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Introduction

Let G ≤ Sym(Ω) be a finite primitive permutation group.
Consider the natural action of G on Ω× Ω (given by (α, β)g = (αg , βg )).

Definition

An orbital of G (on Ω) is an orbit of G on Ω× Ω.

Example

The diagonal orbital

∆0 := {(α, α) : α ∈ Ω}.
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Introduction

Definition

An orbital graph of G is an undirected graph Γ∆:

V (Γ) = Ω

E (Γ) = {{α, β} : (α, β) ∈ ∆},

where ∆ is a non-diagonal orbital of G .

Definition

If ∆ is an orbital, then we define the paired orbital

∆∗ := {(α, β) : (β, α) ∈ ∆}.

∆ is called self-paired if ∆ = ∆∗.
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Introduction

Theorem

The following are equivalent:

1 G is primitive on Ω

2 Gα is a maximal subgroup for all α ∈ Ω

3 All orbital graphs of G are connected

Definition

The orbital diameter of G is defined to be the maximum of the diameters
of the orbital graphs of G . It is denoted by diamO(G ,Ω).
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Introduction

Definition

Let C be an infinite class of finite primitive permutation groups. The class
C is said to be bounded if there exists an integer d ≥ 1 such that all the
groups in C have orbital diameters bounded by d .

Example

1 G = Sn, Ω = I {k}, the set of k-subsets of I := {1, . . . , n},
Orbitals: ∆i = {(A,B) : |A ∩ B| = i}, 0 ≤ i ≤ k,
diamO(G ,Ω) = k BOUNDED class.

2 G = Sn, Ω = I (k,l), the set of (k , l)-partitions of I ,

Later: diamO(G ,Ω) > kl
4 − 1 NOT BOUNDED class.
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Motivation

Question: What are the structures of the primitive groups in such a
bounded class C?

Fact: All finite primitive permutation groups are of one of the following
types (due to Aschbacher, O’Nan and Scott):

1 Affine

2 Almost simple

3 Simple diagonal

4 Product action

5 Twisted wreath action
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Motivation

Theorem (Liebeck, Machpherson, Tent, 2010)

Let C be an infinite class of almost simple finite primitive permutation groups and
suppose C is bounded.

Then for G ∈ C, one of the following must hold:

G = Sn or An acting on k-subsets of {1, . . . , n}, k bounded.

G = Cln(q) acting on k-subspaces of Vn(q), k bounded.

G = Xr (q), Lie type, r bounded, |Gα| unbounded or Gα = Xr (q0) where
|Fq : Fq0 | bounded.

Conversely, all such classes of primitive permutation groups are bounded.
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Motivation

Recall: The orbital diameter of G is the maximum of the diameters of all
orbital graphs of G .

Questions:

1 Given an integer d ≥ 1, can we find all primitive permutation groups
whose orbital diameters are bounded by d?

2 For small d , e.g d = 2, can we find all primitive permutation groups
for which there exists an orbital graph of diameter d?
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Main Results

Fact: All finite primitive permutation groups are of one of the following
types (due to Aschbacher, O’Nan and Scott):

1 Affine

2 Almost simple → Soc(G ) = An ⇒ G = An or Sn (n ≥ 4, n 6= 6).

3 Simple diagonal

4 Product action

5 Twisted wreath action
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Main results: G = Sn

Let G = Sn act primitively on a set Ω and H := Gα. Then one of the
following holds:

1 H ∼= Sk × Sn−k , Ω = I {k}, the set of k-subsets of I := {1, . . . , n}.
2 H ∼= Sk o Sl , Ω = I (k,l) H, the set of (k , l)-partitions of I .

3 H is primitive on I .

Case 1: Action of G on I {k}

Orbital graphs Γi , V (Γi ) = I {k}, E (Γi ) = {{A,B} : |A ∩ B| = i}
diamO(G ,Ω) ≤ k

Orbital graphs: Γi - what is diam(Γi )?
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Main results: G = Sn, action of G on I {k}

n diam(Γ0) diam(Γ1) diam(Γ2) . . . diam(Γbk/2c) diam(Γi ) · · ·
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Main results: G = Sn, action of G on I (k ,l), n = kl

Case 2: Action of G on I (k,l), n = kl
Let A and B be two (k , l)-partitions of {1, . . . , n}. Write A = A1| . . . |Al

and B = B1| . . . |Bl , where |Ai | = |Bj | = k . Define the l × l matrix IAB , by

(IAB)ij = |Ai ∩ Bj |.

If M and N are two l × l matrices with row and column sums equal to k
then we write N ∼ M if M can be obtained from N by a permutation of
rows and columns. Note that ∼ is an equivalence relation. Let [M] denote
the equivalence class of M under ∼.
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Main results: G = Sn, action of G on I (k ,l), n = kl

Orbitals: ∆[M] = {(A,B) : IAB ∼ M}, where M is an l × l matrix with row
and column sums equal to k .

