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foundational work of Davydov and Tombak who have obtained the exact possible sizes of large
maximal caps. A new self-contained proof of the existence and the structure of the largest
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1. CODES

Let C be a binary linear code of lengthN , and minimum distanced = 4 with r check
symbols. Putr = n+1. SoC has cardinality|C| = 2N−r andC has linear (vector-space)
dimension equal toN − r.
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Let C⊥ denote the dual code. ThenC⊥ has lengthN and dimensionr = n + 1.
Choosing a basis we can think ofC⊥ as a matrix (the check matrix) of sizer × N . Then
each of theN columns can be regarded as a point inΣ = PG(n, 2), the projective space of
dimensionn overGF (2).

Warning: Here, and in the sequel, dimension normally means projective dimension.
Sinced = 4, the columns ofC⊥ are all nonzero, no two are equal, and no column of

C⊥ equals a sum of two other columns ofC⊥. ThereforeC gives rise to acapS in Σ of
sizeN , i.e., a set ofN points inΣ with no 3 collinear. Conversely, given such a cap we can
recoverC.

The connections between codes and caps have been well studied (see for example [1],
[4–6], [11]). In particular the following can be shown.

Theorem 1.1. The capS is maximal if and only if the codeC has covering radius2.

If the codeC of minimum distance 4 has covering radius 2 it is calledquasi-perfect(see
[4]). The fundamental nature of such codesC using Theorem 1.1, is thatC is ‘‘nonlengthen-
ing’’ in the sense that no nonzero column can be added to the check matrix without reducing
the code distance. Using this one can show that any binary linear code withd = 4 is either
a quasi-perfect code or a shortening of some quasi-perfect code withd = 4. Because of
the existence of a large body of geometric techniques for studying caps we concentrate
on caps.

2. MAXIMAL CAPS IN Σ = PG(n, 2)

SupposeS is any cap inΣ. One can argue as follows. By definition, no 3 points ofS
are collinear. It follows that each line ofΣ intersectsS̄, the complement ofS. As S gets
bigger,S̄ gets smaller while still intersecting every line. Then whenS gets large one can
show, sincēS is small and meets all lines, thatS̄ will contain an hyperplaneL. We want to
find the cut-off point for|S|.

We generalize the usual definition of‘‘affine’’ as follows.

Definition 2.1. In Σ = PG(n, 2) a setS is affine ifS lies in the complement of some
hyperplaneL of Σ.

Remark. A single point always forms an affine set. However, for single points we will
work with a specified hyperplaneL, i.e., a point is said to beaffine if it does not lie on the
specified hyperplaneL, in accordance with standard usage.

Note that ifS is affine and a maximal cap thenS must consist of the affine spaceΣ \ L.
The following result is not diff icult (see [6]).

Theorem 2.2. Let S be a maximal cap inΣ = PG(n, 2). Then|S| ≤ 2n. Moreover,
|S| = 2n if and only if S is the complement of an hyperplane inΣ, i.e., if and only if
S = AG(n, 2), the affinen dimensional space overGF (2).

The following sheds some light on the cut-off point mentioned above (see [10] p. 108).

Theorem 2.3. If S is a maximal cap inΣ = PG(n, 2) which is not affine then|S| ≤
2n+1−1

3 .
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The following is easily shown.

Theorem 2.4. The bound of Theorem2.3 is best possible in the casen = 3. Moreover if
n = 3 and|S| = 5 thenS is the set of points in an ovoidO of PG(3, 2). Of the15 planes
in PG(3, 2), 10 meetO in 3 points and5 are tangent toO.

In a remarkable article [4] published in 1990, A. A. Davydov and L. M. Tombak make a
profound contribution to the theory. Related results have been obtained in [2] and [3]. To
explain some of these results we need some further background and definitions as follows.

In Σn = PG(n, 2) let S be any cap and letv be a point not inS. We say thatv is avertex
for S if whenever we joinv to a pointp of S the third pointq on the linevp is also inS.

Examples can be constructed as follows. LetSn be any cap inΣn. EmbedΣn in Σn+1
and letv be any point inΣn+1 \ Σn. We now construct a cap,Sn+1, in Σn+1 by adjoining
to Sn the set of all pointsq whereq is the third point of the linevp wherep is any point of
Sn. We have that|Sn+1| = 2|Sn| and thatSn+1 is maximal inΣn+1 if and only if Sn is
maximal inΣn. Note thatv now is a vertex for the capSn+1. This construction ofSn+1
from Sn is called thedoubling constructionor Plotkin construction.

