Orbital diameters of the symmetric and alternating groups

Atiqa Sheikh

Imperial College London

15 July 2016

Let $G \leq Sym(\Omega)$ be a finite primitive permutation group. Consider the natural action of G on $\Omega \times \Omega$ (given by $(\alpha, \beta)^g = (\alpha^g, \beta^g)$).

Definition

An **orbital** of G (on Ω) is an orbit of G on $\Omega \times \Omega$.

Let $G \leq Sym(\Omega)$ be a finite primitive permutation group.

Consider the natural action of G on $\Omega \times \Omega$ (given by $(\alpha, \beta)^g = (\alpha^g, \beta^g)$).

Definition

An **orbital** of G (on Ω) is an orbit of G on $\Omega \times \Omega$.

Example

The diagonal orbital

$$\Delta_0 := \{(\alpha, \alpha) : \alpha \in \Omega\}.$$

Definition

An **orbital graph** of G is an undirected graph Γ_{Δ} :

$$V(\Gamma) = \Omega$$

$$E(\Gamma) = \{ \{\alpha, \beta\} : (\alpha, \beta) \in \Delta \},$$

where Δ is a non-diagonal orbital of G.

Definition

An **orbital graph** of G is an undirected graph Γ_{Δ} :

$$V(\Gamma) = \Omega$$

$$E(\Gamma) = \{ \{\alpha, \beta\} : (\alpha, \beta) \in \Delta \},$$

where Δ is a non-diagonal orbital of G.

Definition

If Δ is an orbital, then we define the **paired** orbital

$$\Delta^* := \{ (\alpha, \beta) : (\beta, \alpha) \in \Delta \}.$$

 Δ is called **self-paired** if $\Delta = \Delta^*$.

Theorem

The following are equivalent:

- lacksquare G is primitive on Ω
- $oldsymbol{O}$ G_{α} is a maximal subgroup for all $\alpha \in \Omega$
- All orbital graphs of G are connected

Theorem

The following are equivalent:

- \bigcirc G is primitive on Ω
- **②** G_{α} is a maximal subgroup for all $\alpha \in \Omega$
- All orbital graphs of G are connected

Definition

The **orbital diameter** of G is defined to be the maximum of the diameters of the orbital graphs of G. It is denoted by $diam_O(G,\Omega)$.

Definition

Let $\mathcal C$ be an infinite class of finite primitive permutation groups. The class $\mathcal C$ is said to be **bounded** if there exists an integer $d \geq 1$ such that all the groups in $\mathcal C$ have orbital diameters bounded by d.

Definition

Let $\mathcal C$ be an infinite class of finite primitive permutation groups. The class $\mathcal C$ is said to be **bounded** if there exists an integer $d \geq 1$ such that all the groups in $\mathcal C$ have orbital diameters bounded by d.

Example

- $G = S_n$, $\Omega = I^{\{k\}}$, the set of k-subsets of $I := \{1, \ldots, n\}$,
 - Orbitals: $\Delta_i = \{(A, B) : |A \cap B| = i\}, \ 0 \le i \le k$,
 - $diam_O(G, \Omega) = k$ BOUNDED class.

Definition

Let $\mathcal C$ be an infinite class of finite primitive permutation groups. The class $\mathcal C$ is said to be **bounded** if there exists an integer $d \geq 1$ such that all the groups in $\mathcal C$ have orbital diameters bounded by d.

Example

- - Orbitals: $\Delta_i = \{(A, B) : |A \cap B| = i\}, \ 0 \le i \le k$,
 - $diam_O(G, \Omega) = k$ BOUNDED class.
- $G = S_n$, $\Omega = I^{(k,l)}$, the set of (k,l)-partitions of I,
 - Later: $diam_O(G,\Omega) > \frac{kl}{4} 1$ NOT BOUNDED class.

Question: What are the structures of the primitive groups in such a bounded class \mathcal{C} ?

Question: What are the structures of the primitive groups in such a bounded class C?