Orbital graphs: Γ[M], where

V (Γ[M]) = I (k,l)

E (Γ[M]) = {{A,B} : (A,B) ∈ ∆[M]}.

Note: Matrices of the form M are called k-doubly stochastic.
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Main results: G = Sn, action of G on I (k ,l), n = kl

Example

l = k = 3

M1 =

 3 0 0
0 3 0
0 0 3

, M2 =

 3 0 0
0 1 2
0 2 1

, M3 =

 1 2 0
0 1 2
0 2 1

,

M4 =

 1 1 1
1 1 1
1 1 1

.

Let’s look at Γ[M], where M = M2.

A = 123|456|789 — B = 143|256|789

C1 = 123|567|489 C2 = 147|256|389

B1 = 189|234|567 B2 = 147|258|369

So d(A,B1) = 2 and d(A,B2) = 3 and hence diam(Γ[M]) = 3.
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Main results: G = Sn, action of G on I (k ,l), n = kl

Theorem (A.S, 2015)

Let (G ,Ω) be a finite primitive permutation group where G = Sn or An,
and Ω = I (k,l). Then

1 diamO(G ,Ω) ≥ kl
4 − 1. Hence if diamO(G ,Ω) ≤ c then

n ≤ 2c(2c + 1).

2 diamO(G ,Ω) ≤ 5 if and only if (k , l) are in the following table:

l 2 3 4 5 6

k ≤ 11 ≤ 5 ≤ 3 2 2

3 If n = k2, let Γ[M] be the orbital graph where M is the k × k matrix
with all entries equal to 1. Then diam(Γ[M]) = 2.

Atiqa Sheikh (Imperial College London) Orbital diameters of Sn and An 15 July 2016 15 / 23



Main results: G = Sn, action of G on I (k ,l), n = kl

Theorem (A.S, 2015)

Let (G ,Ω) be a finite primitive permutation group where G = Sn or An,
and Ω = I (k,l). Then

1 diamO(G ,Ω) ≥ kl
4 − 1. Hence if diamO(G ,Ω) ≤ c then

n ≤ 2c(2c + 1).

2 diamO(G ,Ω) ≤ 5 if and only if (k , l) are in the following table:

l 2 3 4 5 6

k ≤ 11 ≤ 5 ≤ 3 2 2

3 If n = k2, let Γ[M] be the orbital graph where M is the k × k matrix
with all entries equal to 1. Then diam(Γ[M]) = 2.

Atiqa Sheikh (Imperial College London) Orbital diameters of Sn and An 15 July 2016 15 / 23



Main results: G = Sn, action of G on I (k ,l), n = kl

Theorem (A.S, 2015)

Let (G ,Ω) be a finite primitive permutation group where G = Sn or An,
and Ω = I (k,l). Then

1 diamO(G ,Ω) ≥ kl
4 − 1. Hence if diamO(G ,Ω) ≤ c then

n ≤ 2c(2c + 1).

2 diamO(G ,Ω) ≤ 5 if and only if (k , l) are in the following table:

l 2 3 4 5 6

k ≤ 11 ≤ 5 ≤ 3 2 2

3 If n = k2, let Γ[M] be the orbital graph where M is the k × k matrix
with all entries equal to 1. Then diam(Γ[M]) = 2.

Atiqa Sheikh (Imperial College London) Orbital diameters of Sn and An 15 July 2016 15 / 23



Main results: G = Sn, action of G on I (k ,l), n = kl

Theorem (A.S, 2015)

Let (G ,Ω) be a finite primitive permutation group where G = Sn or An,
and Ω = I (k,l). Then

1 diamO(G ,Ω) ≥ kl
4 − 1. Hence if diamO(G ,Ω) ≤ c then

n ≤ 2c(2c + 1).

2 diamO(G ,Ω) ≤ 5 if and only if (k , l) are in the following table:

l 2 3 4 5 6

k ≤ 11 ≤ 5 ≤ 3 2 2

3 If n = k2, let Γ[M] be the orbital graph where M is the k × k matrix
with all entries equal to 1. Then diam(Γ[M]) = 2.

Atiqa Sheikh (Imperial College London) Orbital diameters of Sn and An 15 July 2016 15 / 23



Main results: G = Sn, action of G on I (k ,l), n = kl

Let M = Mkl =

 kIl−2 0 0
0 1 k − 1
0 k − 1 1



Proposition

diam(Γ[M]) ≥ kl
4 − 1.

Idea of proof.