In fact every vertex arises in this way. For, ifv is a vertex ofS andH is any hyperplane
not onv thenS is obtained by doublingS ∩ H from v.

In Σ = PG(n, 2) let T be any set of points. The setT is called ak-block (see [12]) if
every(n − k) dimensional subspace ofΣ contains at least one point ofT .

Let k = 2 and suppose thatT is a 2-block. LetZ be any subset ofT , let W be an
(n − 2) dimensional subspace ofΣ containing all the points ofZ and therefore all the
points ofT which are linearly dependent onZ. If W contains no further points ofT we
call it ageneralized tangentof T atZ. The 2-blockT is called atangential 2-blockif every
nonempty proper subsetZ of T has a generalized tangent ofT at Z. Note that ifZ is a
single point then a generalized tangent just means a tangent(n − 2) dimensional space at
this point in the usual sense of the term. The importance of tangential 2-blocks is that, as
pointed out by W. T. Tutte ([12]) all other 2-blocks can be regarded as certain‘‘derivatives’’
of them.

So far only three tangential 2-blocks have been found. These are the Fano plane, the
Desargues block consisting of the 10 points of a Desargues configuration in 3 dimensions
and the 5 dimensional Petersen block which represents the Petersen graph in a dual manner
with cut-sets representing circuits in the definition of linear dependence. It is conjectured
that these are the only tangential 2-blocks. It is a remarkable fact that a proof of this
conjecture would imply the celebrated 4-color theorem for planar graphs.

Some of the main results of [4] can be summarized as follows.

Theorem 2.5. No capS in Σ = PG(n, 2) with |S| > 2n−1 + 1 can be a2-block.

Theorem 2.6. If S is a maximal cap inΣ with |S| > 2n−1 + 1 and n ≥ 3, then
S is obtained by the doubling construction. It follows that if S is a maximal cap and
|S| > 2n−1 + 1 then eitherS is affine or else|S| = 2n−1 + 2i, for somei ≥ 1. It can be
shown thati ≤ n − 3. Moreover, if |S| = 2n−1 + 2n−3 or |S| = 2n−1 + 2n−4 then the
structure ofS is known andS is unique up to collineations ofΣ.

We now proceed to give a sketch of the proof by Davydov and Tombak of Theorem 2.6,
but casting it in a geometric framework consistent with our methods.
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Using Theorem 2.5 letH∞ denote an(n − 2) dimensional subspace that contains no
point of S. Let L1, L2, andL3 denote the three hyperplanes onH∞ in Σ. We denote by
A, B, andC the set of points ofS lying in L1, L2, andL3, respectively. Forp in A and
q in B the line joiningp to q meetsL3 in a point which cannot lie inS sinceS is a cap,
and also cannot lie inH∞. We denote byA + B the set of all such points. SinceS is a
cap, any line inL3 contains at most two points ofS. Then from the maximality ofS it
follows that each point ofL3 not inH∞ and not inA + B must be a point ofS. Therefore
|S| = |A| + |B| + (2n−1 − |A + B|). Let |S| = 2n−1 + α, with α ≥ 1. It follows that

|A + B| = |A| + |B| − α, with α ≥ 1.

Now suppose thatα ≥ 2. Let G denote the elementary abelian group of order2n+1

obtained from the vector spaceV (n + 1, 2) underlyingΣ. Then, sinceA, B are subsets of
G satisfying the above relation, it follows from an old result of Kneser in additive number
theory (see Kneser [8], [9], and Kemperman [7, p. 69]) thatA + B is periodic, i.e., there
existsg0 6= 0 in G with g0 + (A + B) = A + B. Theng0 corresponds to a pointv in L3
such that if we joinv to any pointw in A + B then the third point of this line also lies in
A + B. Since all points ofA + B are affine points ofL3 (i.e., are onL3 \ H∞) and since a
line of L3 contains just 2 affine points we get thatv is in H∞. It follows thatv is a vertex
for S ∩ L3. One can then show that in factv is a vertex for the entire capS. In other words
S is obtained by the doubling construction.

To finish the sketch of the proof of Theorem 2.6 let us now suppose that|S| = 2n−1 +
2n−3. ThenS is obtained by successively doubling, beginning with a cap of size 5 in
PG(3, 2), which must be the set of points on the ovoid described earlier. Therefore the
structure ofS can be described andS is unique. Using the fact that the structure of a cap
in PG(4, 2) of size 9 is unique, we can in a similar fashion obtain the structure ofS when
|S| = 2n−1 + 2n−4.