Fact: All finite primitive permutation groups are of one of the following types (due to Aschbacher, O'Nan and Scott):

- Affine
- Almost simple
- Simple diagonal
- Product action
- Twisted wreath action

Theorem (Liebeck, Machpherson, Tent, 2010)

Let $\mathcal C$ be an infinite class of almost simple finite primitive permutation groups and suppose $\mathcal C$ is bounded.

Theorem (Liebeck, Machpherson, Tent, 2010)

Let $\mathcal C$ be an infinite class of almost simple finite primitive permutation groups and suppose $\mathcal C$ is bounded. Then for $G\in\mathcal C$, one of the following must hold:

Theorem (Liebeck, Machpherson, Tent, 2010)

Let $\mathcal C$ be an infinite class of almost simple finite primitive permutation groups and suppose $\mathcal C$ is bounded. Then for $G\in\mathcal C$, one of the following must hold:

• $G = S_n$ or A_n acting on k-subsets of $\{1, \ldots, n\}$, k bounded.

Theorem (Liebeck, Machpherson, Tent, 2010)

Let $\mathcal C$ be an infinite class of almost simple finite primitive permutation groups and suppose $\mathcal C$ is bounded. Then for $G\in\mathcal C$, one of the following must hold:

- $G = S_n$ or A_n acting on k-subsets of $\{1, \ldots, n\}$, k bounded.
- $G = Cl_n(q)$ acting on k-subspaces of $V_n(q)$, k bounded.

Theorem (Liebeck, Machpherson, Tent, 2010)

Let $\mathcal C$ be an infinite class of almost simple finite primitive permutation groups and suppose $\mathcal C$ is bounded. Then for $G\in\mathcal C$, one of the following must hold:

- $G = S_n$ or A_n acting on k-subsets of $\{1, \ldots, n\}$, k bounded.
- $G = Cl_n(q)$ acting on k-subspaces of $V_n(q)$, k bounded.
- $G = X_r(q)$, Lie type, r bounded, $|G_{\alpha}|$ unbounded or $G_{\alpha} = X_r(q_0)$ where $|F_q:F_{q_0}|$ bounded.

Theorem (Liebeck, Machpherson, Tent, 2010)

Let $\mathcal C$ be an infinite class of almost simple finite primitive permutation groups and suppose $\mathcal C$ is bounded. Then for $G\in\mathcal C$, one of the following must hold:

- $G = S_n$ or A_n acting on k-subsets of $\{1, \ldots, n\}$, k bounded.
- $G = CI_n(q)$ acting on k-subspaces of $V_n(q)$, k bounded.
- $G = X_r(q)$, Lie type, r bounded, $|G_{\alpha}|$ unbounded or $G_{\alpha} = X_r(q_0)$ where $|F_q:F_{q_0}|$ bounded.

Conversely, all such classes of primitive permutation groups are bounded.

Recall: The orbital diameter of G is the maximum of the diameters of all orbital graphs of G.

Recall: The orbital diameter of G is the maximum of the diameters of all orbital graphs of G.

Questions:

• Given an integer $d \ge 1$, can we find all primitive permutation groups whose orbital diameters are bounded by d?

Recall: The orbital diameter of G is the maximum of the diameters of all orbital graphs of G.

Questions:

- Given an integer $d \ge 1$, can we find all primitive permutation groups whose orbital diameters are bounded by d?
- **②** For small d, e.g d = 2, can we find all primitive permutation groups for which there exists an orbital graph of diameter d?

Main Results

<u>Fact:</u> All finite primitive permutation groups are of one of the following types (due to Aschbacher, O'Nan and Scott):

- Affine
- **2** Almost simple $\rightarrow Soc(G) = A_n \Rightarrow G = A_n \text{ or } S_n \ (n \ge 4, n \ne 6).$
- Simple diagonal
- Product action
- Twisted wreath action

Let $G = S_n$ act primitively on a set Ω and $H := G_\alpha$. Then one of the following holds:

Let $G = S_n$ act primitively on a set Ω and $H := G_\alpha$. Then one of the following holds:

• $H \cong S_k \times S_{n-k}$, $\Omega = I^{\{k\}}$, the set of k-subsets of $I := \{1, \ldots, n\}$.

