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Abstract

We study stochastic stability for a class of agreement dynamics and define two forms

of agreement which we call stochastic agreement and stochastic absolute agreement.

We identify conditions for a broad class of random, possibly state-dependent agree-

ment processes to achieve stochastic agreement. We take the approach of applying

Lyapunov drift criteria to study the behaviour of such processes. We generalize some

results in the literature to the noisy and state-dependent case.
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has been a role model throughout my education and he has been unwavering in his

support.

I would also like to thank all of the professors I have had in my time at Queen’s

University. I would not have been able to write this thesis without the knowledge

they have given me.

ii



Table of Contents

Abstract i

Acknowledgments ii

Table of Contents iii

Chapter 1:

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2:

Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Products of Stochastic Matrices . . . . . . . . . . . . . . . . . . . . . 5

2.3 Stability of Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Main Definitions for this Paper . . . . . . . . . . . . . . . . . . . . . 10

Chapter 3:

Stochastic Agreement and State-Dependence . . . . . . . 13

3.1 Single-Step Stochastic Agreement . . . . . . . . . . . . . . . . . . . . 16

3.2 m-Step Stochastic Agreement . . . . . . . . . . . . . . . . . . . . . . 17

Chapter 4:

Stochastic Absolute Agreement . . . . . . . . . . . . . . . 19

4.1 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Stochastic Absolute Agreement - Main Theorem . . . . . . . . . . . . 20

4.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

iii



Chapter 5:

Stochastic Agreement Under DeGroot’s Model . . . . . 26

5.1 Stochastic Agreement - Main Theorem . . . . . . . . . . . . . . . . . 28

5.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Chapter 6:

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2 Future Research Areas . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Appendix A:

Additional Proofs . . . . . . . . . . . . . . . . . . . . . . 35

A.1 Proof of Theorem 3.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 35

A.2 Bounding the Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A.3 Product of a Random Stochastic Matrix and a Random Vector . . . . 37

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

iv



Chapter 1

Introduction

Agreement in decentralized systems is a classic problem dating back to the 1950s.

Agreement problems can be intuitively thought of as a problem of convergence of

opinion. Most results in the literature consider iterative models in which a group of

agents exchange signals (such as their estimates of a real random variable, we will

refer to these estimates as opinions or values) and use this information to come to

some form of agreement in their values.

The processes we study in this paper have iterative dynamics defined by equations

of the form:

Xt+1 = λXt · F (Xt) +D(Xt) +Wt

where λ ∈ (0, 1]. Processes of this form bear a great similarity to the classical model

introduced by DeGroot (1974) in [9]. In this model a group of N agents whose values

at time t are given by the vector Xt ∈ RN update their beliefs according to

Xt+1 = XtAt

where {At}t≥0 is sequence of matrices which model the social network of interactions.

Much of the results for processes that behave according to the DeGroot model are

based on the work of Hajnal and Wolfowitz on products of stochastic matrices [27],

[14]. They showed that products of stochastic, indecomposable and aperiodic (SIA)

matrices will converge to a matrix with all columns equal. Thus applying products of

SIA matrices will cause the process to achieve consensus in the limit. We will define
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CHAPTER 1. INTRODUCTION 2

these concepts in Chapter 2.

More recently, such models have received significant interest perhaps starting with

Tsitsiklis and Bertsekas in [4], [24], [25] and later with Jadbabaie, Lin and Morse in

[15], among many other recent contributions.

One use for this type of dynamic is social networks modelled by graph theory.

In this framework each agent is modelled as a node in a graph and communication

happens along the edges, e.g. [17], [21]. Later in this thesis we will discuss an example

based on [17].

In the literature, state-dependent update algorithms have received less attention.

In [6], Blondel, Hendricks and Tsitsiklis show that for a setup in which each agent

only communicates with agents close to its value (the difference is less than one in

their case), the system converges to a set of clusters. In [7] Canuto, Fagnani and Tilli

consider continuous distributions of agents to obtain convergence results. In [3] [8],

authors also analyze the asymptotic behaviour of distributions of large numbers of

agents. Friedkin and Johnson consider a biased update mechanism [12].

The literature considered so far in this thesis only considers update mechanisms

which do not follow from Baye’s rule. Such models are often referred to as non-

Bayesian update rules. These rules are desirable since convergence rates to agreement

are typically larger and such models may reflect real world settings better for a large

class of interaction environments. This is especially true when a probabilistic up-

date is computationally expensive. In contrast, a Bayesian update rules requires the

agents to update their values in a Bayesian fashion using a complete knowledge of the

probabilistic structure of the system. See [1], [5] for a discussion of such approaches.

The results in this thesis are non-Bayesian.

In this thesis we are interested in two forms of stochastic stability. Let us consider

a group of N agents whose state (or value) is given by x ∈ RN . Let µ : RN → RN

defined by µ(x) = (
∑N

i=1
1
N
x(i))1N where 1N is the vector of length N with all entries

equal to 1. Thus, µ(x) is a vector with all of its entries equal to the mean of x.

We say that a state process {Xt} achieves stochastic agreement or stochastically

agrees if Xt has a finite expected return time to a set of the form

ΓA = {x : ||x− µ(x)||1 ≤ A} (1.1)
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for some A ∈ R.

We say that {Xt} achieves stochastic absolute agreement or absolutely stochasti-

cally agrees if Xt has a finite expected return time to a set of the form

Γ = {x : ||x||1 ≤ B} (1.2)

for some B ∈ R. These concepts will be made more formal in Section 2.4.

