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1. CODES

Let C be a binary linear code of lengtN, and minimum distancé = 4 with r check
symbols. Put = n+ 1. SoC has cardinalityC| = 2V~ andC has linear (vector-space)
dimension equal t&v — 7.
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276 BRUEN, HADDAD, AND WEHLAU

Let C+ denote the dual code. Themn has lengthN and dimension = n + 1.
Choosing a basis we can think 6f- as a matrix (the check matrix) of sizex N. Then
each of thaV columns can be regarded as a pointiae= PG(n, 2), the projective space of
dimension: overGF(2).

Warning: Here, and in the sequel, dimension normally means projective dimension.

Sinced = 4, the columns ofC* are all nonzero, no two are equal, and no column of
C* equals a sum of two other columns@f-. ThereforeC gives rise to aap .S in X of
sizeN, i.e., a set ofV points inX with no 3 collinear. Conversely, given such a cap we can
recoverC'.

The connections between codes and caps have been well studied (see for example [1],
[4-6], [11]). In particular the following can be shown.

Theorem 1.1. The capS is maximal if and only if the cod€ has covering radiug.

If the codeC' of minimum distance 4 has covering radius 2 it is catiedsi-perfec{see
[4]). The fundamental nature of such codéasing Theorem 1.1, is thétis ‘‘nonlengthen-
ing’” in the sense that no nonzero column can be added to the check matrix without reducing
the code distance. Using this one can show that any binary linear codé withis either
a quasi-perfect code or a shortening of some quasi-perfect codel with. Because of
the existence of a large body of geometric techniques for studying caps we concentrate
on caps.

2. MAXIMAL CAPS IN ¥ = PG(n,2)

SupposeS is any cap inX. One can argue as follows. By definition, no 3 pointsSof
are collinear. It follows that each line af intersectsS, the complement of. As S gets
bigger, S gets smaller while still intersecting every line. Then wifegets large one can
show, sinces is small and meets all lines, théitwill contain an hyperplané. We want to
find the cut-off paint for|.S|.

We generalize the usual definition Uhffine’’ as follows.

Definition 2.1.  In ¥ = PG(n,2) a setS is affine if S lies in the complement of some
hyperplanel of 3.

Remark. A single point always forms an affine set. However, for single points we will
work with a specified hyperplang, i.e., a point is said to baffineif it does not lie on the
specified hyperplang, in accordance with standard usage.

Note that ifS is affine and a maximal cap thehmust consist of the affine spagg\ L.
The following result is not difficult (see [6]).

Theorem 2.2. Let S be a maximal cap ifrt = PG(n,2). Then|S| < 2". Moreovet
|S| = 2™ if and only if S is the complement of an hyperplane3 i.e, if and only if
S = AG(n, 2), the affinen dimensional space oveérF(2).

The following sheds some light on the cut-off point mentioned above (see [10] p. 108).

Theorem 2.3. If S is a maximal cap i2 = PG(n, 2) which is not affine thehS| <
ontl_q
=1
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The following is easily shown.

Theorem 2.4. The bound of Theoreth3is best possible in the cage= 3. Moreover if
n = 3 and|S| = 5 thenS is the set of points in an ovoi@ of PG(3,2). Of thel5planes
in PG(3,2),10 meetO in 3 points ands are tangent ta).

In a remarkable article [4] published in 1990, A. A. Davydov and L. M. Tombak make a
profound contribution to the theory. Related results have been obtained in [2] and [3]. To
explain some of these results we need some further background and definitions as follows.

In X, = PG(n,2)let.S be any cap and letbe a point not ir5. We say that is avertex
for S if whenever we joirw to a pointp of S the third pointg on the linevp is also inS.