From Theorem 2.6 we obtain the following corollary (see [2–4]).

Corollary 2.7. Let n ≥ 3. In PG(n, 2) let S be a maximal cap withS not affine. Then
|S| ≤ 2n−1 + 2n−3. If |S| = 2n−1 + 2n−3 then the structure ofS is known and is unique.

(Actually, only the inequality part of this result is shown in [2].)

3. A GEOMETRIC RESULT

The proof of Corollary 2.7 that is given in [4] is very algebraic and uses the sophisticated
result on additive number theory by Kneser mentioned earlier as well as the crucial Theorem
2.5 which seems very diff icult to establish. The maximal capS of size2n−1+2n−3 (which is
unique up to collineations ofΣ = PG(n, 2)) is described by means of an intricate generator
matrix constructed inductively.

Here we give a transparent geometric construction ofS. Moreover, our construction also
provides examples of maximal capsS with |S| = 2n−1 + 2i for 0 ≤ i ≤ n − 3. Following
that we then present a new elementary and self-contained proof of Corollary 2.7. In fact
we prove the slightly stronger Corollary 3.6. Our proof does not use the results on additive
number theory nor does it use Theorem 2.5.

For the construction inΣ = PG(n, 2), let H∞ denote a subspace of dimensionn − 2.
Let L1, L2, andL3 denote the three hyperplanes ofΣ on H∞. Choose a subspaceΩ1 of
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dimensionn − 3 contained inL1 and not contained inH∞. Let Ω1 ∩ H∞ = Ψ. Let Ω2
denote a subspace ofL2 containing alsoΨ and of dimensionn−3. Denote the affine points
of Ω1,Ω2 by A andB respectively, i.e.,A, B denote all points ofΩ1,Ω2 not in H∞. So
|A| = |B| = 2n−3. PutS = A ∪ B ∪ C whereC denotes the set of all points inL3 not in
H∞ and not inA + B, whereA + B denotes the points of the formp + q with p ∈ A and
q ∈ B. ThenS is a maximal cap with|S| = 2n−1 +2n−3. Moreover, this construction can
be generalized. IfΩ1 andΩ2 have dimensioni thenS is a maximal cap of size2n−1 + 2i

for 0 ≤ i ≤ n − 3. If i = n − 2 the cap fails to be maximal. The unique maximal cap
containing it isAG(n, 2). If i = n − 1 we get the maximal capAG(n, 2).

Next we proceed to give a new proof of Corollary 2.7. Denote byXn the maximal cap
of size2n−1 + 2n−3 in PG(n, 2) described above. LetS be any nonaffine cap of size
2n−1 + 2n−3 contained inPG(n, 2). We will show thatS is isomorphic toXn.

Notation: If Y is any set,SY denotes the setS ∩ Y .

Proof of Corollary 2.7 We proceed by induction. The casen = 3 is easily checked by direct
computation. Thus we suppose thatΣ = PG(n, 2), n ≥ 4 and that|S| = 2n−1 + 2n−3.

Lemma 3.1. Let K be an hyperplane ofΣ with |SK| > |S|/2. ThenSK is an affine
cap inK, i.e., there is an hyperplane ofK containing no points ofSK.

Proof. EmbedSK in a maximal capT of K = PG(n − 1, 2). Then |T | ≥ |SK| >
|S|/2 = 2n−2 + 2n−4. Then by induction we have thatT and hence alsoSK is an affine
cap inK.

By a counting argument involving incidences of hyperplanes with pairs of points ofS
we may establish the existence of an hyperplane containing more than half of the points of
S. (The counting argument works for any setT in PG(n, 2) with |T | ≤ 2n − 1, not just
for caps.) LetH be an hyperplane such that|SH| is maximum amongst all hyperplanes.
ThenSH is a cap inPG(n − 1, 2) with |SH| = 2n−2 + 2n−4 + ε whereε ≥ 1. Since
|SH| > |S|/2 we conclude from Lemma 3.1 thatSH is an affine cap, i.e., that there is an
hyperplaneH∞ of H with SH∞ = ∅. Denote the other two hyperplanes containingH∞
by A andB.

Lemma 3.2. Any hyperplaneK with K 6= A, B, H contains at most2n−3 + 2n−5 + 3
2ε

points ofSH.