Let $G = S_n$ act primitively on a set Ω and $H := G_\alpha$. Then one of the following holds:

- ② $H \cong S_k \wr S_l$, $\Omega = I^{(k,l)}$ H, the set of (k,l)-partitions of I.

Let $G = S_n$ act primitively on a set Ω and $H := G_\alpha$. Then one of the following holds:

- $H \cong S_k \times S_{n-k}$, $\Omega = I^{\{k\}}$, the set of k-subsets of $I := \{1, \ldots, n\}$.
- ② $H \cong S_k \wr S_l$, $\Omega = I^{(k,l)}$ H, the set of (k,l)-partitions of I.
- H is primitive on I.

Let $G = S_n$ act primitively on a set Ω and $H := G_\alpha$. Then one of the following holds:

- $H \cong S_k \times S_{n-k}$, $\Omega = I^{\{k\}}$, the set of k-subsets of $I := \{1, \ldots, n\}$.
- ② $H \cong S_k \wr S_l$, $\Omega = I^{(k,l)}$ H, the set of (k,l)-partitions of I.
- H is primitive on I.

Case 1: Action of G on $I^{\{k\}}$ Orbital graphs Γ_i , $V(\Gamma_i) = I^{\{k\}}$, $E(\Gamma_i) = \{\{A, B\} : |A \cap B| = i\}$

Let $G = S_n$ act primitively on a set Ω and $H := G_\alpha$. Then one of the following holds:

- **1** $H \cong S_k \times S_{n-k}$, $\Omega = I^{\{k\}}$, the set of k-subsets of $I := \{1, \ldots, n\}$.
- ② $H \cong S_k \wr S_l$, $\Omega = I^{(k,l)}$ H, the set of (k,l)-partitions of I.
- H is primitive on I.

Case 1: Action of G on $I^{\{k\}}$ Orbital graphs Γ_i , $V(\Gamma_i) = I^{\{k\}}$, $E(\Gamma_i) = \{\{A, B\} : |A \cap B| = i\}$

• $diam_O(G,\Omega) \leq k$

Let $G = S_n$ act primitively on a set Ω and $H := G_\alpha$. Then one of the following holds:

- $H \cong S_k \times S_{n-k}$, $\Omega = I^{\{k\}}$, the set of k-subsets of $I := \{1, \ldots, n\}$.
- ② $H \cong S_k \wr S_l$, $\Omega = I^{(k,l)}$ H, the set of (k,l)-partitions of I.
- H is primitive on I.

Case 1: Action of G on $I^{\{k\}}$ Orbital graphs Γ_i , $V(\Gamma_i) = I^{\{k\}}$, $E(\Gamma_i) = \{\{A, B\} : |A \cap B| = i\}$

- $diam_O(G,\Omega) \leq k$
- Orbital graphs: Γ_i what is $diam(\Gamma_i)$?

Main results: $G = S_n$, action of G on $I^{\{k\}}$

n	$diam(\Gamma_0)$	$diam(\Gamma_1)$	$diam(\Gamma_2)$		$diam(\Gamma_{\lfloor k/2 \rfloor})$	$diam(\Gamma_i)$	
2k + 1	:	:	:	:	2	$\left\lceil \frac{k}{k-i} \right\rceil$	
2k + 2	:	:	:	:	:	:	:
:	:	:	÷	:	2		:
:	$\left\lceil \frac{n-k-1}{n-2k} \right\rceil$	$\left\lceil \frac{n-k}{n-2k+2} \right\rceil$	$\left\lceil \frac{n-k+1}{n-2k+4} \right\rceil$	$\left\lceil \frac{n-k+(i-1)}{n-2k+2i} \right\rceil$	2	:	:
:	:	:	:	2	2		:
:	:	:	:	2	2	:	:
3k - 4	:	:	2	2	2	:	:
3k - 3	:	:	2	2	2	:	:
3k - 2	:	2	2	2	2	:	:
3k - 1	2	2	2	2	2	:	:
3 <i>k</i>	2	2	2	2	2	:	:
:	:	:	:	:	:	:	:

