Orbital diameters of the symmetric and alternating groups Atiqa Sheikh Imperial College London 15 July 2016 Let $G \leq Sym(\Omega)$ be a finite primitive permutation group. Consider the natural action of G on $\Omega \times \Omega$ (given by $(\alpha, \beta)^g = (\alpha^g, \beta^g)$). #### **Definition** An **orbital** of G (on Ω) is an orbit of G on $\Omega \times \Omega$. Let $G \leq Sym(\Omega)$ be a finite primitive permutation group. Consider the natural action of G on $\Omega \times \Omega$ (given by $(\alpha, \beta)^g = (\alpha^g, \beta^g)$). #### **Definition** An **orbital** of G (on Ω) is an orbit of G on $\Omega \times \Omega$. ## Example The diagonal orbital $$\Delta_0 := \{(\alpha, \alpha) : \alpha \in \Omega\}.$$ #### **Definition** An **orbital graph** of G is an undirected graph Γ_{Δ} : $$V(\Gamma) = \Omega$$ $$E(\Gamma) = \{ \{\alpha, \beta\} : (\alpha, \beta) \in \Delta \},$$ where Δ is a non-diagonal orbital of G. #### **Definition** An **orbital graph** of G is an undirected graph Γ_{Δ} : $$V(\Gamma) = \Omega$$ $$E(\Gamma) = \{ \{\alpha, \beta\} : (\alpha, \beta) \in \Delta \},$$ where Δ is a non-diagonal orbital of G. #### **Definition** If Δ is an orbital, then we define the **paired** orbital $$\Delta^* := \{ (\alpha, \beta) : (\beta, \alpha) \in \Delta \}.$$ Δ is called **self-paired** if $\Delta = \Delta^*$. #### Theorem The following are equivalent: - lacksquare G is primitive on Ω - $oldsymbol{O}$ G_{α} is a maximal subgroup for all $\alpha \in \Omega$ - All orbital graphs of G are connected #### Theorem The following are equivalent: - \bigcirc G is primitive on Ω - **②** G_{α} is a maximal subgroup for all $\alpha \in \Omega$ - All orbital graphs of G are connected #### **Definition** The **orbital diameter** of G is defined to be the maximum of the diameters of the orbital graphs of G. It is denoted by $diam_O(G,\Omega)$. #### **Definition** Let $\mathcal C$ be an infinite class of finite primitive permutation groups. The class $\mathcal C$ is said to be **bounded** if there exists an integer $d \geq 1$ such that all the groups in $\mathcal C$ have orbital diameters bounded by d. #### **Definition** Let $\mathcal C$ be an infinite class of finite primitive permutation groups. The class $\mathcal C$ is said to be **bounded** if there exists an integer $d \geq 1$ such that all the groups in $\mathcal C$ have orbital diameters bounded by d. ## Example - $G = S_n$, $\Omega = I^{\{k\}}$, the set of k-subsets of $I := \{1, \ldots, n\}$, - Orbitals: $\Delta_i = \{(A, B) : |A \cap B| = i\}, \ 0 \le i \le k$, - $diam_O(G, \Omega) = k$ BOUNDED class. #### **Definition** Let $\mathcal C$ be an infinite class of finite primitive permutation groups. The class $\mathcal C$ is said to be **bounded** if there exists an integer $d \geq 1$ such that all the groups in $\mathcal C$ have orbital diameters bounded by d. ## Example - - Orbitals: $\Delta_i = \{(A, B) : |A \cap B| = i\}, \ 0 \le i \le k$, - $diam_O(G, \Omega) = k$ BOUNDED class. - $G = S_n$, $\Omega = I^{(k,l)}$, the set of (k,l)-partitions of I, - Later: $diam_O(G,\Omega) > \frac{kl}{4} 1$ NOT BOUNDED class. Question: What are the structures of the primitive groups in such a bounded class \mathcal{C} ? Question: What are the structures of the primitive groups in such a bounded class C? Fact: All finite primitive permutation groups are of one of the following types (due to Aschbacher, O'Nan and Scott): - Affine - Almost simple - Simple diagonal - Product action - Twisted wreath action ## Theorem (Liebeck, Machpherson, Tent, 2010) Let $\mathcal C$ be an infinite class of almost simple finite primitive permutation groups and suppose $\mathcal C$ is bounded. ## Theorem (Liebeck, Machpherson, Tent, 2010) Let $\mathcal C$ be an infinite class of almost simple finite primitive permutation groups and suppose $\mathcal C$ is bounded. Then for $G\in\mathcal C$, one of the following must hold: ## Theorem (Liebeck, Machpherson, Tent, 2010) Let $\mathcal C$ be an infinite class of almost simple finite primitive permutation groups and suppose $\mathcal C$ is bounded. Then for $G\in\mathcal C$, one of the following must hold: • $G = S_n$ or A_n acting on k-subsets of $\{1, \ldots, n\}$, k bounded. ## Theorem (Liebeck, Machpherson, Tent, 2010) Let $\mathcal C$ be an infinite class of almost simple finite primitive permutation groups and suppose $\mathcal C$ is bounded. Then for $G\in\mathcal C$, one of the following must hold: - $G = S_n$ or A_n acting on k-subsets of $\{1, \ldots, n\}$, k bounded. - $G = Cl_n(q)$ acting on k-subspaces of $V_n(q)$, k bounded. ## Theorem (Liebeck, Machpherson, Tent, 2010) Let $\mathcal C$ be an infinite class of almost simple finite primitive permutation groups and suppose $\mathcal C$ is bounded. Then for $G\in\mathcal C$, one of the following must hold: - $G = S_n$ or A_n acting on k-subsets of $\{1, \ldots, n\}$, k bounded. - $G = Cl_n(q)$ acting on k-subspaces of $V_n(q)$, k bounded. - $G = X_r(q)$, Lie type, r bounded, $|G_{\alpha}|$ unbounded or $G_{\alpha} = X_r(q_0)$ where $|F_q:F_{q_0}|$ bounded. ## Theorem (Liebeck, Machpherson, Tent, 2010) Let $\mathcal C$ be an infinite class of almost simple finite primitive permutation groups and suppose $\mathcal C$ is bounded. Then for $G\in\mathcal C$, one of the following must hold: - $G = S_n$ or A_n acting on k-subsets of $\{1, \ldots, n\}$, k bounded. - $G = CI_n(q)$ acting on k-subspaces of $V_n(q)$, k bounded. - $G = X_r(q)$, Lie type, r bounded, $|G_{\alpha}|$ unbounded or $G_{\alpha} = X_r(q_0)$ where $|F_q:F_{q_0}|$ bounded. Conversely, all such classes of primitive permutation groups are bounded. Recall: The orbital diameter of G is the maximum of the diameters of all orbital graphs of G. Recall: The orbital diameter of G is the maximum of the diameters of all orbital graphs of G. #### Questions: • Given an integer $d \ge 1$, can we find all primitive permutation groups whose orbital diameters are bounded by d? Recall: The orbital diameter of G is the maximum of the diameters of all orbital graphs of G. #### Questions: - Given an integer $d \ge 1$, can we find all primitive permutation groups whose orbital diameters are bounded by d? - **②** For small d, e.g d = 2, can we find all primitive permutation groups for which there exists an orbital graph of diameter d? #### Main Results <u>Fact:</u> All finite primitive permutation groups are of one of the following types (due to Aschbacher, O'Nan and Scott): - Affine - **2** Almost simple $\rightarrow Soc(G) = A_n \Rightarrow G = A_n \text{ or } S_n \ (n \ge 4, n \ne 6).