Examples can be constructed as follows. Egtbe any cap irt,,. EmbedX:,, in X, 1
and letv be any pointinz,, ., \ 3,. We now construct a cag;, .1, in X, by adjoining
to S, the set of all pointg wheregq is the third point of the linep wherep is any point of
Sn. We have thatS,,+1| = 2|S,,| and thatS,,; is maximal inX,, ., if and only if S, is
maximal in3},,. Note thatv now is a vertex for the cafs,, 1. This construction of,, 1
from S, is called thedoubling constructiorr Plotkin construction

In fact every vertex arises in this way. Forypifs a vertex ofS andH is any hyperplane
not onv thenS is obtained by doubling N H from v.

In X = PG(n,2) let T be any set of points. The sétis called ak-block (see [12]) if
every(n — k) dimensional subspace &fcontains at least one point Bt

Let £ = 2 and suppose that is a 2-block. Let”Z be any subset df’, let W be an
(n — 2) dimensional subspace &f containing all the points of and therefore all the
points of T which are linearly dependent on. If W contains no further points af we
call it ageneralized tangerttf 7" at Z. The 2-blockT" is called aangential 2-blockf every
nonempty proper subsét of 7' has a generalized tangent’Bfat Z. Note that ifZ is a
single point then a generalized tangent just means a taigent) dimensional space at
this point in the usual sense of the term. The importance of tangential 2-blocks is that, as
pointed out by W. T. Tutte ([12]) all other 2-blocks can be regarded as céftharivatives’
of them.

So far only three tangential 2-blocks have been found. These are the Fano plane, the
Desargues block consisting of the 10 points of a Desargues configuration in 3 dimensions
and the 5 dimensional Petersen block which represents the Petersen graph in a dual manner
with cut-sets representing circuits in the definition of linear dependence. It is conjectured
that these are the only tangential 2-blocks. It is a remarkable fact that a proof of this
conjecture would imply the celebrated 4-color theorem for planar graphs.

Some of the main results of [4] can be summarized as follows.

Theorem 2.5.  No capS in ¥ = PG(n,2) with |S| > 2"~1 + 1 can be a2-block

Theorem 2.6. If S is a maximal cap i with |[S| > 2"~! + 1 andn > 3, then

S is obtained by the doubling constructiont follows that if S is a maximal cap and
|S| > 2n~1 + 1 then eitherS is affine or elsd.S| = 27~ + 2¢, for somei > 1. It can be

shown that < n — 3. Moreove if |S| = 2771 4+ 273 or |S| = 2"~ ! + 27~4 then the
structure ofS' is known andS is unique up to collineations af.

We now proceed to give a sketch of the proof by Davydov and Tombak of Theorem 2.6,
but casting it in a geometric framework consistent with our methods.
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Using Theorem 2.5 lel ., denote an(n — 2) dimensional subspace that contains no
point of S. Let Ly, Ly, and L3 denote the three hyperplanes Hg, in . We denote by
A, B, andC the set of points of lying in Ly, L, and L3, respectively. Fop in A and
q in B the line joiningp to ¢ meetsL3 in a point which cannot lie irt sinceS is a cap,
and also cannot lie it{,. We denote byd + B the set of all such points. Sinceis a
cap, any line inL3 contains at most two points &f. Then from the maximality of it
follows that each point of.5 not in H., and not inA + B must be a point of. Therefore
|S| = |A| +|B| + (2"! — |A + B|). Let|S| = 2"~ + o, with « > 1. It follows that

|A+ B|=|A|+|B| —a, witha>1.

Now suppose that: > 2. Let G denote the elementary abelian group of orgfet!
obtained from the vector spa&gn + 1, 2) underlyingX. Then, sinced, B are subsets of
G satisfying the above relation, it follows from an old result of Kneser in additive number
theory (see Kneser [8], [9], and Kemperman [7, p. 69]) that B is periodig i.e., there
existsgg # 0 in G with go + (A + B) = A + B. Theng, corresponds to a pointin L3
such that if we joinv to any pointw in A + B then the third point of this line also lies in
A+ B. Since all points ofA + B are affine points of 3 (i.e., are on_; \ H,,) and since a
line of L3 contains just 2 affine points we get thats in H... It follows thatv is a vertex
for SN Ls. One can then show that in facts a vertex for the entire caf. In other words
S is obtained by the doubling construction.

