual braid monoid [Bessis]

Motivation

- ullet W: finite Coxeter group, or well-generated complex reflection group
- T : set of all reflections of W
- c : Coxeter element of W
- W-noncrossing partitions: interval $[e,c]_T$ in (W,\leq_T) \sim NC $_W(c)$

```
Theorem (Björner-Edelman, 1980; Reiner, 1997; Athanasiadis-Brady-Watt, 2007; Mühle, 2015)
```

For any well-generated complex reflection group W, and any Coxeter element $c \in W$, the poset $NC_W(c)$ is shellable.

Uniform proof only for Coxeter groups [ABW]

The Goal

- present a general framework to relate
 - ► transitivity of the Hurwitz action on $Red_A(g)$ (General Question 1) ► shellability of $[e, g]_A$ (General Question 2)
- help answering these questions by checking "simple" local criteria
- apply this to interesting examples

Outline

- Framework and example: generated group, Hurwitz action on factorisations, shellability
- 2 Motivations: noncrossing partition lattices of reflection groups
- Some results and a conjecture: compatible order on the generators, Hurwitz-transitivity, shellability

Chain-connectedness

Definition

P graded poset. Define the chain graph of P to be the graph with vertices the maximal chains of P, and C connected to C' whenever they differ by only one element.

Say *P* is chain-connected if the chain graph is connected.

Observations

- ullet P shellable $\Rightarrow P$ chain-connected
- Hurwitz-transitivity on $\operatorname{Red}_A(g) \Rightarrow [e,g]_A$ chain-connected

Proposition

Assume

- $[e,g]_A$ is chain-connected; and
- for all $x \in [e, g]_A$, with $\ell_A(x) = 2$, the Hurwitz action of B_2 on $Red_A(x)$ is transitive (local Hurwitz transitivity)

Then the Hurwitz action is transitive on $Red_A(g)$

Chain-connectedness

Definition

P graded poset. Define the chain graph of P to be the graph with vertices the maximal chains of P, and C connected to C' whenever they differ by only one element.

Say P is chain-connected if the chain graph is connected.

Observations:

- P shellable ⇒ P chain-connected
- ullet Hurwitz-transitivity on $\operatorname{Red}_A(g) \Rightarrow [e,g]_A$ chain-connected

Proposition

Assume

- $[e,g]_A$ is chain-connected; and
- for all $x \in [e, g]_A$, with $\ell_A(x) = 2$, the Hurwitz action of B_2 on $Red_A(x)$ is transitive (local Hurwitz transitivity)

Then the Hurwitz action is transitive on $Red_A(g)$

Chain-connectedness

Definition

P graded poset. Define the chain graph of P to be the graph with vertices the maximal chains of P, and C connected to C' whenever they differ by only one element.

Say P is chain-connected if the chain graph is connected.

Observations:

- P shellable ⇒ P chain-connected
- ullet Hurwitz-transitivity on $\operatorname{\mathsf{Red}}_{A}(g) \Rightarrow [e,g]_{A}$ chain-connected

Proposition

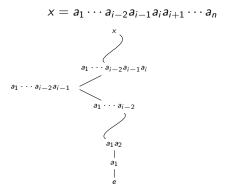
Assume

- $[e,g]_A$ is chain-connected; and
- for all $x \in [e, g]_A$, with $\ell_A(x) = 2$, the Hurwitz action of B_2 on $Red_A(x)$ is transitive (local Hurwitz transitivity)

Then the Hurwitz action is transitive on $Red_A(g)$.

Hurwitz action on the maximal chains

Hurwitz action corresponds to "taking detours"



Hurwitz action on the maximal chains

Hurwitz action corresponds to "taking detours"

$$x = a_{1} \cdots a_{i-2} a_{i} (a_{i}^{-1} a_{i-1} a_{i}) a_{i+1} \cdots a_{n}$$

$$x$$

$$a_{1} \cdots a_{i-2} a_{i-1} a_{i}$$

$$a_{1} \cdots a_{i-2} a_{i}$$

$$a_{1} \cdots a_{i-2} a_{i}$$

$$a_{1} \cdots a_{i-2} a_{i}$$

$$a_{1} \cdots a_{i-2} a_{i}$$

Compatible generator orders

- \bullet G, A, g as before
- assume from now on that $Red_A(g)$ is finite
- $A_g := \{a \in A \mid a \leq_A g\}$ generators below g.