As opposed to asymptotic agreement which is the result typically adopted in the

literature, stochastic agreement is a weaker form of agreement but allows for a much

more general analysis. Our definition allows for not only the addition of random

zero-mean noise to the system but also drift away from the mean. In addition it is

a more realistic form of consensus in that in many processes, agents will often agree,

then disagree, then agree again over time. A disadvantage to stochastic agreement

vs stochastic absolute agreement is that stochastic agreement does not say anything

about the stability of the mean value of the system.

In this thesis, we first identify conditions based on the work of Wolfowitz [27] for

a process to stochastically agree. This is done using stochastic drift arguments first

in single step increments then over m steps. We then give conditions, based on the

work of Dobrushin [10] and Wolfowitz, and using a theorem from [28], for a process

to achieve stochastic absolute agreement. We then give an example illustrating a

process that stochastically absolutely agrees.

Finally we give a theorem that shows that many results already in the field deal-

ing with products of random matrices that achieve asymptotic agreement will achieve

stochastic agreement with the addition of drift and noise terms, under further tech-

nical conditions.

The motivation for this work began as an interest in creating a model that resem-

bles real world situations, most notably social networks. We have attempted to take

into account several forces acting on an agent: the consensus which brings the opin-

ions of agents closer together, the drift which pushes the opinions of agents further

away, and the random drift which allows for noisy systems. Any of these drifts can

be dependent on the current state of the system of agents.

This thesis is formatted as follows:
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• In Chapter 2 we review some of the theory related to products of stochastic

matrices and stochastic stability. Some important definitions and theorems

from the literature of products of stochastic matrices are presented. This is

followed by a discussion on Markov Chains. Finally the main definitions of

agreement for this paper are formally presented.

• In Chapter 3 we discuss criteria for stochastic agreement. Further, we will

discuss a simple example in which the average opinion of the agents behaves as

a random walk.

• In Chapter 4 we discuss criteria for stochastic absolute agreement. We also

provide a case study of a complex system based on social dynamics that achieves

stochastic absolute agreement.

• Finally, in Chapter 5 we provide a different approach to determine criteria

for stochastic agreement. In this chapter we take inspiration from literature

results and look at whether systems that achieve asymptotic agreement under

DeGroot’s Model will achieve stochastic agreement with the additions of noise

and drift.



Chapter 2

Preliminaries

2.1 Notation

We consider a network of N nodes. Let (Ω,F , P ) be the underlying probability space

and let {Xt}t≥0 be a sequence of random row vectors taking values in RN . We denote

the state realization of the system at time t by a row vector xt where xt(i) is the value

held by the ith node at time t.

Let 1N denote the vector of length N with each entry equal to 1. Define µt =
1
N

∑N
i=1 Xt(i) and thus µt is the average of the values of Xt. Define µ(Xt) = µt1N thus

µ(Xt) is a vector with all entries equal to the average of Xt. Note that because the

values of µt depend on Xt, this is a function of Xt however for notational simplicity

we will use µt. Let Ft = σ(X0, . . . , Xt) i.e. Ft is the sigma field generated by Xk for

k ≤ t. Let us denote Ext [ · ] := E[ · |Xt = xt] and Pxt(·) = P (·|Xt = xt).

2.2 Products of Stochastic Matrices

We begin with an overview of some of the main definitions regarding products of

stochastic matrices, a topic we will borrow from heavily in this paper.

Let us define the following matrix properties:

Definition 2.2.1 (Stochastic Matrix) Let P be a N ×N matrix. We say that P

is a stochastic matrix if
∑

j P (i, j) = 1, P (i, j) ≥ 0 ∀i, j. Note that the product of

two stochastic matrices is itself stochastic.

5
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Definition 2.2.2 (Doubly Stochastic Matrix) Let P be a N × N matrix. We

say that P is a doubly stochastic matrix if P is stochastic and
∑

i P (i, j) = 1. Note

that the product of two doubly stochastic matrices is itself doubly stochastic. Also note

that a doubly stochastic matrix is average preserving. That is if P is doubly stochastic,

x0 ∈ RN and x1 = x0P then µ1 = µ0.

Definition 2.2.3 (SIA) A finite stochastic matrix P is stochastic, indecomposable

and aperiodic or SIA if

Q = lim
n→∞

P n

exists and all columns of Q are equal, that is Q(i, j) = Q(k, j) for all i, j, k.

Definition 2.2.4 (Wolfowitz’s Coefficient) Let P be a finite square matrix. We

define Wolfowitz’s Coefficient, denoted γ(P ), by

γ(P ) = max
k

max
i,j
|P (i, k)− P (j, k)|

Thus, γ(P ) can be thought of as measuring the maximum distance between any pair

of elements in the same column.

Wolfowitz’s Coefficient is primarily important for its relation to the product of

stochastic matrices as detailed below in Theorem 2.2.1 which also comes from [27].

Let A1, . . . , Ak be finite square matrices of the same order. By a word of length m

in the A’s we mean a product of a sequence of matrices of length m with repetitions

permitted.

Theorem 2.2.1 Let A1, . . . , Ak be finite square stochastic matrices such that any

word in the A’s is SIA. For any ε > 0 there exists an integer v(ε) such that any word

C (in the A’s) of length n ≥ v(ε) satisfies γ(C) < ε.

Many simple consensus algorithms can be shown to achieve consensus by applying

this theorem.

Now we will define a similar coefficient that will be used in our theorems.
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Definition 2.2.5 (Dobrushin’s Ergodic Coefficient) Let P be a finite square

matrix. We define Dobrushin’s Coefficient, denoted δ(P ), by

δ(P ) = min
i,j

∑
k

min(P (i, k), P (j, k))

Note that δ(P ) > 0 if and only if, for every two rows, there exists one column for

which both terms are positive.