To finish the sketch of the proof of Theorem 2.6 let us now suppose$hat 27~ +
27=3, ThenS is obtained by successively doubling, beginning with a cap of size 5 in
PG(3,2), which must be the set of points on the ovoid described earlier. Therefore the
structure ofS can be described anglis unigue. Using the fact that the structure of a cap
in PG(4,2) of size 9 is unique, we can in a similar fashion obtain the structugewlien
|S| — 271,—1 + 2n—4_

From Theorem 2.6 we obtain the following corollary (see4B.

Corollary 2.7.  Letn > 3. In PG(n,2) let S be a maximal cap witl$ not affine Then
|S| < 2n=t 4 2n=3 If | S| = 271 4+ 27 =3 then the structure of is known and is unique.

(Actually, only the inequality part of this result is shown in [2].)

3. A GEOMETRIC RESULT

The proof of Corollary 2.7 that is given in [4] is very algebraic and uses the sophisticated
result on additive number theory by Kneser mentioned earlier as well as the crucial Theorem
2.5 which seems very difficult to establish. The maximal§afsize2” ! +27~3 (whichis
unique up to collineations & = PG(n, 2)) is described by means of an intricate generator
matrix constructed inductively.

Here we give a transparent geometric constructiof. dfloreover, our construction also
provides examples of maximal cagswith |S| = 2"~ + 2% for 0 < i < n — 3. Following
that we then present a new elementary and self-contained proof of Corollary 2.7. In fact
we prove the slightly stronger Corollary 3.6. Our proof does not use the results on additive
number theory nor does it use Theorem 2.5.

For the construction i = PG(n, 2), let H,, denote a subspace of dimensior- 2.
Let Ly, Lo, and L3 denote the three hyperplanesXbn H.,. Choose a subspaéy of
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dimensionn — 3 contained inL,; and not contained if/,,. LetQ; N H,, = V. LetQy
denote a subspace bf containing alsal and of dimensiom — 3. Denote the affine points
of 21, Q9 by A and B respectively, i.e.A, B denote all points of2;, Q5 notin H,,. So

|A| = |B| = 2"73. PutS = AU B U C whereC denotes the set of all points i not in
H., and notinA + B, whereA + B denotes the points of the forp+ ¢ with p € A and

q € B. ThenS is amaximal cap withS| = 2"~ +2"~3. Moreover, this construction can
be generalized. If2; and(2, have dimension thenS is a maximal cap of siz2” ! 4 2¢
for0 < i < n—3. If i =n— 2 the cap fails to be maximal. The unique maximal cap
containing it isAG(n, 2). If i = n — 1 we get the maximal capG(n, 2).

Next we proceed to give a new proof of Corollary 2.7. DenoteXhythe maximal cap
of size2"~1 + 2773 in PG(n,2) described above. Lef be any nonaffine cap of size
2n—1 4 2n=3 contained inPG(n, 2). We will show thatS is isomorphic taX,,.

Notation: If Y is any setSY denotesthe s&fNY.

Proof of Corollary 2.7 We proceed by induction. The case- 3 is easily checked by direct
computation. Thus we suppose that PG(n,2),n > 4 and thaS| = 27~ + 273,

Lemma3.1. LetK be an hyperplane af with |SK| > |S|/2. ThenSK is an affine
cap inK, i.e, there is an hyperplane df containing no points of K.

Proof. EmbedSK in a maximal capl’ of K = PG(n — 1,2). Then|T| > |SK| >
|S|/2 = 2"=2 4+ 2"~%, Then by induction we have thdt and hence als§ K is an affine
capink. O

By a counting argument involving incidences of hyperplanes with pairs of points of
we may establish the existence of an hyperplane containing more than half of the points of
S. (The counting argument works for any §ein PG(n, 2) with |T'| < 2™ — 1, not just
for caps.) LetH be an hyperplane such th&H | is maximum amongst all hyperplanes.
ThenSH is a cap inPG(n — 1,2) with |[SH| = 272 + 2"~* + ¢ wheree > 1. Since
|SH| > |S|/2 we conclude from Lemma 3.1 th&H is an affine cap, i.e., that there is an
hyperplaneH ., of H with SH,, = (). Denote the other two hyperplanes containiiig,
by A andB.