Main results: $G = S_n$, action of G on $I^{(k,l)}$, n = kI

Case 2: Action of G on $I^{(k,l)}$, n=klLet A and B be two (k,l)-partitions of $\{1,\ldots,n\}$. Write $A=A_1|\ldots|A_l$ and $B=B_1|\ldots|B_l$, where $|A_i|=|B_j|=k$. Define the $l\times l$ matrix l_{AB} , by $(l_{AB})_{ii}=|A_i\cap B_i|$.

Main results: $G = S_n$, action of G on $I^{(k,l)}$, n = kl

Case 2: Action of G on $I^{(k,l)}$, n=klLet A and B be two (k,l)-partitions of $\{1,\ldots,n\}$. Write $A=A_1|\ldots|A_l$ and $B=B_1|\ldots|B_l$, where $|A_i|=|B_j|=k$. Define the $l\times l$ matrix l_{AB} , by

$$(I_{AB})_{ij}=|A_i\cap B_j|.$$

If M and N are two $I \times I$ matrices with row and column sums equal to k then we write $N \sim M$ if M can be obtained from N by a permutation of rows and columns. Note that \sim is an equivalence relation. Let [M] denote the equivalence class of M under \sim .

Main results: $G = S_n$, action of G on $I^{(k,l)}$, n = kl

<u>Orbitals:</u> $\Delta_{[M]} = \{(A, B) : I_{AB} \sim M\}$, where M is an $I \times I$ matrix with row and column sums equal to k.

Main results: $G = S_n$, action of G on $I^{(k,l)}$, n = kI

<u>Orbitals:</u> $\Delta_{[M]} = \{(A, B) : I_{AB} \sim M\}$, where M is an $I \times I$ matrix with row and column sums equal to k.

Orbital graphs: $\Gamma_{[M]}$, where

$$V(\Gamma_{[M]}) = I^{(k,l)}$$

$$E(\Gamma_{[M]}) = \{ \{A, B\} : (A, B) \in \Delta_{[M]} \}.$$

Main results: $G = S_n$, action of G on $I^{(k,l)}$, n = kl

<u>Orbitals:</u> $\Delta_{[M]} = \{(A, B) : I_{AB} \sim M\}$, where M is an $I \times I$ matrix with row and column sums equal to k.

Orbital graphs: $\Gamma_{[M]}$, where

$$V(\Gamma_{[M]}) = I^{(k,l)}$$

$$E(\Gamma_{[M]}) = \{ \{A, B\} : (A, B) \in \Delta_{[M]} \}.$$

Note: Matrices of the form M are called k-doubly stochastic.

Main results: $G = S_n$, action of G on $I^{(k,l)}$, n = kl

Example

$$1 = k = 3$$

$$M_1 = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}, M_2 = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}, M_3 = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix},$$

$$M_4 = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right).$$

Example

$$\begin{split} & \textit{I} = \textit{k} = 3 \\ & \textit{M}_1 = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}, \ \textit{M}_2 = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}, \ \textit{M}_3 = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}, \\ & \textit{M}_4 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}. \ \text{Let's look at $\Gamma_{[M]}$, where $M = M_2$.} \end{split}$$

Example

$$\begin{split} & I = k = 3 \\ & M_1 = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}, \ M_2 = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}, \ M_3 = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}, \\ & M_4 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}. \ \text{Let's look at } \Gamma_{[M]}, \ \text{where } M = M_2. \end{split}$$

$$A = 123|456|789$$
 — $B = 143|256|789$ | $C_1 = 123|567|489$ | $C_2 = 147|256|389$ | $C_3 = 147|258|369$ | $C_4 = 189|234|567$ | $C_5 = 147|258|369$