Definition (Mühle-R.)

A total order \prec on A_g is g-compatible if for any $x \leq_A g$ with $\ell_A(x) = 2$, there exists a unique $(s, t) \in \text{Red}_A(x)$ with $s \leq t$.

- inspired by definition of c-compatible reflection order for Coxeter groups [Athanasiadis, Brady & Watt, 2007], but forgetting the geometry
- gives EL-shellability in rank 2 for the natural labelling

Compatible generator orders

- \bullet G, A, g as before
- assume from now on that $Red_A(g)$ is finite
- $A_g := \{a \in A \mid a \leq_A g\}$ generators below g.

Definition (Mühle-R.)

A total order \prec on A_g is g-compatible if for any $x \leq_A g$ with $\ell_A(x) = 2$, there exists a unique $(s, t) \in \text{Red}_A(x)$ with $s \leq t$.

- inspired by definition of c-compatible reflection order for Coxeter groups [Athanasiadis, Brady & Watt, 2007], but forgetting the geometry
- gives EL-shellability in rank 2 for the natural labelling

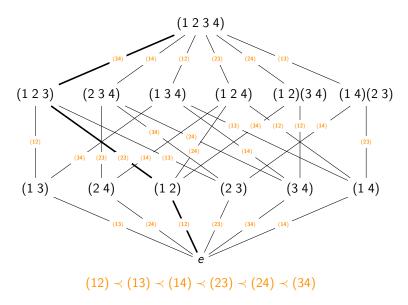
Compatible generator orders

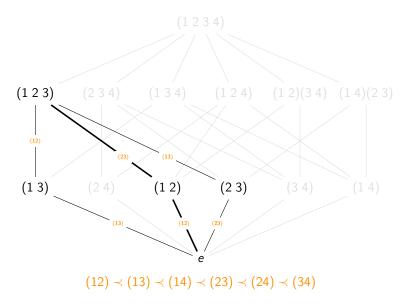
- \bullet G, A, g as before
- assume from now on that $Red_A(g)$ is finite
- $A_g := \{ a \in A \mid a \leq_A g \}$ generators below g.

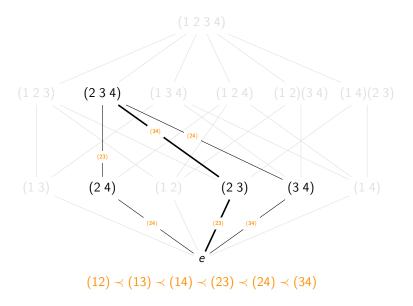
Definition (Mühle-R.)

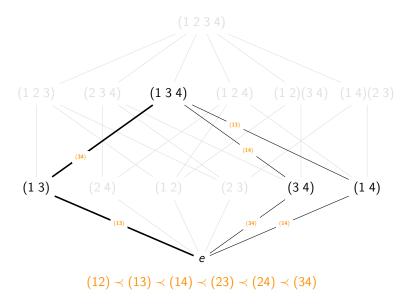
A total order \prec on A_g is g-compatible if for any $x \leq_A g$ with $\ell_A(x) = 2$, there exists a unique $(s, t) \in \text{Red}_A(x)$ with $s \leq t$.