An important result using this coefficient, originally discussed by Dobrushin in

[10], is as follows,

Theorem 2.2.2 For any vectors π and σ of length k ∈ N such that
∑k

i=1 π(i) =∑k
i=1 σ(i),

||πP − σP ||1 ≤ (1− δ(P ))||π − σ||1

Finally, let us note the relation between Dobrushin’s and Wolfowitz’s Coefficients.

The following is stated by J. Hajnal in Lemma 3 of [14]:

Theorem 2.2.3 Let A be an N ×N stochastic matrix. Then,

γ(A) ≤ (1− δ(A))

and,

Nγ(A) ≥ (1− δ(A))

A similar result is Lemma 2 of [27] and earlier Theorem 2 of [14]:

Lemma 2.2.1 For any k,

γ(P1P2 · · ·Pk) ≤
k∏
i=1

(1− δ(Pi)) (2.1)

Let us consider this demonstrative example:

Example 2.2.1 Let us consider a network of n nodes {N1, . . . , Nn}. Let ξ = {ξ1, . . . , ξm}
(i.e. ξ is a set containing m possible sets of edges) such that ({N1, . . . , Nn}, ξ) form
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a connected graph, that is any two nodes are connected by a set of edges. Let commu-

nication at each time t be facilitated by a set of edges Et which takes values in ξ such

that it takes each value in ξ before repeating itself.

At each communication, let two nodes average their values in the following sense:

if agents i and j communicate then

Xt+1(i) = εXt(j) + (1− ε)Xt(i) (2.2)

where ε ∈ (0, 1
N+1

).

Thus our system dynamics can be modelled by:

xt+1 = xt · Ft

where xt is the row vector of the values for each of the nodes and Ft depends on Et

in the following way:

F (i, j) =


1− ε · deg(vi) if i = j

ε if i 6= j and vi is adjacent to vj

0 else

where deg(vi) is the degree of vertex i at time t. We call a matrix formed in such a

way a Laplacian Matrix.

Now, each Ft · · ·Ft+m is such that δ(Ft · · ·Ft+m) > α for some α > 0. Thus, a

slight extension of Theorem 2.2.1 can be used to show that

lim
t→∞

Xt = X0 lim
t→∞

t−1∏
i=0

Fi = X0 ·Q

where Q is a matrix with equal columns. Thus limt→∞Xt is a constant vector almost

surely.
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2.3 Stability of Markov Chains

In this thesis we will be considering consensus in the sense that the vector of opinions

will return infinitely often to a set that we will consider to indicate consensus. To

analyze this setup we will begin with some important definitions. Let us consider a

RN valued Markov Chain {Zt}.

Definition 2.3.1 (ψ-irreducibility) For a finite positive measure ψ, a Markov

chain {Zt} is ψ-irreducible if ∀D ∈ B(RN) (where B(RN) is the Borel σ-field on

RN) with ψ(D) > 0 and z ∈ RN , ∃n such that

P (zt+n ∈ D|zt = z) > 0

Definition 2.3.2 (Harris Recurrence) Let A be a set such that ψ(A) > 0. Let

ηTA =
∑T

t=0 1{Xt∈A}. That is, ηTA is the number of times that a Markov chain Xt

hits the set A until time T . Let ηA = limT→∞ η
T
A. The set A is Harris recurrent if

Px(ηA =∞) = 1 ∀x ∈ A. The chain is Harris Recurrent if Px(ηA =∞) = 1 ∀x ∈ RN

and ψ(A) > 0.

Definition 2.3.3 (positive Harris Recurrence) If a ψ-irreducible Markov chain

is Harris Recurrent and admits an invariant probability measure, then the chain is

called positive Harris Recurrent.

Definition 2.3.4 (Aperiodicity) A ψ-irreducible Markov chain is aperiodic if for

any x ∈ RN and any B ∈ B(RN) satisfying ψ(B) > 0 there exists n0(x,B) such that

P n(x,B) > 0 for all n ≥ n0

Definition 2.3.5 (Small Set) A set A ∈ B(RN) is called ν-small if ∃n ∈ N such

that P n(x,D) ≥ ν(D) ∀D ∈ B(RN) ∀x ∈ A for a positive measure ν, on B(RN).

Definition 2.3.6 (Filtration) An increasing family {Fn} of sub σ-fields defined on

a probability space (Ω,F , P ) with Fn ⊂ F , is called a filtration.
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Definition 2.3.7 (Supermartingale) Let Xt be measurable on a filtration Ft =

σ(X0, . . . , Xt) (also called the natural filtration). (Xn,Fn) is said to be a super-

martingale if

E[|Xt|] <∞

and

E[Xt+1|Ft] ≤ Xt

for all t ≥ 0

Definition 2.3.8 (Stopping Time) A function τ from a measurable space (Ω,F , P )

to (N+,B(N+)) is a stopping time if for all n ∈ N+, the event {τ = n} ∈ Fn, with

Fn = σ(X0, . . . , Xn).

We will also need the following theorem from [28].

Theorem 2.3.1 Suppose X is a ψ-irreducible, aperiodic Markov chain on RN . Let

τ0 = 0 and {τz} be a sequence of stopping times. Suppose that there is a function

V : RN → (0,∞), a small set C and a constant b ∈ R+ and ε > 0 such that the

following hold:

E[V (Xτz+1)|Xτx = x] ≤ V (Xτz)− ε+ b1{Xτz∈C}

sup
z≥0

E[τz+1 − τz|Fτz ] <∞

Then {Xt} is positive Harris recurrent.