$ - Simple diagonal - Product action - Twisted wreath action Let $G = S_n$ act primitively on a set Ω and $H := G_\alpha$. Then one of the following holds: Let $G = S_n$ act primitively on a set Ω and $H := G_\alpha$. Then one of the following holds: • $H \cong S_k \times S_{n-k}$, $\Omega = I^{\{k\}}$, the set of k-subsets of $I := \{1, \ldots, n\}$. Let $G = S_n$ act primitively on a set Ω and $H := G_\alpha$. Then one of the following holds: - ② $H \cong S_k \wr S_l$, $\Omega = I^{(k,l)}$ H, the set of (k,l)-partitions of I. Let $G = S_n$ act primitively on a set Ω and $H := G_\alpha$. Then one of the following holds: - $H \cong S_k \times S_{n-k}$, $\Omega = I^{\{k\}}$, the set of k-subsets of $I := \{1, \ldots, n\}$. - ② $H \cong S_k \wr S_l$, $\Omega = I^{(k,l)}$ H, the set of (k,l)-partitions of I. - H is primitive on I. Let $G = S_n$ act primitively on a set Ω and $H := G_\alpha$. Then one of the following holds: - $H \cong S_k \times S_{n-k}$, $\Omega = I^{\{k\}}$, the set of k-subsets of $I := \{1, \ldots, n\}$. - ② $H \cong S_k \wr S_l$, $\Omega = I^{(k,l)}$ H, the set of (k,l)-partitions of I. - H is primitive on I. Case 1: Action of G on $I^{\{k\}}$ Orbital graphs Γ_i , $V(\Gamma_i) = I^{\{k\}}$, $E(\Gamma_i) = \{\{A, B\} : |A \cap B| = i\}$ Let $G = S_n$ act primitively on a set Ω and $H := G_\alpha$. Then one of the following holds: - **1** $H \cong S_k \times S_{n-k}$, $\Omega = I^{\{k\}}$, the set of k-subsets of $I := \{1, \ldots, n\}$. - ② $H \cong S_k \wr S_l$, $\Omega = I^{(k,l)}$ H, the set of (k,l)-partitions of I. - H is primitive on I. # Case 1: Action of G on $I^{\{k\}}$ Orbital graphs Γ_i , $V(\Gamma_i) = I^{\{k\}}$, $E(\Gamma_i) = \{\{A, B\} : |A \cap B| = i\}$ • $diam_O(G,\Omega) \leq k$ Let $G = S_n$ act primitively on a set Ω and $H := G_\alpha$. Then one of the following holds: - $H \cong S_k \times S_{n-k}$, $\Omega = I^{\{k\}}$, the set of k-subsets of $I := \{1, \ldots, n\}$. - ② $H \cong S_k \wr S_l$, $\Omega = I^{(k,l)}$ H, the set of (k,l)-partitions of I. - H is primitive on I. ## Case 1: Action of G on $I^{\{k\}}$ Orbital graphs Γ_i , $V(\Gamma_i) = I^{\{k\}}$, $E(\Gamma_i) = \{\{A, B\} : |A \cap B| = i\}$ - $diam_O(G,\Omega) \leq k$ - Orbital graphs: Γ_i what is $diam(\Gamma_i)$? # Main results: $G = S_n$, action of G on $I^{\{k\}}$ | n | $diam(\Gamma_0)$ | $diam(\Gamma_1)$ | $diam(\Gamma_2)$ | | $diam(\Gamma_{\lfloor k/2 \rfloor})$ | $diam(\Gamma_i)$ | | |------------|-----------------------------------------------|-----------------------------------------------|-------------------------------------------------|------------------------------------------------------|--------------------------------------|------------------------------------------|---| | 