Lemma3.2. Any hyperplangl with K # A, B, H contains at mos2™ 3 + 275 4 2¢
points of SH.

Proof. Definea := |K N SH|. The number of points it \ H is 2772 4 2"~ — ¢
Therefore one of the two hyperplanes&m H other thanH (one of which isK), sayM,
contains at least half these points. So weget2"—3 + 2775 —¢/2 < |SM| < |SH| =
27=2 4 27=4 1 ¢, This givesa < 2773 42775 4 3¢/2. O

Lemma3.3. Any hyperplanel with K # A, B, H contains at lease” 3 + 2775 — 1e
points of S H.

Proof. Define := |K N SH|. Working in H let the pencil determined b N H,
consist ofH.,, K N H and M say. Note that'M consists of exactly those points 6#
notlyingin K N H. So|SM| = |S|/2 + ¢ — 3. Now extendM to an hyperplane ¢ not
equal toH and apply Lemma 3.2. O
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Lemma 3.4. LetK be any hyperplane witf6 K| = |S|/2 + 6 whered > 1. Let K, be
one of the hyperplanes & missingS guaranteed by Lemnia1and letC and D be the
other two hyperplanes & on K .. Thend < 274 |SC| > 2"=3 and|SD| > 2"73. In
particular, e < 274 |SA| > 2"~ and|SB| > 2"~3.

Proof. Letc := |SC|andd := |SD|. Thenc+d = |S| — |SK| = |S|/2 — 6. Since
S is assumed to be nonaffine, no hyperplane missesd thusSC # (. By joining a
point of C to the points ofD we get, sinces is a cap, thatSK| < 27~! — d. Similarly,
|ISK| <2n=! —¢. Thus2|SK| < 2" — (c+d), i.e.,|S| 4+ 20 + ¢ + d < 2™. Therefore,
3|S|/2 + 6 < 2™. Since|S| = 2"~! + 2773, this givesd < 2774,

Now without loss of generality, < d. Joining a point o5C to each point o6 K yields
2n—2 4 2n—4 4 ¢ affine (with respect td.) points of D, none of which are it D, since
S'is a cap. Thereford +2"~2 4 27"~4 49 < 2"~ !, Thusd < 2"~2 — 2"~* — §. From
the abover +d + 0 = |S|/2 = 2"~2 + 27—, Assume, by way of contradiction, that
c< 23 Thend + 6 > 272 424 _927=3 je. d> 272 — 274 _ ¢ Butfromthe
aboved < 27~2 —2n—% _ ¢ and this contradiction proves> 2"~3. Sinced > ¢, we also
haved > 273, O

Lemma3.5. LetY be a nonempty affine subset®(n,2) wheren > 2. Suppose
Y| # 2"~! and|Y| # 2". Then there exist at least three hyperplane®6f(n, 2) which
contain more thartY’| /2 points ofY.

Proof. By induction onn. The case: = 2 is easily verified. Fixn > 3. SinceY
is affine there exists a hyperplarfé which missesY’. Let K., be any hyperplane of
K. Denote byM and N the other two hyperplanes &G(n,2) which contain K .
Letm = |[M NY|,n = |[N NY| where without loss of generalithx > n. Then
m+n=[Y|. O

We consider two cases.

Case |. For every choice of, we havem > |Y'|/2. In this case, since there are at
least three distinct choices féf., and sincek,, = M N K we get at least three distinct
hyperplanes\f;, M, and M3 each containing more thal'|/2 points ofY'.