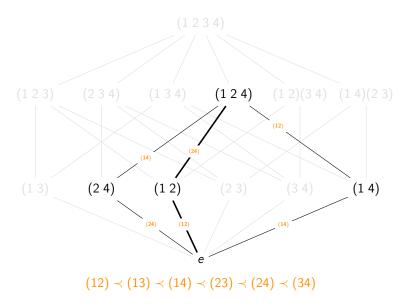
- inspired by definition of c-compatible reflection order for Coxeter groups [Athanasiadis, Brady & Watt, 2007], but forgetting the geometry
- gives EL-shellability in rank 2 for the natural labelling

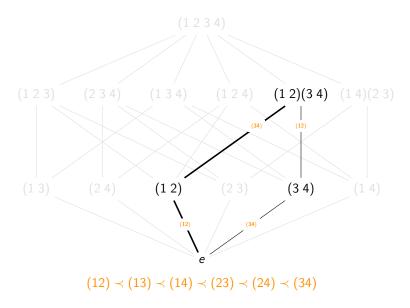


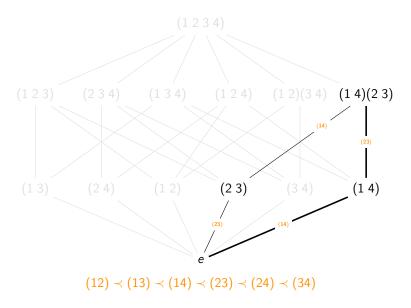












Proposition (Rank 2 case)

Suppose $\ell_A(g) = 2$. Then:

 \exists a g-compatible order on $A_g \iff$

the Hurwitz action of B_2 on $Red_A(g)$ is transitive.

Corollary (arbitrary rank)

 \exists a g-compatible order on $A_g \Longrightarrow local$ Hurwitz transitivity (i.e., for all $x \in [e,g]_A$ with $\ell_A(x)=2$, the Hurwitz action of B_2 on $Red_A(x)$ is transitive).

- the converse is false.
- Consequence of corollary:
 ∃ compatible order + chain-connectedness ⇒ Hurwitz transitivity.
- Note: ∃ compatible order ⇒ Hurwitz transitivity.

Proposition (Rank 2 case)

Suppose $\ell_A(g) = 2$. Then:

 $\exists \ \textit{a g-compatible order on} \ \textit{A}_{\textit{g}} \quad \Longleftrightarrow \quad$

the Hurwitz action of B_2 on $Red_A(g)$ is transitive.

Proof:

In rank 2, any Hurwitz orbit has the form

$$g = a_1 a_2 = a_2 a_3 = \cdots = a_{s-1} a_s = a_s a_1.$$

- Assume there is no rising decomposition, then
 - $a_1 \prec a_s \prec a_{s-1} \prec \cdots \prec a_3 \prec a_2 \prec a_1$, impossible.
- so at least one rising decomposition for each orbit.

Corollary (arbitrary rank)

 \exists a g-compatible order on $A_g \Longrightarrow local$ Hurwitz transitivity (i.e., for all $x \in [e,g]_A$ with $\ell_A(x) = 2$, the Hurwitz action of B_2 or $Red_A(x)$ is transitive).

Proposition (Rank 2 case)

Suppose $\ell_A(g) = 2$. Then:

 \exists a g-compatible order on $A_g \iff$

the Hurwitz action of B_2 on $Red_A(g)$ is transitive.

Corollary (arbitrary rank)

 \exists a g-compatible order on $A_g \Longrightarrow local$ Hurwitz transitivity (i.e., for all $x \in [e,g]_A$ with $\ell_A(x)=2$, the Hurwitz action of B_2 on $Red_A(x)$ is transitive).

- the converse is false.
- Consequence of corollary:
 ∃ compatible order + chain-connectedness ⇒ Hurwitz transitivity.
- Note: ∃ compatible order ⇒ Hurwitz transitivity.

Proposition (Rank 2 case)

Suppose $\ell_A(g) = 2$. Then:

 \exists a g-compatible order on $A_g \iff$

the Hurwitz action of B_2 on $Red_A(g)$ is transitive.

Corollary (arbitrary rank)

 \exists a g-compatible order on $A_g \Longrightarrow local$ Hurwitz transitivity (i.e., for all $x \in [e,g]_A$ with $\ell_A(x)=2$, the Hurwitz action of B_2 on $Red_A(x)$ is transitive).