Example

$$\begin{split} & I = k = 3 \\ & M_1 = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}, \ M_2 = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}, \ M_3 = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}, \\ & M_4 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}. \ \text{Let's look at $\Gamma_{[M]}$, where $M = M_2$.} \end{split}$$

$$A = 123|456|789$$
 — $B = 143|256|789$
 $C_1 = 123|567|489$ $C_2 = 147|256|389$
 $B_1 = 189|234|567$ $B_2 = 147|258|369$

So $d(A, B_1) = 2$ and $d(A, B_2) = 3$ and hence $diam(\Gamma_{[M]}) = 3$.

Theorem (A.S, 2015)

Let (G,Ω) be a finite primitive permutation group where $G=S_n$ or A_n , and $\Omega=I^{(k,l)}$. Then

Theorem (A.S, 2015)

Let (G,Ω) be a finite primitive permutation group where $G=S_n$ or A_n , and $\Omega=I^{(k,l)}$. Then

• $diam_O(G,\Omega) \ge \frac{kl}{4} - 1$. Hence if $diam_O(G,\Omega) \le c$ then $n \le 2c(2c+1)$.

Theorem (A.S, 2015)

Let (G,Ω) be a finite primitive permutation group where $G=S_n$ or A_n , and $\Omega=I^{(k,l)}$. Then

- $diam_O(G,\Omega) \ge \frac{kl}{4} 1$. Hence if $diam_O(G,\Omega) \le c$ then $n \le 2c(2c+1)$.
- **②** diam_O $(G,\Omega) \le 5$ if and only if (k,l) are in the following table:

1	2	3	4	5	6
k	≤ 11	≤ 5	≤ 3	2	2

Theorem (A.S, 2015)

Let (G,Ω) be a finite primitive permutation group where $G=S_n$ or A_n , and $\Omega=I^{(k,l)}$. Then

- $diam_O(G,\Omega) \ge \frac{kl}{4} 1$. Hence if $diam_O(G,\Omega) \le c$ then $n \le 2c(2c+1)$.
- **②** diam $_O(G,\Omega) \le 5$ if and only if (k,l) are in the following table:

1	2	3	4	5	6
k	≤ 11	≤ 5	≤ 3	2	2

• If $n = k^2$, let $\Gamma_{[M]}$ be the orbital graph where M is the $k \times k$ matrix with all entries equal to 1. Then $diam(\Gamma_{[M]}) = 2$.

Let
$$M = M_{kl} = \begin{pmatrix} kl_{l-2} & 0 & 0 \\ \hline 0 & 1 & k-1 \\ 0 & k-1 & 1 \end{pmatrix}$$

Let
$$M = M_{kl} = \begin{pmatrix} kl_{l-2} & 0 & 0 \\ \hline 0 & 1 & k-1 \\ 0 & k-1 & 1 \end{pmatrix}$$

Proposition

 $diam(\Gamma_{[M]}) \geq \frac{kl}{4} - 1.$

Let
$$M = M_{kl} = \begin{pmatrix} \frac{kI_{l-2}}{0} & 0 & 0\\ 0 & 1 & k-1\\ 0 & k-1 & 1 \end{pmatrix}$$

Proposition

$$diam(\Gamma_{[M]}) \geq \frac{kl}{4} - 1.$$

Idea of proof.

Suppose k is even and l=3. Write $X=\underbrace{A_1A_2}_{X_1}|\underbrace{B_1B_2}_{X_2}|\underbrace{C_1C_2}_{X_3}$ and

$$Y = A_1B_2 | B_1C_2 | C_1A_2$$
, where $|A_i| = |B_i| = |C_i| = k/2$.

Let
$$M = M_{kl} = \begin{pmatrix} kl_{l-2} & 0 & 0 \\ \hline 0 & 1 & k-1 \\ 0 & k-1 & 1 \end{pmatrix}$$

Proposition

$$diam(\Gamma_{[M]}) \geq \frac{kl}{4} - 1$$
.

Idea of proof.