Case Il. There exists/ with m = |Y|/2. ThenM NY is an affine subset o}/
and|M NY| # 27=2, 27~ Therefore by induction there exist at least three hyperplanes
04,4, andQs of M which contain more than half of th&"| /2 points of M NY. Let
R;, N;, and M be the three hyperplanes Bf7(n,2) which containQ); for i = 1,2,3.
Without loss of generalityR; N Y| > |N;, NY|. Then the three hyperplandg each
contain more than half of the points &f. Finally sinceR; N M = §; we see that the
hyperplanesk;, Ro, andR3 are distinct. O

Remark. One can prove a stronger version of Lemma 3.5 where the restrictigkd ane
replaced by the restrictiots 2% AG(n — 1,2) andY % AG(n, 2).

Now we proceed with the proof of Corollary 2.7. Létbe one of the hyperplanes of
H guaranteed by Lemma 3.5 which contains more than half of the poinigfof Then
|J N SH| > 2773 +2n~5% 4 ¢/2. There are two hyperplanés andV, different from
H which containJ. Since all the points of notin H lie in U U V at least one of these
hyperplanes, say/, satisfied SU| > |S]/2.

Notation. Write |SU| = |S|/2 + 6 wheref > 1.
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By Lemma 3.1,5U is an affine cap irV. Thus there is an hyperplatg,, of U which
missesS. LetC andD be the two hyperplanes &f other tharl/ which containl/,.,. Now
sinceU # H the two setq A, B} and{C, D} are different. Hence we may suppose that
C # AandC # B. Also C # H sinceSU N C = (), whereasSU N H = SJ # 0.
ThereforeC' € {A, B, H}.

We havelSC| + |SD| + |SU| = |S|. Therefore|SC| = |S|/2—0 —|SD| <|S|/2 —

6 — 273 by Lemma 3.4, i.e.|SC| < 2773 + 2n=% — ¢, Of the points in the se§C
at least2” 3 + 2775 — ¢/2 lie on H by Lemma 3.3. ThereforeSC N A < (273 +
2n=4 — ) — (2773 4+ 2775 — ¢/2) = 2775 — § + ¢/2. By Lemma 3.4|SA| > 2n~3
and henceSA \ SC| > 2n73 — (2775 — 0 + ¢/2) = 2773 — 2775 4 0 — ¢/2. Similarly
|SB\ SC| > 2773 — 2775 4 0 —¢/2.

Using Lemma 3.4 this last number is at least 1 and thus there exists at least one pointin
SBand notinSC. Letus denote it byy. Similarly, there existgy in SA\ SC. Working
in A, letQ 4 denote the third member of the pencil of hyperplanes determindd.byand
C N A. Form the hyperplan@ of 3 containing(2 4 andp,. PutQp := QN B.

Recall that a point is aaffine point of A (respectively,B, H) if it is a point of A
(respectively,B, H) not on H,,. Note that all points ofSA, SB, and SH are affine.
Also the points ofS A are partitioned byd N C' and2 4. Similarly, the points ofS B are
partitioned byB N C andQ2p becaus&' N B, H,, and2p form a pencil inB (due to the
fact thatC' N A andC N B both containC' N H).

Now letp; = pg andps be two points ofS B with p; = pg in Qg and letq; andg, be
two points ofSA \ SC. Theng, andg, are points of24. The pointsr; := p; + ¢; are
affine points ofH. Suppose; = ro. Nowpy,q; € Q impliesp; + ¢; € Q. Sincegs is
also in{2, this implies that the line joinings + ¢2 = p1 + g1 10 g2 iISiNQ, i.e.,p2 € Q. In
summary, ifp; ¢ Qp thenp; + g1 # p2 + go.

Assume, by way of contradiction, that there existse SB \ 2. Forming all the
pointsp; + g andpy + ¢ for ¢ € SA\ SC gives us a set of affine points & which
are not inS, sinceS is a cap, and this set is of si2éSA \ SC| = 2|SQ4|. From the
above2|S0 4| > 272 — 274 4 20 — . However, the total number of affine points of
HnotinSis2" ! — |SH| = 2"t — (272 42" 4 ¢) = 2772 —2n~1 _ ¢, Thus
=2 _on—44 99 ¢ < 272 _27~4_ ¢ This contradict¥ > 1. We conclude that there
is no pointinSB \ 2 so thatSB \ SC = SB.