Suppose k is even and l = 3. Write X = A1A2︸ ︷︷ ︸
X1

|B1B2︸ ︷︷ ︸
X2

|C1C2︸ ︷︷ ︸
X3

and

Y = A1B2︸ ︷︷ ︸
Y1

|B1C2︸ ︷︷ ︸
Y2

|C1A2︸ ︷︷ ︸
Y3

, where |Ai | = |Bi | = |Ci | = k/2. Note that every path of

length in Γ[M] corresponds to a sequence of transpositions. Suppose P is a path
between X and Y and σP is the product of the corresponding transpositions.
Now σP must move at least k/2 points from each Xi . Therefore σP must move
at least kl/2 points in total, and hence cannot be written as a product of fewer
than kl/4 transpositions.
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Main results: G = Sn, action of G on I (k ,l), n = kl

Proposition (A.S, 2015)

Suppose k = l , and let M be the l × l matrix with all entries equal to 1.
Then diam(Γ[M]) = 2.

Example

l = k = 4. Consider Γ[M], where M =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 .

A = 1 2 3 4|5 6 7 8|9 10 11 12|13 14 15 16 B = 1 2 15 16|3 4 5 6|7 8 9 10|11 12 13 14

C = 1 5 9 13|2 6 10 14|3 7 11 15|4 8 12 16

IAB =


2 2 0 0
0 2 2 0
0 0 2 2
2 0 0 2

 →


1 2 0 0
0 1 2 0
0 0 1 2
2 0 0 1

 →


0 2 0 0
0 0 2 0
0 0 0 2
2 0 0 0

 →


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


Proof uses the fact: every doubly-stochastic matrix has a positive diagonal.
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Main results: G = Sn, action of G on (G : H), H primitive
on I , H 6= An

Case 3: Action of G on (G : H), H primitive on I , H 6= An

In this case |H| must be ‘small’:

Bochert, 1889: |G : H| ≥
⌊
n+1

2

⌋
!

Praeger & Saxl, 1980: |H| < 4n

Maroti, 2002: |H| < 2n (n > 24)

Suppose Γ is an orbital graph of diameter d and valency k . Then

|G : H| ≤ 1 + k + k(k − 1) + · · ·+ k(k − 1)d−1

< 1 + k + k2 + · · ·+ kd < (2|H|)d+1.

e.g. d = 2⇒ n ≤ 20→ Magma
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Further work

Prove similar results for other almost simple groups whose socle is a simple
group of Lie type, e.g. PSLn(q), PSp2m(q) etc.

Almost complete results for Soc(G ) = PSL2(q). Maximal subgroups
(in PSL2(q), q odd) to consider:

1 (Cp)e o C q−1
2

,
2 Dq−1,
3 Dq+1,
4 PGL2(q0), where q = q2

0 ,
5 PSL2(q0), where q = qr0 and r is an odd prime,
6 A4,
7 A5,
8 S4.

Atiqa Sheikh (Imperial College London) Orbital diameters of Sn and An 15 July 2016 19 / 23



Further work

Prove similar results for other almost simple groups whose socle is a simple
group of Lie type, e.g. PSLn(q), PSp2m(q) etc.

Almost complete results for Soc(G ) = PSL2(q). Maximal subgroups
(in PSL2(q), q odd) to consider:

1 (Cp)e o C q−1
2

,
2 Dq−1,
3 Dq+1,
4 PGL2(q0), where q = q2

0 ,
5 PSL2(q0), where q = qr0 and r is an odd prime,
6 A4,
7 A5,
8 S4.

Atiqa Sheikh (Imperial College London) Orbital diameters of Sn and An 15 July 2016 19 / 23



Further work

Theorem (A.S, 2016)

Let G ≤ Sym(Ω) be a finite primitive permutation group with
soc(G ) = PSL2(q), Ω = (G : H) and Γ ≤ Out(PSL2(q)).

If diamO(G ,Ω) ≤ 2 then G must be in the following table:

G/Γ H/Γ Notes

PSL2(q0
2) PGL2(q0) q0 ≡ 3 (mod 4)

PSL2(q) D2(q−1) q = 2e , e odd, Γ 6= 1

PSL2(q) D2(q+1) q even

PSL2(q0
3) PSL2(q0) q0 odd Γ 6= 1

PSL2(q0
r ) PSL2(q0) q0 6= 2 even, r = 2, 3

+ some small examples.
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Theorem (continued. . . )

Groups for which there exists families of orbital graphs of diameter 2
include:

G/Γ H/Γ Notes

PSL2(q) Dq−1 q odd

PSL2(q) D2(q−1) q even > 4

PSL2(q0
2) PGL2(q0) q0 ≡ 3 (mod 4)
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Motivation\ Summary

Recall: The orbital diameter of G is the maximum of the diameters of all
orbital graphs of G .

Questions:

1 Given an integer d ≥ 1, can we find all primitive permutation groups
whose orbital diameters are bounded by d?

2 For small d , e.g d = 2, can we find all primitive permutation groups
for which there exists an orbital graph of diameter d?
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Thank you

Thank you!
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