2k + 1 | : | : | : | : | 2 | $\left\lceil \frac{k}{k-i} \right\rceil$ | | | 2k + 2 | : | : | : | : | : | : | : | | : | : | : | ÷ | : | 2 | | : | | : | $\left\lceil \frac{n-k-1}{n-2k} \right\rceil$ | $\left\lceil \frac{n-k}{n-2k+2} \right\rceil$ | $\left\lceil \frac{n-k+1}{n-2k+4} \right\rceil$ | $\left\lceil \frac{n-k+(i-1)}{n-2k+2i} \right\rceil$ | 2 | : | : | | : | : | : | : | 2 | 2 | | : | | : | : | : | : | 2 | 2 | : | : | | 3k - 4 | : | : | 2 | 2 | 2 | : | : | | 3k - 3 | : | : | 2 | 2 | 2 | : | : | | 3k - 2 | : | 2 | 2 | 2 | 2 | : | : | | 3k - 1 | 2 | 2 | 2 | 2 | 2 | : | : | | 3 <i>k</i> | 2 | 2 | 2 | 2 | 2 | : | : | | : | : | : | : | : | : | : | : | # Main results: $G = S_n$, action of G on $I^{(k,l)}$, n = kI Case 2: Action of G on $I^{(k,l)}$, n=klLet A and B be two (k,l)-partitions of $\{1,\ldots,n\}$. Write $A=A_1|\ldots|A_l$ and $B=B_1|\ldots|B_l$, where $|A_i|=|B_j|=k$. Define the $l\times l$ matrix l_{AB} , by $(l_{AB})_{ii}=|A_i\cap B_i|$. # Main results: $G = S_n$, action of G on $I^{(k,l)}$, n = kl Case 2: Action of G on $I^{(k,l)}$, n=klLet A and B be two (k,l)-partitions of $\{1,\ldots,n\}$. Write $A=A_1|\ldots|A_l$ and $B=B_1|\ldots|B_l$, where $|A_i|=|B_j|=k$. Define the $l\times l$ matrix l_{AB} , by $$(I_{AB})_{ij}=|A_i\cap B_j|.$$ If M and N are two $I \times I$ matrices with row and column sums equal to k then we write $N \sim M$ if M can be obtained from N by a permutation of rows and columns. Note that \sim is an equivalence relation. Let [M] denote the equivalence class of M under \sim . # Main results: $G = S_n$, action of G on $I^{(k,l)}$, n = kl <u>Orbitals:</u> $\Delta_{[M]} = \{(A, B) : I_{AB} \sim M\}$, where M is an $I \times I$ matrix with row and column sums equal to k. # Main results: $G = S_n$, action of G on $I^{(k,l)}$, n = kI <u>Orbitals:</u> $\Delta_{[M]} = \{(A, B) : I_{AB} \sim M\}$, where M is an $I \times I$ matrix with row and column sums equal to k. Orbital graphs: $\Gamma_{[M]}$, where $$V(\Gamma_{[M]}) = I^{(k,l)}$$ $$E(\Gamma_{[M]}) = \{ \{A, B\} : (A, B) \in \Delta_{[M]} \}.$$ # Main results: $G = S_n$, action of G on $I^{(k,l)}$, n = kl <u>Orbitals:</u> $\Delta_{[M]} = \{(A, B) : I_{AB} \sim M\}$, where M is an $I \times I$ matrix with row and column sums equal to k. Orbital graphs: $\Gamma_{[M]}$, where $$V(\Gamma_{[M]}) = I^{(k,l)}$$ $$E(\Gamma_{[M]}) = \{ \{A, B\} : (A, B) \in \Delta_{[M]} \}.$$ Note: Matrices of the form M are called k-doubly stochastic. # Main results: $G = S_n$, action of G on $I^{(k,l)}$, n = kl ## Example $$1 = k = 3$$ $$M_1 = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}, M_2 = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}, M_3 = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix},$$ $$M_4 = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right).