Suppose k is even and l=3. Write $X=\underbrace{A_1A_2}_{X_1}|\underbrace{B_1B_2}_{X_2}|\underbrace{C_1C_2}_{X_3}$ and

$$Y = \underbrace{A_1 B_2}_{Y_1} |\underbrace{B_1 C_2}_{Y_2}| \underbrace{C_1 A_2}_{Y_3}$$
, where $|A_i| = |B_i| = |C_i| = k/2$. Note that every path of

length in $\Gamma_{[M]}$ corresponds to a sequence of transpositions. Suppose P is a path between X and Y and σ_P is the product of the corresponding transpositions.

Let
$$M = M_{kl} = \begin{pmatrix} kl_{l-2} & 0 & 0 \\ \hline 0 & 1 & k-1 \\ 0 & k-1 & 1 \end{pmatrix}$$

Proposition

$$diam(\Gamma_{[M]}) \geq \frac{kl}{4} - 1.$$

Idea of proof.

Suppose k is even and l=3. Write $X=\underbrace{A_1A_2}_{X_1}|\underbrace{B_1B_2}_{X_2}|\underbrace{C_1C_2}_{X_3}$ and

$$Y = \underbrace{A_1 B_2}_{Y_1} |\underbrace{B_1 C_2}_{Y_2}| \underbrace{C_1 A_2}_{Y_3}, \text{ where } |A_i| = |B_i| = |C_i| = k/2. \text{ Note that every path of }$$

length in $\Gamma_{[M]}$ corresponds to a sequence of transpositions. Suppose P is a path between X and Y and σ_P is the product of the corresponding transpositions. Now σ_P must move at least k/2 points from each X_i . Therefore σ_P must move at least kl/2 points in total, and hence cannot be written as a product of fewer than kl/4 transpositions.

Proposition (A.S, 2015)

Suppose k = I, and let M be the $I \times I$ matrix with all entries equal to 1. Then $diam(\Gamma_{[M]}) = 2$.

Example

Proposition (A.S, 2015)

Suppose k = I, and let M be the $I \times I$ matrix with all entries equal to 1. Then $diam(\Gamma_{[M]}) = 2$.

Example

A = 1234|5678|9101112|13141516 B = 121516|3456|78910|11121314

Proposition (A.S, 2015)

Suppose k = I, and let M be the $I \times I$ matrix with all entries equal to 1. Then $diam(\Gamma_{[M]}) = 2$.

Example

$$A = 1234|5678|9101112|13141516$$
 $B = 121516|3456|78910|11121314$

$$C = 15913|261014|371115|481216$$

Proposition (A.S, 2015)

Suppose k = I, and let M be the $I \times I$ matrix with all entries equal to 1. Then $diam(\Gamma_{[M]}) = 2$.

Example

A = 1234|5678|9101112|13141516 B = 121516|3456|78910|11121314

$$C = 15913|261014|371115|481216$$

$$I_{AB} = \left(\begin{array}{cccc} 2 & 2 & 0 & 0 \\ 0 & 2 & 2 & 0 \\ 0 & 0 & 2 & 2 \\ 2 & 0 & 0 & 2 \end{array}\right)$$

Proposition (A.S, 2015)

Suppose k = I, and let M be the $I \times I$ matrix with all entries equal to 1. Then $diam(\Gamma_{[M]}) = 2$.

Example

$$A = 1234|5678|9101112|13141516$$
 $B = 121516|3456|78910|11121314$

$$C = 15913|261014|371115|481216$$

$$I_{AB} = \left(\begin{array}{cccc} 2 & 2 & 0 & 0 \\ 0 & 2 & 2 & 0 \\ 0 & 0 & 2 & 2 \\ 2 & 0 & 0 & 2 \end{array} \right) \rightarrow \left(\begin{array}{cccc} 1 & 2 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 2 \\ 2 & 0 & 0 & 1 \end{array} \right)$$

Proposition (A.S, 2015)

Suppose k = I, and let M be the $I \times I$ matrix with all entries equal to 1. Then $diam(\Gamma_{[M]}) = 2$.