2.4 Main Definitions for this Paper

Finally, we wish to formally define the concepts of Stochastic Agreement and Stochas-

tic Absolute Agreement.

Definition 2.4.1 (Stochastic Agreement) Let {Xt}t>0 be a sequence of random

variables taking values in RN . Let us define a consensus set, ΓA by

ΓA = {x : ||x− µ(x)||1 ≤ A} (2.3)
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for some A ∈ R. Let us define a sequence of stopping times for a process Xt by:

τz+1 = min(t > τz : xt ∈ ΓA)

with τ0 = 0. We say that the process achieves stochastic agreement if

sup
z
E[τz+1 − τz|Fτz ] <∞

and ∀x ∈ RN

Px(min(t > 0 : xt ∈ ΓA) <∞) = 1

Definition 2.4.2 (Stochastic Absolute Agreement) Let {Xt}t>0 be a sequence

of random variables taking values in RN . Let us define a consensus set, Γ by:

Γ = {x : ||x||1 ≤ C} (2.4)

for some C ∈ R as well as a sequence of stopping times, {τz} defined by

τz+1 = min(t > τz : xt ∈ Γ)

with τ0 = 0. We say that {Xt}t>0 achieves stochastic absolute agreement if

sup
z
E[τz+1 − τz|Fτz ] <∞

and ∀x ∈ RN

Px(min(t > 0 : xt ∈ Γ) <∞) = 1

Theorem 2.4.1 If {Xt}t>0 is a ψ-irreducible, aperiodic Markov Chain with Γ a small

set and {Xt}t>0 achieves stochastic absolute agreement then {Xt}t>0 is positive Harris

Recurrent.

Proof: First note that

sup
x0∈Γ

Ex0 [min(t > 0 : Xt ∈ Γ)] <∞.
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Furthermore, Px0(min(t > 0 : Xt ∈ Γ) < ∞) = 1 ∀x0 ∈ RN . The proof then follows

from Theorem 4.1 of Meyn-Tweedie [19]. 3

Even if {Xt} is not irreducible, Definition 2.4.2 may lead to the existence of an

invariant probability measure, see Theorem 2.2 in [18] and Theorem 12.3.9 in [28] for

weak-Feller chains, which is a class of Markov chains which satisfy certain continuity

properties.

Thus, stochastic agreement means that the process has a bounded expected return

time to an agreement set ΓA (which is not compact) and stochastic absolute agreement

means that a process has a bounded expected return time to a compact set containing

the origin.



Chapter 3

Stochastic Agreement and

State-Dependence

Let Wt be a sequence of i.i.d. zero-mean noise vectors such that E[||Wt||1] <∞. Let

us define a system that behaves according to the following equation:

Xt+1 = Xt · F (Xt) +D(Xt) +Wt (3.1)

where Wt is a sequence of i.i.d. zero-mean noise vectors such that E[||Wt||1] < ∞.

F (X) is a matrix-valued random variable such that F (·) defines a regular conditional

probability measure from RN to the set of matrices. This implies that, for every real-

ization of x, F (x) is a matrix-valued random variable. Similarly, for every realization

of x, D(x) is a vector-valued random variable.

We are interested in determining under what conditions a process that behaves

according to the dynamics described in (3.1) will achieve stochastic agreement as

defined in Definition 2.4.1. In order to do this, we need a version of Foster-Lyapunov

drift criteria (see [26])

Theorem 3.0.2 Let τ = min(t > 0 : Xt ∈ ΓA), V : RN → R+ with supx∈ΓA
V (x) <

∞ and b <∞. If for some ε > 0 the following holds

E[V (Xt+1)|Xt = xt] ≤ V (Xt)− ε+ b1{Xt∈ΓA} (3.2)

13
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then supxt∈ΓA
Ext [τΓA ] <∞.

Proof: First let us define a sequence by M0 = V (x0) and for t ≥ 0:

Mt+1 = V (Xt+1)−
t∑

k=0

(−ε+ b1{Xk∈Γ})

Let us also define a stopping time as:

τN = min{N, τ},

where N is an integer. Now, for any t,

E[|Mt|] = E[|V (Xt) + tε−
t−1∑
k=0

(b1{Xk∈Γ})|]

≤ E[V (Xt)] + tε+ bt

= E[E[V (Xt)|Xt−1]] + tε+ bt

≤ E[V (Xt−1)− ε+ b1{Xt−1∈ΓA}] + tε+ bt

≤ E[V (x0)] + 2bt <∞,

where the last step follows by an inductive argument. Now,

E[Mt+1|Ft] ≤ V (Xt)− ε+ b1{Xt∈ΓA} −
t∑

k=0

(−ε+ b1{Xk∈Γ})

= V (Xt)−
t−1∑
k=0

(−ε+ b1{Xk∈Γ})

= Mt

for every t. Thus,

E[Mt+1|Ft] ≤Mt (3.3)

Hence, {Mt}t≥0 is a supermartingale. In addition τN is a bounded stopping time.