- the converse is false.
- Consequence of corollary:
 ∃ compatible order + chain-connectedness ⇒ Hurwitz transitivity.
- Note: ∃ compatible order ⇒ Hurwitz transitivity.

 \exists a g-compatible order on $A_g \stackrel{?}{\Longrightarrow} [e,g]_A$ shellable ?

Not

Take $G = \langle r, s, t, u, v, w \mid \text{commutations}, rst = uvw \rangle_{grp}$

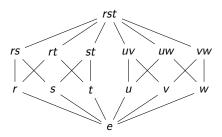
 \exists a g-compatible order on $A_g \stackrel{?}{\Longrightarrow} [e,g]_A$ shellable ?

No!

Take $G = \langle r, s, t, u, v, w \mid \text{commutations}, rst = uvw \rangle_{grp}$

 \exists a g-compatible order on $A_g \stackrel{?}{\Longrightarrow} [e,g]_A$ shellable ? No!

Take $G = \langle r, s, t, u, v, w \mid \text{commutations}, rst = uvw \rangle_{grp}$



Conjecture (Mühle-R.)

Let G, A, g be as before. Suppose

- there exists a g-compatible order on A_g ;
- any interval of $[e,g]_A$ is chain-connected.

Then $[e,g]_A$ is *EL-shellable*.

(and the labelling by generators, ordered by \prec , is an EL-labelling)

We reduced the conjecture to:

Conjecture (Mühle-R.)

Same hypotheses

Then for any generator a in A_g (excepted the \prec -smallest one), there exists another generator b in A_g such that

- b and a have a common cover in $[e, g]_A$.

Conjecture (Mühle-R.)

Let G, A, g be as before. Suppose

- there exists a g-compatible order on A_g ;
- any interval of $[e,g]_A$ is chain-connected.

Then $[e,g]_A$ is **EL**-shellable.

(and the labelling by generators, ordered by \prec , is an EL-labelling)

We reduced the conjecture to:

Conjecture (Mühle-R.)

Same hypotheses.

Then for any generator a in A_g (excepted the \prec -smallest one), there exists another generator b in A_g such that

- b ≺ a in the compatible order;
- b and a have a common cover in $[e, g]_A$.

- Applications to specific groups:
 - complex reflection groups (need to construct uniformly a compatible order!);
 - (generalized) alternating groups;
 - (generalized) braid groups
 - ▶ $GL_n(\mathbb{F}_q)$ [Huang-Lewis-Reiner]
 - **•** ...
- Lattice property? (holds for reflection groups
- Cyclic action on $Red_A(g)$ (by conjugation): is there a cyclic sieving phenomenon for certain classes of posets?

- Applications to specific groups:
 - complex reflection groups (need to construct uniformly a compatible order!);
 - (generalized) alternating groups;
 - (generalized) braid groups
 - ▶ $GL_n(\mathbb{F}_q)$ [Huang-Lewis-Reiner]
 - **•** ...
- Lattice property? (holds for reflection groups)
- Cyclic action on $Red_A(g)$ (by conjugation): is there a cyclic sieving phenomenon for certain classes of posets?

- Applications to specific groups:
 - complex reflection groups (need to construct uniformly a compatible order!);
 - (generalized) alternating groups;
 - (generalized) braid groups
 - ▶ $GL_n(\mathbb{F}_q)$ [Huang-Lewis-Reiner]
- Lattice property? (holds for reflection groups)
- Cyclic action on $Red_A(g)$ (by conjugation): is there a cyclic sieving phenomenon for certain classes of posets?

- Applications to specific groups:
 - complex reflection groups (need to construct uniformly a compatible order!);
 - (generalized) alternating groups;
 - (generalized) braid groups
 - ▶ $GL_n(\mathbb{F}_q)$ [Huang-Lewis-Reiner]
- Lattice property? (holds for reflection groups)
- Cyclic action on $Red_A(g)$ (by conjugation): is there a cyclic sieving phenomenon for certain classes of posets?