Example

$$A = 1234|5678|9101112|13141516$$
 $B = 121516|3456|78910|11121314$

$$C = 15913|261014|371115|481216$$

$$I_{AB} = \left(\begin{array}{cccc} 2 & 2 & 0 & 0 \\ 0 & 2 & 2 & 0 \\ 0 & 0 & 2 & 2 \\ 2 & 0 & 0 & 2 \end{array}\right) \rightarrow \left(\begin{array}{cccc} 1 & 2 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 2 \\ 2 & 0 & 0 & 1 \end{array}\right) \rightarrow \left(\begin{array}{cccc} 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \\ 2 & 0 & 0 & 0 \end{array}\right)$$

Proposition (A.S, 2015)

Suppose k = I, and let M be the $I \times I$ matrix with all entries equal to 1. Then $diam(\Gamma_{[M]}) = 2$.

Example

A = 1234|5678|9101112|13141516 B = 121516|3456|78910|11121314

$$C = 15913|261014|371115|481216$$

$$I_{AB} = \begin{pmatrix} 2 & 2 & 0 & 0 \\ 0 & 2 & 2 & 0 \\ 0 & 0 & 2 & 2 \\ 2 & 0 & 0 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 2 \\ 2 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \\ 2 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

Proposition (A.S, 2015)

Suppose k = I, and let M be the $I \times I$ matrix with all entries equal to 1. Then $diam(\Gamma_{[M]}) = 2$.

Example

$$A = 1234|5678|9101112|13141516$$
 $B = 121516|3456|78910|11121314$

$$C = 15913|261014|371115|481216$$

$$I_{AB} = \begin{pmatrix} 2 & 2 & 0 & 0 \\ 0 & 2 & 2 & 0 \\ 0 & 0 & 2 & 2 \\ 2 & 0 & 0 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 2 \\ 2 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \\ 2 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

Proof uses the $\underline{\text{fact}} \colon$ every doubly-stochastic matrix has a positive diagonal.

Case 3: Action of G on (G : H), H primitive on I, $H \neq A_n$ In this case |H| must be 'small':

Case 3: Action of G on (G : H), H primitive on I, $H \neq A_n$ In this case |H| must be 'small':

Bochert, 1889: $|G:H| \ge \lfloor \frac{n+1}{2} \rfloor!$

Case 3: Action of G on (G : H), H primitive on I, $H \neq A_n$ In this case |H| must be 'small':

Bochert, 1889: $|G:H| \ge \lfloor \frac{n+1}{2} \rfloor$! Praeger & Saxl, 1980: $|H| < 4^n$

Case 3: Action of G on (G : H), H primitive on I, $H \neq A_n$ In this case |H| must be 'small':

Bochert, 1889: $|G:H| \ge \left\lfloor \frac{n+1}{2} \right\rfloor$! Praeger & Saxl, 1980: $|H| < 4^n$ Maroti, 2002: $|H| < 2^n \ (n > 24)$

Case 3: Action of G on (G:H), H primitive on I, $H \neq A_n$ In this case |H| must be 'small':

Bochert, 1889: $|G:H| \ge \left\lfloor \frac{n+1}{2} \right\rfloor$! Praeger & Saxl, 1980: $|H| < 4^n$ Maroti, 2002: $|H| < 2^n \ (n > 24)$

Suppose Γ is an orbital graph of diameter d and valency k.