Proof. Define α := |K ∩ SH|. The number of points inS \ H is 2n−2 + 2n−4 − ε.
Therefore one of the two hyperplanes onK ∩ H other thanH (one of which isK), sayM ,
contains at least half these points. So we getα + 2n−3 + 2n−5 − ε/2 ≤ |SM | ≤ |SH| =
2n−2 + 2n−4 + ε. This givesα ≤ 2n−3 + 2n−5 + 3ε/2.

Lemma 3.3. Any hyperplaneK with K 6= A, B, H contains at least2n−3 + 2n−5 − 1
2ε

points ofSH.

Proof. Define β := |K ∩ SH|. Working in H let the pencil determined byK ∩ H∞
consist ofH∞, K ∩ H andM say. Note thatSM consists of exactly those points ofSH
not lying inK ∩ H. So|SM | = |S|/2 + ε − β. Now extendM to an hyperplane ofΣ not
equal toH and apply Lemma 3.2.
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Lemma 3.4. LetK be any hyperplane with|SK| = |S|/2 + θ whereθ ≥ 1. LetK∞ be
one of the hyperplanes ofK missingS guaranteed by Lemma3.1and letC andD be the
other two hyperplanes ofΣ on K∞. Thenθ ≤ 2n−4, |SC| ≥ 2n−3, and |SD| ≥ 2n−3. In
particular, ε ≤ 2n−4, |SA| ≥ 2n−3, and|SB| ≥ 2n−3.

Proof. Let c := |SC| andd := |SD|. Thenc + d = |S| − |SK| = |S|/2 − θ. Since
S is assumed to be nonaffine, no hyperplane missesS and thusSC 6= ∅. By joining a
point of C to the points ofD we get, sinceS is a cap, that|SK| ≤ 2n−1 − d. Similarly,
|SK| ≤ 2n−1 − c. Thus2|SK| ≤ 2n − (c + d), i.e., |S| + 2θ + c + d ≤ 2n. Therefore,
3|S|/2 + θ ≤ 2n. Since|S| = 2n−1 + 2n−3, this givesθ ≤ 2n−4.

Now without loss of generality,c ≤ d. Joining a point ofSC to each point ofSK yields
2n−2 + 2n−4 + θ affine (with respect toK∞) points ofD, none of which are inSD, since
S is a cap. Therefored + 2n−2 + 2n−4 + θ ≤ 2n−1. Thusd ≤ 2n−2 − 2n−4 − θ. From
the above,c + d + θ = |S|/2 = 2n−2 + 2n−4. Assume, by way of contradiction, that
c < 2n−3. Thend + θ > 2n−2 + 2n−4 − 2n−3, i.e.,d > 2n−2 − 2n−4 − θ. But from the
above,d ≤ 2n−2 − 2n−4 − θ and this contradiction provesc ≥ 2n−3. Sinced ≥ c, we also
haved ≥ 2n−3.

Lemma 3.5. Let Y be a nonempty affine subset ofPG(n, 2) wheren ≥ 2. Suppose
|Y | 6= 2n−1 and |Y | 6= 2n. Then there exist at least three hyperplanes ofPG(n, 2) which
contain more than|Y |/2 points ofY.

Proof. By induction onn. The casen = 2 is easily verif ied. Fixn ≥ 3. SinceY
is affine there exists a hyperplaneK which missesY . Let K∞ be any hyperplane of
K. Denote byM and N the other two hyperplanes ofPG(n, 2) which containK∞.
Let m = |M ∩ Y |, n = |N ∩ Y | where without loss of generalitym ≥ n. Then
m + n = |Y |.

We consider two cases.
Case I. For every choice ofK∞ we havem > |Y |/2. In this case, since there are at

least three distinct choices forK∞ and sinceK∞ = M ∩ K we get at least three distinct
hyperplanesM1, M2, andM3 each containing more than|Y |/2 points ofY .

Case II. There existsM with m = |Y |/2. ThenM ∩ Y is an affine subset ofM
and|M ∩ Y | 6= 2n−2, 2n−1. Therefore by induction there exist at least three hyperplanes
Ω1,Ω2, andΩ3 of M which contain more than half of the|Y |/2 points ofM ∩ Y . Let
Ri, Ni, andM be the three hyperplanes ofPG(n, 2) which containΩi for i = 1, 2, 3.
Without loss of generality|Ri ∩ Y | ≥ |Ni ∩ Y |. Then the three hyperplanesRi each
contain more than half of the points ofY . Finally sinceRi ∩ M = Ωi we see that the
hyperplanesR1, R2, andR3 are distinct.