$$ ### Example $$\begin{split} & \textit{I} = \textit{k} = 3 \\ & \textit{M}_1 = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}, \ \textit{M}_2 = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}, \ \textit{M}_3 = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}, \\ & \textit{M}_4 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}. \ \text{Let's look at $\Gamma_{[M]}$, where $M = M_2$.} \end{split}$$ # Example $$\begin{split} & I = k = 3 \\ & M_1 = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}, \ M_2 = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}, \ M_3 = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}, \\ & M_4 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}. \ \text{Let's look at } \Gamma_{[M]}, \ \text{where } M = M_2. \end{split}$$ $$A = 123|456|789$$ — $B = 143|256|789$ | $C_1 = 123|567|489$ | $C_2 = 147|256|389$ | $C_3 = 147|258|369$ | $C_4 = 189|234|567$ | $C_5 = 147|258|369$ # Example $$\begin{split} & I = k = 3 \\ & M_1 = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}, \ M_2 = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}, \ M_3 = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}, \\ & M_4 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}. \ \text{Let's look at $\Gamma_{[M]}$, where $M = M_2$.} \end{split}$$ $$A = 123|456|789$$ — $B = 143|256|789$ $C_1 = 123|567|489$ $C_2 = 147|256|389$ $B_1 = 189|234|567$ $B_2 = 147|258|369$ So $d(A, B_1) = 2$ and $d(A, B_2) = 3$ and hence $diam(\Gamma_{[M]}) = 3$. # Theorem (A.S, 2015) Let (G,Ω) be a finite primitive permutation group where $G=S_n$ or A_n , and $\Omega=I^{(k,l)}$. Then ### Theorem (A.S, 2015) Let (G,Ω) be a finite primitive permutation group where $G=S_n$ or A_n , and $\Omega=I^{(k,l)}$. Then • $diam_O(G,\Omega) \ge \frac{kl}{4} - 1$. Hence if $diam_O(G,\Omega) \le c$ then $n \le 2c(2c+1)$. ### Theorem (A.S, 2015) Let (G,Ω) be a finite primitive permutation group where $G=S_n$ or A_n , and $\Omega=I^{(k,l)}$. Then - $diam_O(G,\Omega) \ge \frac{kl}{4} 1$. Hence if $diam_O(G,\Omega) \le c$ then $n \le 2c(2c+1)$. - **②** diam_O $(G,\Omega) \le 5$ if and only if (k,l) are in the following table: | 1 | 2 | 3 | 4 | 5 | 6 | |---|-----------|-----|-----|---|---| | k | ≤ 11 | ≤ 5 | ≤ 3 | 2 | 2 | ### Theorem (A.S, 2015) Let (G,Ω) be a finite primitive permutation group where $G=S_n$ or A_n , and $\Omega=I^{(k,l)}$. Then - $diam_O(G,\Omega) \ge \frac{kl}{4} 1$. Hence if $diam_O(G,\Omega) \le c$ then $n \le 2c(2c+1)$. - **②** diam $_O(G,\Omega) \le 5$ if and only if (k,l) are in the following table: | 1 | 2 | 3 | 4 | 5 | 6 | |---|-----------|-----|-----|---|---| | k | ≤ 11 | ≤ 5 | ≤ 3 | 2 | 2 | • If $n = k^2$, let $\Gamma_{[M]}$ be the orbital graph where M is the $k \times k$ matrix with all entries equal to 1. Then $diam(\Gamma_{[M]}) = 2$. Let $$M = M_{kl} = \begin{pmatrix} kl_{l-2} & 0 & 0 \\ \hline 0 & 1 & k-1 \\ 0 & k-1 & 1 \end{pmatrix}$$ Let $$M = M_{kl} = \begin{pmatrix} kl_{l-2} & 0 & 0 \\ \hline 0 & 1 & k-1 \\ 0 & k-1 & 1 \end{pmatrix}$$ ### Proposition $diam(\Gamma_{[M]}) \geq \frac{kl}{4} - 1.$ Let $$M = M_{kl} = \begin{pmatrix} \frac{kI_{l-2}}{0} & 0 & 0\\ 0 & 1 & k-1\\ 0 & k-1 & 1 \end{pmatrix}$$ # Proposition $$diam(\Gamma_{[M]}) \geq \frac{kl}{4} - 1.