Let g1 = ¢o be a point ofSA \ SC. From the definition, it follows that the hyper-
plane containing2g and¢; is . Assume, by way of contradiction, that there exists
g2 € SANC. Inparticular,gs ¢ Q. Hence ifpy, po are inQ g then, repeating a previous
argumentp; +q; # p2+qo. Therefore, as above, forming all poigistp andgs +p wherep
isin SB\ SC = SB gives a set of affine points if notinS. By Lemma3.4|SB| > 23
so this set of affine points i not in S has cardinality at leag(2"~3) = 27~2. Again,
as above this givez*—2 < 27"~2 — 2"~% _ ¢, a contradiction. We conclude that there are
no pointsgs in SA N C. ThusC N SA = ). Using the same argument but interchanging
the roles of4 and B we obtainC' N SB = (.

Next, assume, by way of contradiction, tHat# A andD # B. ThenD # H since
SU N D = ) whereasSU N H = SJ # (. Interchanging the roles @f and D then gives
thatDNSA = pandDNSB = (. NowSA, SB, andSJ are disjoint subsets ¢fU. From
Lemma 3.4,5SA > 2"~3 andSB > 23, By definition, |SJ| > (2772 +2"* +¢)/2.
Therefore| SU| > 2773 4+ 2n73 4 (272 4 274 4 ¢) /2 > 2n~2 4 2n=3 4 2n=5 But
|SH| = 272424 4 ¢ < 2n=2 4273 pylemma3.4. ThusSU| > |SH |, contradicting
the maximality ofSH. Therefore eitheD = Aor D = B.
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From Lemma 3.5 there exist at least three choices for the hyperplah# . Let.J;, Js,
andJs be 3 distinct hyperplanes éf with each containing more thaf H|/2 points ofS.
Recall that fromJ we constructed/, C, andD. Thus from.J; we obtainU;, C;, andD;
whereC; N SA = C; N SB = (), forcing D; to be eitherA or B for i = 1,2, 3. Without
loss of generalityD; = Dy = B. SinceANB = H,, we haveSAND; = SAN Dy = ().

In particular,SANC; = 0. ThenSANC, = SAN Dy = (. SinceCy, D; andU; form a
pencil of hyperplanes ik we obtainSA c U;. Similarly SA c U,. Furthermore, since
the threeJ; are distinct, and/; = U; N H for i = 1,2,3 we have that the threg; are
distinct. In particularS A is contained in the 3 distinct hyperplandslU;, andUs.

Finally we assume, by way of contradiction, tiat/, , andU- are a pencil of hyperplanes
onANU; = ANUy; = U NUs,. ThenH = (UiNH)U (U2 NH)U (AN H). Intersecting
with S givesSH = (U1NSH)U(UoNSH)U(ANSH) = SJyUSJy sinceANSH = (.
Now J, C Uy andJy C Us impliesJ; NJo C Uy NU; = ANU;. Intersecting withS N H
givesSNHNJiNJy C SNHNANU; = 0. Since the set on the left side contag,
andSJ, we conclude thabJ; andSJ, are disjoint subsets &f H. But this contradicts
the fact thai.S.J;| and|S.J2| both exceedS H|/2. This contradiction shows that the three
hyperplanes4, Uy, andUs,, containingS A are linearly independent.

Therefore|SA| is at most2”~2 sinceS A is an affine subset afi. But by Lemma 3.4
S A has at leasz” 3 points. Therefor§A = (ANU; NUs) \ Hoo = AG(n — 3,2).