Remark. One can prove a stronger version of Lemma 3.5 where the restrictions on|Y | are
replaced by the restrictionsY ∼=/ AG(n − 1, 2) andY ∼=/ AG(n, 2).

Now we proceed with the proof of Corollary 2.7. LetJ be one of the hyperplanes of
H guaranteed by Lemma 3.5 which contains more than half of the points ofSH. Then
|J ∩ SH| > 2n−3 + 2n−5 + ε/2. There are two hyperplanesU andV , different from
H which containJ . Since all the points ofS not in H lie in U ∪ V at least one of these
hyperplanes, sayU , satisfies|SU | > |S|/2.

Notation. Write |SU | = |S|/2 + θ whereθ ≥ 1.
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By Lemma 3.1,SU is an affine cap inU . Thus there is an hyperplaneU∞ of U which
missesS. LetC andD be the two hyperplanes ofΣ other thanU which containU∞. Now
sinceU 6= H the two sets{A, B} and{C, D} are different. Hence we may suppose that
C 6= A andC 6= B. Also C 6= H sinceSU ∩ C = ∅, whereasSU ∩ H = SJ 6= ∅.
ThereforeC ∈ {A, B, H}.

We have|SC| + |SD| + |SU | = |S|. Therefore,|SC| = |S|/2 − θ − |SD| ≤ |S|/2 −
θ − 2n−3 by Lemma 3.4, i.e.,|SC| ≤ 2n−3 + 2n−4 − θ. Of the points in the setSC
at least2n−3 + 2n−5 − ε/2 lie on H by Lemma 3.3. Therefore,SC ∩ A ≤ (2n−3 +
2n−4 − θ) − (2n−3 + 2n−5 − ε/2) = 2n−5 − θ + ε/2. By Lemma 3.4,|SA| ≥ 2n−3

and hence|SA \ SC| ≥ 2n−3 − (2n−5 − θ + ε/2) = 2n−3 − 2n−5 + θ − ε/2. Similarly
|SB \ SC| ≥ 2n−3 − 2n−5 + θ − ε/2.

Using Lemma 3.4 this last number is at least 1 and thus there exists at least one point in
SB and not inSC. Let us denote it byp0. Similarly, there existsq0 in SA \ SC. Working
in A, let ΩA denote the third member of the pencil of hyperplanes determined byH∞ and
C ∩ A. Form the hyperplaneΩ of Σ containingΩA andp0. PutΩB := Ω ∩ B.

Recall that a point is anaffine point of A (respectively,B, H) if it is a point of A
(respectively,B, H) not on H∞. Note that all points ofSA, SB, andSH are affine.
Also the points ofSA are partitioned byA ∩ C andΩA. Similarly, the points ofSB are
partitioned byB ∩ C andΩB becauseC ∩ B, H∞ andΩB form a pencil inB (due to the
fact thatC ∩ A andC ∩ B both containC ∩ H∞).

Now let p1 = p0 andp2 be two points ofSB with p1 = p0 in ΩB and letq1 andq2 be
two points ofSA \ SC. Thenq1 andq2 are points ofΩA. The pointsri := pi + qi are
affine points ofH. Supposer1 = r2. Now p1, q1 ∈ Ω impliesp1 + q1 ∈ Ω. Sinceq2 is
also inΩ, this implies that the line joiningp2 + q2 = p1 + q1 to q2 is in Ω, i.e.,p2 ∈ Ω. In
summary, ifp2 6∈ ΩB thenp1 + q1 6= p2 + q2.

Assume, by way of contradiction, that there existsp2 ∈ SB \ Ω. Forming all the
pointsp1 + q andp2 + q for q ∈ SA \ SC gives us a set of affine points ofH which
are not inS, sinceS is a cap, and this set is of size2|SA \ SC| = 2|SΩA|. From the
above,2|SΩA| ≥ 2n−2 − 2n−4 + 2θ − ε. However, the total number of affine points of
H not in S is 2n−1 − |SH| = 2n−1 − (2n−2 + 2n−4 + ε) = 2n−2 − 2n−4 − ε. Thus
2n−2 − 2n−4 +2θ − ε ≤ 2n−2 − 2n−4 − ε. This contradictsθ ≥ 1. We conclude that there
is no point inSB \ Ω so thatSB \ SC = SB.