CHAPTER 3. STOCHASTIC AGREEMENT AND STATE-DEPENDENCE 15

We have therefore satisfied the conditions for Doob’s optional sampling theorem:

E[MτN ] ≤M0

Thus, we obtain for ΓA,

Ex0 [
τN−1∑
i=0

ε] = Ex0 [MτN +
τN−1∑
i=0

b1{Xi∈ΓA} − V (XτN−1)]

≤M0 + bEx0 [
τN−1∑
i=0

1{Xi∈ΓA}]− E[V (XτN−1)]

= V (x0) + bEx0 [
τN−1∑
i=0

1{Xi∈ΓA}]− E[V (XτN−1)]

≤ V (x0) + bEx0 [
τN−1∑
i=0

1{Xt∈ΓA}]

Now, since for 1 ≤ k ≤ τN − 1, Xk /∈ ΓA,

sup
x0∈ΓA

Ex0 [τN ] ≤ sup
x0∈ΓA

1

ε
(V (x0) + b)

and therefore supx0∈ΓA
Ex0 [τN ] <∞

Now since τN+1 ≥ τN for all N almost surely, we can apply the monotone conver-

gence theorem

Ex0 [τ ] = Ex0 [ lim
N→∞

τN ] = lim
N→∞

Ex0 [τN ] ≤ 1

ε
(V (x0) + b)

which gives us

sup
X0∈ΓA

Ex0 [τ ] <∞

3
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3.1 Single-Step Stochastic Agreement

This brings us to our first set of criteria for the process (3.1) achieving stochastic

agreement.

Theorem 3.1.1 If ∀xt, Ext [δ(F (Xt))] > α for some α > 0, every realization of

F (Xt) is doubly stochastic and ||D(x)||1 < D <∞ almost surely ∀x, then Xt achieves

Stochastic Agreement.

Proof: Let us define a function V : Rn → R+ by V (xt) = ||xt − µ(xt)||1.

Now,

Ext [V (Xt+1)] = Ext [||Xt+1 − µ(Xt+1)||1]

= Ext [||XtF (Xt) +D(Xt) +Wt − µ(Xt+1)||1]

= Ext [||XtF (Xt)− µ(Xt)F (Xt) + µ(Xt)F (Xt)

+D(Xt) +Wt − µ(Xt+1)||1]

= Ext [||(Xt − µ(Xt))F (Xt) +D(Xt) +Wt

+ µ(Xt)− µ(Xt+1)||1] (3.4)

≤ Ext [||(Xt − µ(Xt))F (Xt)||1 + ||D(Xt)||1
+ ||Wt||1 + ||µ(Xt)− µ(Xt+1)||1]

≤ Ext [||(Xt − µ(Xt))F (Xt)||1] +D +W + U (3.5)

≤ Ext [1− δ(F (Xt))]||xt − µ(xt)||1 +D +W + U (3.6)

= V (Xt)− Ext [δ(F (Xt))]||xt − µ(xt)||1 +D +W + U

In the above, (3.4) follows from that fact that every realization of F (xt) is doubly

stochastic for every xt and µ has constant entries. Thus, we get µtF (Xt) = µt. Also,

since ||D(Xt)||1 is bounded Ext [||D(Xt)||1] < D, and let Ext [||Wt||1] < W . Here, (3.5)

is given by the fact that the difference in the expected value of the mean is bounded

thus ||µ(Xt) − µ(Xt+1)||1 ≤ U (for further proof see Section A.2). Crucially, (3.6)

follows from Theorem 2.2.2.

Now, by assumption Ext [δ(F (Xt))] > α, therefore

V (Xt)−Ext [δ(F (Xt))]||xt−µ(xt)||1+D+W+U ≤ V (Xt)−α||xt−µ(xt)||1+D+W+U
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Thus we arrive at:

Ext [V (Xt+1)] ≤ V (Xt)− α||xt − µ(xt)||1 +D +W + U (3.7)

for some constants D,W,U ∈ R.

Let us define a set

Γ = {x : ||x− µ(x)||1 ≤
D +W + U + ε

α
}

This will be our consensus set. Now, following from (3.7) we arrive at:

Ext [V (Xt+1)] ≤ V (xt)− α||xt − µ(xt)||1 +D +W + U

≤ V (xt)− ε+ (D +W + U + ε)1xt∈Γ

Thus we satisfy the conditions of Theorem 3.0.2 thus for τz+1 = min(t > τz|Xt ∈ Γ),

supz E[τz+1 − τz|Fz] <∞ and supx∈Γ V (x) <∞.

Also (by Theorem 3.0.2), ∀x

Ex[min(t > 0 : Xt ∈ Γ)] ≤ V (x) + b

for some b > 0. Therefore,

Px(min(t > 0 : Xt ∈ Γ) ≥M) ≤ Ex[min(t > 0 : Xt ∈ Γ)]

M

Now letting M →∞ we get that Px(min(t > 0 : Xt ∈ Γ) <∞) = 1.

Thus Xt achieves stochastic agreement.

3

3.2 m-Step Stochastic Agreement

We would like to relax our requirements for the possible values of F . Thus, we can

extend Theorem 3.1.1 with the following Theorem:

Theorem 3.2.1 Let Xt be a vector of length N . Let F (Xt) be such that ∃m such
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that for every xt, Ext [δ(
∏m−1

i=0 F (Xt+i)] > α. Let also, for every xt, F (xt) be doubly

stochastic and ||D(Xt)||1 < D. Then Xt achieves stochastic agreement.

Proof: The proof of Theorem 3.2.1 follows similarly to that of Theorem 3.1.1, see

Section A.1 in the Appendix for the complete proof.



Chapter 4

Stochastic Absolute Agreement

Let us consider the following example:

Example 4.0.1 Let F (·) ∈ L where L is the set of N×N Laplacian Matrices (defined

in Example 2.2.1). Let D(·) be a zero vector. Let Wt be a vector of i.i.d, standard

normal random variables. Because there are a finite number of possible Laplacian

matrices we can apply Theorem 3.2.1. We see that while Xt will always return to

some set centred at its average value, the average value itself will behave as a random

walk since µ(Xt+1) = µ(Xt) + µ(Wt). The results of a simulation run with this setup

can be seen in Figure 4.1.