We have thab A lies in the(n — 3) dimensional subspade, := ANU; NU,. Choose a
pointgo in SB. Form the(n — 2) dimensional spacé generated by, andA 4 and denote
by A its intersection withB. ThenAp is also of dimensiom — 3 since no point of5 A
liesin B, andqy ¢ SA. Suppose, by way of contradiction, thais a point ofS B which
is not in A z. Joining the pointg, andq to the points ofS A yields2(2"~3) affine points
of H notinS. Thus|SH| < 2771 —2(2"73) = 272, But|SH| =272+ 274 1 ¢
wheree > 1 and we have a contradiction. Therefore all point$'éf lie in Ag \ Hs. By
Lemma 3.4|SB| > 2773, ThereforeSB = Ap \ Ho = AG(n — 3,2). In particular,
|SB| = 2n—3.

Since|S| = 27~! 4 2773 it follows that|SH| = 2"~! — 2"=3. Moreover, sinceS
is a cap we have that the points 8 are all the affine points off that do not lie in the
subspace\. ThussS is obtained by the construction fof,, described at the beginning of
this section. O

It is interesting to note that this proof establishes Corollary 2.7 without invoking the
hypothesis of maximality there. Thus we have in fact proved the following result.

Corollary 3.6.  Letn > 3. In PG(n,2) let S be a cap withS not affine Then|S| <
2n=1 4 2n=3 |f | S| = 27~ 4+ 2n=3 then the structure of is known and is unique

4. SOME PROPERTIES OF X,

Our proof of Corollary 2.7 given above has the advantage of pointing the way to obtain-
ing several interesting combinatorial and geometric propertiek,of We state a few of
these here.

Proposition 4.1.  All but 15 of the hyperplanes d?G(n,2) wheren > 3 meetX,, in
exactly| X,,|/2 points Each of these hyperplane intersections forms a copy,of;. Of
the remainingl5 hyperplanes, 5 of themA;, ..., A5 meetX,, in exactly2”—3 points
and the otherl0 hyperplanesd., . .., H;, meetX,, in exactly2”—! — 27=3 points The
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15 hyperplanes form a structure isomorphic to the hyperplane®@Gf3,2) in which
Ay, ..., A5 are the tangent planes to an ovaldland Hy, . . ., Ho are the secant planes
of O.

Thus for every hyperplan& of 3 the cardinality ofX,, N K is one of the three numbers
{an=1 —gn=3 gn=2 4 on—4 9n=31if n > 3. For X3, only the sizes 3 and 1 occur. Hence
X3 is a2-characterset and fom > 4, X, is a3-characterset.

Using our explicit construction ok, (or invoking the general result of Theorem 2.6
implying thatX,, is obtained by applying the doubling construction) one can see that the five
hyperplanesi; - - - A5 partitionX,, into 5 disjoint setsXX,, = (X,,NA;)U---U(X,NAs5).
Symmetrically each point ok, lies in exactly 6 of the hyperpland$, , . .., Hyp.

Proposition 4.2.  The automorphism group of,, consists of the group of matrices of the

(219)

where A € Aut(X3) = S5 (the symmetric group 0B letterg, with A a 4 x 4 matrix,
B € Aut(PG(n — 4,2)), andC any matrix of sizén — 3) x 4.

We give a very rough sketch of the proof as follows. We examine the set of sec&fjs to
Using our explicit geometric construction &f,, (or invoking the general doubling result
stated in Theorem 2.6) one sees thas the disjoint union of three set& = X,, UV U Z
where every point o lies on exactly| X,,|/2 secants and every point 4flies on exactly
|X,|/5 = 2"~3 secants. Each point f is (see our previous definition) a vertex faf, .
Moreover,V is the set of points in a copy oPG(n — 4,2). The submatrixB acts onV.
The submatrix4 acts on the copy of?G(3, 2) containing the copy oX 3 from which X,
is constructed by the doubling construction. It is easy to verify thaf Bgit = S5. In this
way one can show that AUX,, ) is as described in Proposition 4.2. O

Note added in Proof. We have now determined the complete structure of all maximal caps
in PG (n, 2) whose size is at leagt—! + 1.
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