Let q1 = q0 be a point ofSA \ SC. From the definition, it follows that the hyper-
plane containingΩB and q1 is Ω. Assume, by way of contradiction, that there exists
q2 ∈ SA ∩ C. In particular,q2 6∈ Ω. Hence ifp1, p2 are inΩB then, repeating a previous
argument,p1+q1 6= p2+q2. Therefore, as above, forming all pointsq1+p andq2+p wherep
is inSB\SC = SB gives a set of affine points inH not inS. By Lemma 3.4,|SB| ≥ 2n−3

so this set of affine points inH not in S has cardinality at least2(2n−3) = 2n−2. Again,
as above this gives2n−2 ≤ 2n−2 − 2n−4 − ε, a contradiction. We conclude that there are
no pointsq2 in SA ∩ C. ThusC ∩ SA = ∅. Using the same argument but interchanging
the roles ofA andB we obtainC ∩ SB = ∅.

Next, assume, by way of contradiction, thatD 6= A andD 6= B. ThenD 6= H since
SU ∩ D = ∅ whereasSU ∩ H = SJ 6= ∅. Interchanging the roles ofC andD then gives
thatD∩SA = ∅ andD∩SB = ∅. NowSA, SB, andSJ are disjoint subsets ofSU . From
Lemma 3.4,SA ≥ 2n−3 andSB ≥ 2n−3. By definition, |SJ | > (2n−2 + 2n−4 + ε)/2.
Therefore|SU | > 2n−3 + 2n−3 + (2n−2 + 2n−4 + ε)/2 > 2n−2 + 2n−3 + 2n−5. But
|SH| = 2n−2 +2n−4 + ε ≤ 2n−2 +2n−3 by Lemma 3.4. Thus|SU |> |SH|, contradicting
the maximality ofSH. Therefore eitherD = A or D = B.
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From Lemma 3.5 there exist at least three choices for the hyperplaneJ of H. LetJ1, J2,
andJ3 be 3 distinct hyperplanes ofH with each containing more than|SH|/2 points ofS.
Recall that fromJ we constructedU, C, andD. Thus fromJi we obtainUi, Ci, andDi

whereCi ∩ SA = Ci ∩ SB = ∅, forcingDi to be eitherA or B for i = 1, 2, 3. Without
loss of generalityD1 = D2 = B. SinceA∩B = H∞ we haveSA∩D1 = SA∩D2 = ∅.
In particular,SA ∩ C1 = ∅. ThenSA ∩ C1 = SA ∩ D1 = ∅. SinceC1, D1 andU1 form a
pencil of hyperplanes inΣ we obtainSA ⊂ U1. Similarly SA ⊂ U2. Furthermore, since
the threeJi are distinct, andJi = Ui ∩ H for i = 1, 2, 3 we have that the threeUi are
distinct. In particular,SA is contained in the 3 distinct hyperplanesA, U1, andU2.

Finally we assume, by way of contradiction, thatA, U1, andU2 are a pencil of hyperplanes
onA∩U1 = A∩U2 = U1 ∩U2. ThenH = (U1 ∩H)∪ (U2 ∩H)∪ (A∩H). Intersecting
with S givesSH = (U1 ∩SH)∪ (U2 ∩SH)∪ (A∩SH) = SJ1 ∪SJ2 sinceA∩SH = ∅.
Now J1 ⊂ U1 andJ2 ⊂ U2 impliesJ1 ∩J2 ⊂ U1 ∩U2 = A∩U1. Intersecting withS ∩H
givesS ∩ H ∩ J1 ∩ J2 ⊂ S ∩ H ∩ A ∩ U1 = ∅. Since the set on the left side containsSJ1
andSJ2 we conclude thatSJ1 andSJ2 are disjoint subsets ofSH. But this contradicts
the fact that|SJ1| and|SJ2| both exceed|SH|/2. This contradiction shows that the three
hyperplanes,A, U1, andU2, containingSA are linearly independent.

Therefore|SA| is at most2n−3 sinceSA is an affine subset ofA. But by Lemma 3.4
SA has at least2n−3 points. ThereforeSA = (A ∩ U1 ∩ U2) \ H∞ ∼= AG(n − 3, 2).