Case 3: Action of G on (G : H), H primitive on I, $H \neq A_n$ In this case |H| must be 'small':

Bochert, 1889: $|G:H| \ge \left\lfloor \frac{n+1}{2} \right\rfloor$! Praeger & Saxl, 1980: $|H| < 4^n$ Maroti, 2002: $|H| < 2^n \ (n > 24)$

Suppose Γ is an orbital graph of diameter d and valency k. Then

$$|G:H| \le 1 + k + k(k-1) + \dots + k(k-1)^{d-1}$$

 $< 1 + k + k^2 + \dots + k^d < (2|H|)^{d+1}.$

Case 3: Action of G on (G : H), H primitive on I, $H \neq A_n$ In this case |H| must be 'small':

Bochert, 1889: $|G:H| \ge \left\lfloor \frac{n+1}{2} \right\rfloor!$ Praeger & Saxl, 1980: $|H| < 4^n$ Maroti, 2002: $|H| < 2^n \ (n > 24)$

Suppose Γ is an orbital graph of diameter d and valency k. Then

$$|G:H| \le 1 + k + k(k-1) + \dots + k(k-1)^{d-1}$$

 $< 1 + k + k^2 + \dots + k^d < (2|H|)^{d+1}.$

e.g. $d=2 \Rightarrow n \leq 20 \rightarrow Magma$

Prove similar results for other almost simple groups whose socle is a simple group of Lie type, e.g. $PSL_n(q)$, $PSp_{2m}(q)$ etc.

Prove similar results for other almost simple groups whose socle is a simple group of Lie type, e.g. $PSL_n(q)$, $PSp_{2m}(q)$ etc.

- Almost complete results for $Soc(G) = PSL_2(q)$. Maximal subgroups (in $PSL_2(q)$, q odd) to consider:

 - O_{q-1} ,
 - O_{q+1} ,
 - $PGL_2(q_0)$, where $q = q_0^2$,
 - **5** $PSL_2(q_0)$, where $q = q_0^r$ and r is an odd prime,
 - \bigcirc A_4 ,
 - \bigcirc A_5 ,
 - \circ S_4 .

Theorem (A.S, 2016)

Let $G \leq Sym(\Omega)$ be a finite primitive permutation group with $soc(G) = PSL_2(q)$, $\Omega = (G : H)$ and $\Gamma \leq Out(PSL_2(q))$.

• If $diam_O(G,\Omega) \le 2$ then G must be in the following table:

Theorem (A.S, 2016)

Let $G \leq Sym(\Omega)$ be a finite primitive permutation group with $soc(G) = PSL_2(q)$, $\Omega = (G : H)$ and $\Gamma \leq Out(PSL_2(q))$.

• If $diam_O(G,\Omega) \le 2$ then G must be in the following table:

G/Γ	Н/Г	Notes
$PSL_2(q_0^2)$	$PGL_2(q_0)$	$q_0 \equiv 3 \pmod{4}$
$PSL_2(q)$	$D_{2(q-1)}$	$q=2^e$, e odd, $\Gamma eq 1$
$PSL_2(q)$	$D_{2(q+1)}$	q even
$PSL_2(q_0^3)$	$PSL_2(q_0)$	q_0 odd $\Gamma \neq 1$
$PSL_2(q_0^r)$	$PSL_2(q_0)$	$q_0 \neq 2$ even, $r = 2,3$

+ some small examples.

Theorem (continued...)

• Groups for which there exists families of orbital graphs of diameter 2 include:

G/Γ	Н/Г	Notes
$PSL_2(q)$	D_{q-1}	q odd
$PSL_2(q)$	$D_{2(q-1)}$	q even > 4
$PSL_2(q_0^2)$	$PGL_2(q_0)$	$q_0 \equiv 3 \pmod{4}$

Motivation\ Summary

Recall: The orbital diameter of G is the maximum of the diameters of all orbital graphs of G.

Motivation\ Summary

Recall: The orbital diameter of G is the maximum of the diameters of all orbital graphs of G.

Questions:

• Given an integer $d \ge 1$, can we find all primitive permutation groups whose orbital diameters are bounded by d?

Motivation\ Summary

Recall: The orbital diameter of G is the maximum of the diameters of all orbital graphs of G.

Questions:

- Given an integer $d \ge 1$, can we find all primitive permutation groups whose orbital diameters are bounded by d?
- **②** For small d, e.g d = 2, can we find all primitive permutation groups for which there exists an orbital graph of diameter d?

Thank you

Thank you!