Thus we see the main issue with stochastic agreement - that is says nothing about

the stability of the overall opinion of the group. In contrast, stochastic absolute

agreement has Xt returning to some compact set about 0 in finite time almost surely.

Thus we wish to give criteria for Xt to achieve stochastic absolute agreement.

4.1 Problem Setup

Let us define a new system as follows:

Xt+1 = λXt · F (Xt) +D(Xt) +Wt (4.1)

where Wt is a sequence of i.i.d zero-mean Gaussian vectors (we also note that Wt does

not have to be Gaussian, it can admit any density which is bounded and P (Wt ∈ B) >

19
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Figure 4.1

0 for all open non-empty B and ||Wt||1 < ∞), λ ∈ (0, 1). F (X) is a matrix-valued

random variable such that F (·) defines a regular conditional probability measure

from RN to the set of matrices. This implies that, for every realization of x, F (x)

is a matrix-valued random variable. Similarly, for every realization of x, D(x) is a

vector-valued random variablewith the additional assumption that
∑

iD(Xt)(i) = 0

and ||D(x)||1 is (uniformly) bounded almost surely.

We will show that the process achieves stochastic absolute agreement.

Figure 4.2 shows a simulation of a process that evolves according to (4.1) with

λ = 0.99 and µt highlighted in black.

4.2 Stochastic Absolute Agreement - Main Theo-

rem

Theorem 4.2.1 Let Xt be a vector of length N . Let for every xt, every realization

of F (xt) be stochastic and for every x, let ||D(x)||1 be (uniformly) bounded almost

surely. Let Wt be a vector of zero mean Gaussian noise. Finally let λ ∈ (0, 1). Then

Xt absolutely stochastically agrees.

Proof:
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Figure 4.2

Let us define a function V : Rn → R+ by V (xt) = ||xt||1.

Now,

Ext [V (Xt+1)] = Ext [||Xt+1||1]

= Ext [||λXtF (Xt) +D(Xt) +Wt||1]

≤ λ||xt||1 + Ext [||D(xt)||1] + E[||Wt||1]

= V (xt)− (1− λ)||xt||1 +D +W

= V (xt)− ε+

(
ε+D +W − (1− λ)||xt||1

)
= V (xt)− ε+ b1{||xt||∈ΓΛ}, (4.2)

where b = ε + D + W and ΓΛ = {x : ||x||1 ≤ (ε + D + W )/(1 − λ)}. The inequality

above follows from Appendix A.3 and the triangle inequality.

As in the proof of Theorem 3.1.1, the above implies that the expected return times

to ΓΛ from ΓΛ are uniformly bounded in expectation.

Now, following the same steps as in the proof of Theorem 2.1 in [28] (which is

similar to Theorem 3.0.2), we obtain that for all x, the condition: Ex[min(t > 0 :
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xt ∈ ΓΛ)] <∞ follows and, as in the proof of Theorem 3.1.1:

Px(min(t > 0 : xt ∈ ΓΛ) <∞) = 1

for all x.

Thus we get that Xt stochastically absolutely agrees. 3

We have the following useful result.

Theorem 4.2.2 The set ΓΛ = {x : ||x||1 ≤ C} is small.

Proof:

Following an approach taken by Tweedie in Lemma 4 [26] and Proposition 5.5.5(iii)

of [19] and in [28], we will use the following test: if a set S is such that

lim
n→∞

sup
x∈S

P (x,Bn) = 0 (4.3)

is satisfied for every sequence Bn ↓ ∅ and if the Markov chain is irreducible (which

ours is due to our additive noise term Wt), then S is petite. By Theorem 5.5.5(iii)

of Meyn-Tweedie [19] for an aperiodic irreducible chain, petiteness is equivalent to

smallness. The setup in this thesis is aperiodic because, due to the presence of the

Gaussian noise, P (xt+1 ∈ SA|xt = x) > 0 for all x ∈ SA, for any compact Borel set SA

with positive Lebesgue measure [18]. This implies that a small set to be constructed

will be visited in consequent time stages with positive probability (see Theorems 5.2.2

and 5.4.4 in [18]).

Let Bn → ∅ and let K = [−k, k]N for k ∈ R. Note that Bn = (Bn∩K)∪(Bn∩KC)

and if Bn → ∅, then both (Bn ∩K)→ ∅ and (Bn ∩KC)→ ∅.
Now,

lim
n→∞

sup
x∈ΓΛ

P (Xt+1 ∈ Bn|Xt = x) = lim
n→∞

sup
x∈ΓΛ

P (λx · F (x) +D(x) +Wt ∈ Bn|Xt = x)

≤ lim
n→∞

sup
x∈ΓΛ

P (λx · F (x) +D(x) +Wt ∈ Bn ∩K|Xt = x)

+ lim
n→∞

sup
x∈ΓΛ

P (λx · F (x) +D(x) +Wt ∈ Bn ∩KC |Xt = x)

(4.4)
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Let MA = supx∈S ||D(x)||1 + ||x||1. For the second component above, we have that:

lim
n→∞

sup
x∈ΓΛ

P (λx · F (x) +D(x) +Wt ∈ Bn ∩KC |Xt = x)

≤ sup
x∈S

P (λx · F (x) +D(x) +Wt ∈ KC |Xt = x)

≤ P (Wt ∈ ([−k −MA, k +MA]N)C)

Note now that for any ε > 0, there exists k such that P (Wt ∈ ([−k − MA, k +

MA]N)C) ≤ ε.