$$ #### Idea of proof. Suppose k is even and l=3. Write $X=\underbrace{A_1A_2}_{X_1}|\underbrace{B_1B_2}_{X_2}|\underbrace{C_1C_2}_{X_3}$ and $$Y = A_1B_2 | B_1C_2 | C_1A_2$$, where $|A_i| = |B_i| = |C_i| = k/2$. Let $$M = M_{kl} = \begin{pmatrix} kl_{l-2} & 0 & 0 \\ \hline 0 & 1 & k-1 \\ 0 & k-1 & 1 \end{pmatrix}$$ ### Proposition $$diam(\Gamma_{[M]}) \geq \frac{kl}{4} - 1$$. #### Idea of proof. Suppose k is even and l=3. Write $X=\underbrace{A_1A_2}_{X_1}|\underbrace{B_1B_2}_{X_2}|\underbrace{C_1C_2}_{X_3}$ and $$Y = \underbrace{A_1 B_2}_{Y_1} |\underbrace{B_1 C_2}_{Y_2}| \underbrace{C_1 A_2}_{Y_3}$$, where $|A_i| = |B_i| = |C_i| = k/2$. Note that every path of length in $\Gamma_{[M]}$ corresponds to a sequence of transpositions. Suppose P is a path between X and Y and σ_P is the product of the corresponding transpositions. Let $$M = M_{kl} = \begin{pmatrix} kl_{l-2} & 0 & 0 \\ \hline 0 & 1 & k-1 \\ 0 & k-1 & 1 \end{pmatrix}$$ # Proposition $$diam(\Gamma_{[M]}) \geq \frac{kl}{4} - 1.$$ #### Idea of proof. Suppose k is even and l=3. Write $X=\underbrace{A_1A_2}_{X_1}|\underbrace{B_1B_2}_{X_2}|\underbrace{C_1C_2}_{X_3}$ and $$Y = \underbrace{A_1 B_2}_{Y_1} |\underbrace{B_1 C_2}_{Y_2}| \underbrace{C_1 A_2}_{Y_3}, \text{ where } |A_i| = |B_i| = |C_i| = k/2. \text{ Note that every path of }$$ length in $\Gamma_{[M]}$ corresponds to a sequence of transpositions. Suppose P is a path between X and Y and σ_P is the product of the corresponding transpositions. Now σ_P must move at least k/2 points from each X_i . Therefore σ_P must move at least kl/2 points in total, and hence cannot be written as a product of fewer than kl/4 transpositions. # Proposition (A.S, 2015) Suppose k = I, and let M be the $I \times I$ matrix with all entries equal to 1. Then $diam(\Gamma_{[M]}) = 2$. ### Example ### Proposition (A.S, 2015) Suppose k = I, and let M be the $I \times I$ matrix with all entries equal to 1. Then $diam(\Gamma_{[M]}) = 2$. ### Example A = 1234|5678|9101112|13141516 B = 121516|3456|78910|11121314 ### Proposition (A.S, 2015) Suppose k = I, and let M be the $I \times I$ matrix with all entries equal to 1. Then $diam(\Gamma_{[M]}) = 2$. ### Example $$A = 1234|5678|9101112|13141516$$ $B = 121516|3456|78910|11121314$ $$C = 15913|261014|371115|481216$$ ### Proposition (A.S, 2015) Suppose k = I, and let M be the $I \times I$ matrix with all entries equal to 1. Then $diam(\Gamma_{[M]}) = 2$. #### Example A = 1234|5678|9101112|13141516 B = 121516|3456|78910|11121314 $$C = 15913|261014|371115|481216$$ $$I_{AB} = \left(\begin{array}{cccc} 2 & 2 & 0 & 0 \\ 0 & 2 & 2 & 0 \\ 0 & 0 & 2 & 2 \\ 2 & 0 & 0 & 2 \end{array}\right)$$ ### Proposition (A.S, 2015) Suppose k = I, and let M be the $I \times I$ matrix with all entries equal to 1. Then $diam(\Gamma_{[M]}) = 2$. #### Example $$A = 1234|5678|9101112|13141516$$ $B = 121516|3456|78910|11121314$ $$C = 15913|261014|371115|481216$$ $$I_{AB} = \left(\begin{array}{cccc} 2 & 2 & 0 & 0 \\ 0 & 2 & 2 & 0 \\ 0 & 0 & 2 & 2 \\ 2 & 0 & 0 & 2 \end{array} \right) \rightarrow \left(\begin{array}{cccc} 1 & 2 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 