We have thatSA lies in the(n−3) dimensional subspaceΛA := A∩U1 ∩U2. Choose a
pointq0 in SB. Form the(n − 2) dimensional spaceΛ generated byq0 andΛA and denote
by ΛB its intersection withB. ThenΛB is also of dimensionn − 3 since no point ofSA
lies in B, andq0 6∈ SA. Suppose, by way of contradiction, thatq is a point ofSB which
is not inΛB . Joining the pointsq0 andq to the points ofSA yields2(2n−3) affine points
of H not in S. Thus|SH| ≤ 2n−1 − 2(2n−3) = 2n−2. But |SH| = 2n−2 + 2n−4 + ε
whereε ≥ 1 and we have a contradiction. Therefore all points ofSB lie in ΛB \ H∞. By
Lemma 3.4,|SB| ≥ 2n−3. ThereforeSB = ΛB \ H∞ ∼= AG(n − 3, 2). In particular,
|SB| = 2n−3.

Since|S| = 2n−1 + 2n−3, it follows that |SH| = 2n−1 − 2n−3. Moreover, sinceS
is a cap we have that the points ofSH are all the affine points ofH that do not lie in the
subspaceΛ. ThusS is obtained by the construction forXn described at the beginning of
this section.

It is interesting to note that this proof establishes Corollary 2.7 without invoking the
hypothesis of maximality there. Thus we have in fact proved the following result.

Corollary 3.6. Let n ≥ 3. In PG(n, 2) let S be a cap withS not affine. Then|S| ≤
2n−1 + 2n−3. If |S| = 2n−1 + 2n−3 then the structure ofS is known and is unique.

4. SOME PROPERTIES OF Xn

Our proof of Corollary 2.7 given above has the advantage of pointing the way to obtain-
ing several interesting combinatorial and geometric properties ofXn. We state a few of
these here.

Proposition 4.1. All but 15 of the hyperplanes ofPG(n, 2) wheren ≥ 3 meetXn in
exactly|Xn|/2 points. Each of these hyperplane intersections forms a copy ofXn−1. Of
the remaining15 hyperplanes, 5 of themA1, . . . , A5 meetXn in exactly2n−3 points
and the other10 hyperplanesH1, . . . , H10 meetXn in exactly2n−1 − 2n−3 points. The
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15 hyperplanes form a structure isomorphic to the hyperplanes ofPG(3, 2) in which
A1, . . . , A5 are the tangent planes to an ovoidO andH1, . . . , H10 are the secant planes
of O.

Thus for every hyperplaneK of Σ the cardinality ofXn ∩K is one of the three numbers
{2n−1 − 2n−3, 2n−2 + 2n−4, 2n−3} if n ≥ 3. ForX3, only the sizes 3 and 1 occur. Hence
X3 is a2-characterset and forn ≥ 4, Xn is a3-characterset.

Using our explicit construction ofXn (or invoking the general result of Theorem 2.6
implying thatXn is obtained by applying the doubling construction) one can see that the five
hyperplanesA1 · · ·A5 partitionXn into 5 disjoint sets:Xn = (Xn∩A1)t· · ·t(Xn∩A5).
Symmetrically each point ofXn lies in exactly 6 of the hyperplanesH1, . . . , H10.

Proposition 4.2. The automorphism group ofXn consists of the group of matrices of the
form (

A 0
C B

)

whereA ∈ Aut(X3) ∼= S5 (the symmetric group on5 letters), with A a 4 × 4 matrix,
B ∈ Aut(PG(n − 4, 2)), andC any matrix of size(n − 3) × 4.

We give a very rough sketch of the proof as follows. We examine the set of secants toXn.
Using our explicit geometric construction ofXn (or invoking the general doubling result
stated in Theorem 2.6) one sees thatΣ is the disjoint union of three sets:Σ = Xn t V t Z
where every point ofV lies on exactly|Xn|/2 secants and every point ofZ lies on exactly
|Xn|/5 = 2n−3 secants. Each point ofV is (see our previous definition) a vertex forXn.
Moreover,V is the set of points in a copy ofPG(n − 4, 2). The submatrixB acts onV .
The submatrixA acts on the copy ofPG(3, 2) containing the copy ofX3 from whichXn

is constructed by the doubling construction. It is easy to verify that Aut(X3) ∼= S5. In this
way one can show that Aut(Xn) is as described in Proposition 4.2.

Note added in Proof.We have now determined the complete structure of all maximal caps
in PG(n, 2) whose size is at least2n−1 + 1.
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