For the first component in (4.4), we note that

lim
n→∞

sup
x∈ΓΛ

P (λx · F (x) +D(x) +Wt ∈ Bn ∩K|Xt = x)

= lim
n→∞

sup
x∈ΓΛ

∫
z

P (z +Wt ∈ Bn ∩K)P (λx · F (x) +D(x) ∈ dz|Xt = x)

= lim
n→∞

sup
x∈ΓΛ

∫
z

P (Wt ∈ (Bn ∩K)− z)P (λx · F (x) +D(x) ∈ dz|Xt = x)

≤ lim
n→∞

sup
x∈ΓΛ

∫
z

(
sup
z
µ̄(z)

)
λ((Bn ∩K)− z)P (λx · F (x) +D(x) ∈ dz|Xt = x)

= lim
n→∞

sup
x∈ΓΛ

∫
z

(
sup
z
µ̄(z)

)
λ(Bn ∩K)P (λx · F (x) +D(x) ∈ dz|Xt = x)

= lim
n→∞

(
sup
z
µ̄(z)

)
λ(Bn ∩K) sup

x∈ΓΛ

∫
z

P (λx · F (x) +D(x) ∈ dz|Xt = x)

=

(
sup
z
µ̄(z)

)
lim
n→∞

λ(Bn ∩K) = 0,

where µ̄ is the density of Wt and λ(·) is the Lebesgue measure which is translation

invariant (that is, λ((Bn ∩K)− z) = λ(Bn ∩K)). Note that λ(Bn ∩K)→ 0.

As a result, for every ε > 0, limn→∞ supx∈ΓΛ
P (Xt+1 ∈ Bn|Xt = x) ≤ ε and (4.3)

holds. 3

Hence, by invoking Theorem 2.3.1, Xt is positive Harris recurrent.
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4.3 Example

Let us close the chapter by considering an example to which Theorem 4.2.1 can be

applied.

Let us consider a state-dependent example inspired by social dynamics. Let there

be a group of 10 political followers (10 agents) who support one of two political

parties. Over the course of a year, the congress has a chance to enact 100 pieces of

legislation. After each piece of legislation is enacted, the agents have a chance to talk

to each-other and debate. The process values describe how favourably each agent

views Party A and unfavourably they view party B, e.g. if an agent has a positive

opinion, he/she approves of Party A and disapproves of Party B, if another agent has

a negative opinion then he/she approves of Party B and disapproves of Party A.

Formally, let us consider 10 agents whose opinion at time t is given by Xt ∈ R10.

At each time step the following dynamics occur:

• An agent with a non-negative opinion is said to approve of Party A, each agent

with a negative opinion is said to support Party B and to be a critic of Party A

• Each person’s opinion is also affected by some random variation, in our case

modelled by a Gaussian noise process.

• Each agent has a 10% chance of communicating with every other agent. If both

agents are supporters or both agents are critics then they average their views.

If one agent is a supporter and one agent is a critic then they each move a small

amount (5%) closer i.e. Xt+1(i) = λ(.95Xt(i) + .05Xt(j)) + D(Xt)(i) + Wt(i)

and Xt+1(j) = λ(.95Xt(j) + .05Xt(i)) +D(Xt)(j) +Wt(j)

• At the same time, because these political followers are so involved in politics,

their opinion affects the ability of each party to enact legislation. The prob-

ability of the congress enacting legislation favourable to Party A is given by

P (A) = .6#X>0
10

+ .2, that is if all agents support Party A then Party A has a

80% chance of enacting favourable legislation, else Party B enacts legislation it

favours.

• Which team enacts favourable legislation affects the opinion of the agents as

well. If Party A enacts legislation than each agent supporting Party A’s opinion
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Figure 4.3

moves in the positive direction by δ
#X>0

and vice versa for Party B. Consider

the following which accounts for the cases #X > 0 = 0 and #X < 0 = 0:

D(X)(i) =



δ
#X>0

if X(i) > 0 and #(X(j) > 0) 6= 0

− δ
#X≤0

if X(i) ≤ 0 and #(X(j) ≤ 0) 6= 0

δ if maxj X(j) = X(i) and #(X(j) > 0) = 0

−δ if minj X(j) = X(i) and #(X(j) ≤ 0) = 0

δ
9

if maxj X(j) 6= X(i) and #(X(j) > 0) = 0

− δ
9

if minj X(j) 6= X(i) and #(X(j) ≤ 0) = 0

• Finally, the total process has a factor of λ = .99 which represents the tendency

for opinions to move towards neutrality in the absence of outside forces.

In Figure 4.3 we see a sample output from a process run under the above con-

ditions. As we can see the process remains within some compact set, only leaving

occasionally. We therefore see examples in the simulation of times when people are

divided in their support for each party and times when the difference is small.



Chapter 5

Stochastic Agreement Under

DeGroot’s Model

Many results in the literature are based on the DeGroot Model [9]; that is, their

dynamics are defined by equations of the form:

Xt+1 = XtAt (5.1)

where {At}t≥0 is a sequence of stochastic (not necessarily doubly stochastic) matrices.

Under these dynamics a process is considered to have achieved consensus if there exists

an X such that limt→∞Xt = X almost surely. Often X is required to have all entries

the same, or even that all entries be equal to the average of X0.

Notably, J. Wolfowitz in [27] studies this problem for when {At}t≥0 is a sequence

of SIA matrices; this was discussed extensively in Chapter 2.