2 \\ 2 & 0 & 0 & 1 \end{array} \right)$$ ### Proposition (A.S, 2015) Suppose k = I, and let M be the $I \times I$ matrix with all entries equal to 1. Then $diam(\Gamma_{[M]}) = 2$. ### Example $$A = 1234|5678|9101112|13141516$$ $B = 121516|3456|78910|11121314$ $$C = 15913|261014|371115|481216$$ $$I_{AB} = \left(\begin{array}{cccc} 2 & 2 & 0 & 0 \\ 0 & 2 & 2 & 0 \\ 0 & 0 & 2 & 2 \\ 2 & 0 & 0 & 2 \end{array}\right) \rightarrow \left(\begin{array}{cccc} 1 & 2 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 2 \\ 2 & 0 & 0 & 1 \end{array}\right) \rightarrow \left(\begin{array}{cccc} 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \\ 2 & 0 & 0 & 0 \end{array}\right)$$ ### Proposition (A.S, 2015) Suppose k = I, and let M be the $I \times I$ matrix with all entries equal to 1. Then $diam(\Gamma_{[M]}) = 2$. #### Example A = 1234|5678|9101112|13141516 B = 121516|3456|78910|11121314 $$C = 15913|261014|371115|481216$$ $$I_{AB} = \begin{pmatrix} 2 & 2 & 0 & 0 \\ 0 & 2 & 2 & 0 \\ 0 & 0 & 2 & 2 \\ 2 & 0 & 0 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 2 \\ 2 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \\ 2 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$ ### Proposition (A.S, 2015) Suppose k = I, and let M be the $I \times I$ matrix with all entries equal to 1. Then $diam(\Gamma_{[M]}) = 2$. #### Example $$A = 1234|5678|9101112|13141516$$ $B = 121516|3456|78910|11121314$ $$C = 15913|261014|371115|481216$$ $$I_{AB} = \begin{pmatrix} 2 & 2 & 0 & 0 \\ 0 & 2 & 2 & 0 \\ 0 & 0 & 2 & 2 \\ 2 & 0 & 0 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 2 \\ 2 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \\ 2 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$ Proof uses the $\underline{\text{fact}} \colon$ every doubly-stochastic matrix has a positive diagonal. Case 3: Action of G on (G : H), H primitive on I, $H \neq A_n$ In this case |H| must be 'small': Case 3: Action of G on (G : H), H primitive on I, $H \neq A_n$ In this case |H| must be 'small': Bochert, 1889: $|G:H| \ge \lfloor \frac{n+1}{2} \rfloor!$ Case 3: Action of G on (G : H), H primitive on I, $H \neq A_n$ In this case |H| must be 'small': Bochert, 1889: $|G:H| \ge \lfloor \frac{n+1}{2} \rfloor$! Praeger & Saxl, 1980: $|H| < 4^n$ Case 3: Action of G on (G : H), H primitive on I, $H \neq A_n$ In this case |H| must be 'small': Bochert, 1889: $|G:H| \ge \left\lfloor \frac{n+1}{2} \right\rfloor$! Praeger & Saxl, 1980: $|H| < 4^n$ Maroti, 2002: $|H| < 2^n \ (n > 24)$ Case 3: Action of G on (G:H), H primitive on I, $H \neq A_n$ In this case |H| must be 'small': Bochert, 1889: $|G:H| \ge \left\lfloor \frac{n+1}{2} \right\rfloor$! Praeger & Saxl, 1980: $|H| < 4^n$ Maroti, 2002: $|H| < 2^n \ (n > 24)$ Suppose Γ is an orbital graph of diameter d and valency k. Case 3: Action of G on (G : H), H primitive on I, $H \neq A_n$ In this case |H| must be 'small': Bochert, 1889: $|G:H| \ge \left\lfloor \frac{n+1}{2} \right\rfloor$! Praeger & Saxl, 1980: $|H| < 4^n$ Maroti, 2002: $|H| < 2^n \ (n > 24)$ Suppose Γ is an orbital graph of diameter d and valency k. Then $$|G:H| \le 1 + k + k(k-1) + \dots + k(k-1)^{d-1}$$ $< 1 + k + k^2 + \dots + k^d < (2|H|)^{d+1}.$ Case 3: Action of G on (G : H), H primitive on I, $H \neq A_n$ In this case |H| must be 'small': Bochert, 1889: $|G:H| \ge \left\lfloor \frac{n+1}{2} \right\rfloor!$ Praeger & Saxl, 1980: $|H| < 4^n$ Maroti, 2002: $|H| < 2^n \ (n > 24)$ Suppose Γ is an orbital graph of diameter d and valency k. Then $$|G:H| \le 1 + k + k(k-1) + \dots + k(k-1)^{d-1}$$ $< 1 + k + k^2 + \dots + k^d < (2|H|)^{d+1}.$ e.g. $d=2 \Rightarrow n \leq 20 \rightarrow Magma$ Prove similar results for other almost simple groups whose socle is a simple group of Lie type, e.g. $PSL_n(q)$, $PSp_{2m}(q)$ etc. Prove similar results for other almost simple groups whose socle is a simple group of Lie type, e.g. $PSL_n(q)$, $PSp_{2m}(q)$ etc. - Almost complete results for $Soc(G) = PSL_2(q)$. Maximal subgroups (in $PSL_2(q)$, q odd) to consider: - O_{q-1} , - O_{q+1} , - $PGL_2(q_0)$, where $q = q_0^2$, - **5** $PSL_2(q_0)$, where $q = q_0^r$ and r is an odd prime, - \bigcirc A_4 , - \bigcirc A_5 , - \circ S_4 . #### Theorem (A.S, 2016) Let $G \leq Sym(\Omega)$ be a finite primitive permutation group with $soc(G) = PSL_2(q)$, $\Omega = (G : H)$ and $\Gamma \leq Out(PSL_2(q))$. • If $diam_O(G,\Omega) \le 2$ then G must be in the following table: #### Theorem (A.S, 2016) Let $G \leq Sym(\Omega)$ be a finite primitive permutation group with $soc(G) = PSL_2(q)$, $\Omega = (G : H)$ and $\Gamma \leq Out(PSL_2(q))$. • If $diam_O(G,\Omega) \le 2$ then G must be in the following table: | G/Γ | Н/Г | Notes | |----------------|--------------|---------------------------------| | $PSL_2(q_0^2)$ | $PGL_2(q_0)$ | $q_0 \equiv 3 \pmod{4}$ | | $PSL_2(q)$ | $D_{2(q-1)}$ | $q=2^e$, e odd, $\Gamma eq 1$ | | $PSL_2(q)$ | $D_{2(q+1)}$ | q even | | $PSL_2(q_0^3)$ | $PSL_2(q_0)$ | q_0 odd $\Gamma \neq 1$ | | $PSL_2(q_0^r)$ | $PSL_2(q_0)$ | $q_0 \neq 2$ even, $r = 2,3$ | + some small examples. ### Theorem (continued...) • Groups for which there exists families of orbital graphs of diameter 2 include: | G/Γ | Н/Г | Notes | |----------------|--------------|-------------------------| | $PSL_2(q)$ | D_{q-1} | q odd | | $PSL_2(q)$ | $D_{2(q-1)}$ | q even > 4 | | $PSL_2(q_0^2)$ | $PGL_2(q_0)$ | $q_0 \equiv 3 \pmod{4}$ | # Motivation\ Summary Recall: The orbital diameter of G is the maximum of the diameters of all orbital graphs of G. # Motivation\ Summary Recall: The orbital diameter of G is the maximum of the diameters of all orbital graphs of G. #### Questions: • Given an integer $d \ge 1$, can we find all primitive permutation groups whose orbital diameters are bounded by d? # Motivation\ Summary Recall: The orbital diameter of G is the maximum of the diameters of all orbital graphs of G. #### Questions: - Given an integer $d \ge 1$, can we find all primitive permutation groups whose orbital diameters are bounded by d? - **②** For small d, e.g d = 2, can we find all primitive permutation groups for which there exists an orbital graph of diameter d? # Thank you # Thank you!