We would like to give conditions that a process that achieve consensus under the

DeGroot model will achieve Stochastic Consensus under dynamics of the form:

Xt+1 = XtAt +D(Xt) +Wt (5.2)

where D(.) is such that every realization of D(Xt) defines a bounded random vector

and Wt is a zero-mean Gaussian vector.

However, not every sequence {At}t≥0 that achieves consensus under the DeGroot

Model will achieve stochastic agreement under the process defined by (5.2) as the

26
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Figure 5.1

following example demonstrates:

Example 5.0.1 Let {At}t≥0 be defined in the following way:

• Let A0[i, j] = 1
N

for all i, j

• Let At = IN×N for all t > 0 where IN×N is the N ×N identity matrix.

Thus, under the DeGroot Model, for any X0 ∈ RN , X1 will be the vector with all

entries equal to the average of X0 and Xt = X1, t > 1. Thus {At}t≥0 achieves

consensus under the DeGroot Model.

However, under the process defined by (5.2) and taking D(X) = 0 it is clear that

after the first step, each agent i will behave independently with

Xt+1(i) = Xt(i) +Wt(i)

In other words, each agent will behave as an independent random walk. A sample out-

put of a simulation run under these dynamics is seen in Figure 5.1. Thus, stochastic

agreement is not achieved.
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We therefore strengthen our requirement on {At}t≥0 to requiring that for all T ≥ 0,

lims→∞
∏s

t=T At is a matrix with all columns the same almost surely.

5.1 Stochastic Agreement - Main Theorem

Let {At}t≥0 be a sequence of independent not necessarily identical N ×N stochastic

matrices such that for all T ≥ 0, lims→∞
∏s

t=T At is a matrix with equal columns

almost surely. Fix 0 < δ < 1. For some sequence of vectors {Xt}t≥0, let us define

ρ0 = 0 and for t > 0

ρt = min{s > ρt−1 :||Xρt−1

s−1∏
t=ρt−1

At − µ(Xρt−1

s−1∏
t=ρt−1

At)||1

≤ δ||Xρt−1 − µ(Xρt−1)||1} (5.3)

Let us note that suptE[ρt+1 − ρt|Fρt ] is not necessarily bounded.

Theorem 5.1.1 Let {At}t≥0 be a sequence of RN×N matrices such that for all Z0 ∈
RN and for all T ≥ 0 lims→∞

∏s
t=T At is a matrix with equal columns surely. Let also

suptE[ρt+1− ρt|Fρt ] <∞ where ρt is the sequence of stopping times defined in (5.3).

Then the process defined by

Xt+1 = XtAt +D(Xt) +Wt

where D(.) is such that every realization of D(Xt) defines a bounded random vector

and Wt is a zero-mean, Gaussian vector achieves Stochastic Agreement.

Proof:

Let us denote by EFρz [·] = E[·|Fρz ] where Fρz = σ(X0, . . . , Xρz) i.e. Fk is the

sigma field generated by Xs for s ≤ k. Let T = suptE[ρt+1 − ρt|Fρt ] <∞.

Let us define V (X) = ||X − µ(X)||1 and note the following inequalities:

EFρz [V (Xρz+1)] = EFρz [||Xρz+1 − µ(Xρz+1)||1]

= EFρz [||Xρz+1−1Aρz+1−1 +D(Xρz+1−1) +Wρz+1−1 − µ(Xρz+1−1)||1]
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≤ EFρz [||Xρz+1−1Aρz+1−1 − µ(Xρz+1)||1] +D +W (5.4)

≤ EFρz [||(Xρz+1−2Aρz+1−2 +D(Xρz+1−2)

+Wρz+1−2)Aρz+1−1 − µ(Xρz+1)||1] +D +W

≤ EFρz [||Xρz+1−2Aρz+1−2Aρz+1−1 − µ(Xρz+1)||1] + 2(D +W ) (5.5)

≤ EFρz [||Xρz

ρz+1−1∏
k=ρz

Ak − µ(Xρz+1)||1] +

EFρz [ρz+1−ρz ]∑
k=0

(D +W )

≤ EFρz [||Xρz

ρz+1−1∏
k=ρz

Ak − µ(Xρz

ρz+1−1∏
k=ρz

Ak)||1

+ ||µ(Xρz

ρz+1−1∏
k=ρz

Ak)− µ(Xρz+1)||1] +

EFρz [ρz+1−ρz ]∑
k=0

(D +W )

≤ EFρz [||Xρz

ρz+1−1∏
k=ρz

Ak − µ(Xρz

ρz+1−1∏
k=ρz

Ak)||1]

+ U +

EFρz [ρz+1−ρz ]∑
k=0

(D +W ) (5.6)

≤ δEFρz [||Xρz − µ(Xρz)||1] + U +

EFρz [ρz+1−ρz ]∑
k=0

(D +W ) (5.7)

= δV (Xρz) + U +

EFρz [ρz+1−ρz ]∑
k=0

(D +W )

= V (Xρz)− (1− δ)V (Xρz) + U +

EFρz [ρz+1−ρz ]∑
k=0

(D +W )

≤ V (Xρz)− (1− δ)V (Xρz) + U +

supz EFρz [ρz+1−ρz ]∑
k=0

(D +W ) (5.8)

≤ V (Xρz)− ε+ (U +
T∑
k=0

(D +W ))1{Xρz∈Γ} (5.9)

(5.4) comes from the boundedness of D(.) and the finite variance of Wt. (5.5) follows

from the fact that At is stochastic and therefore ∃α such that E||(Wt+D(Xt))At||1 ≤
D + W (See Appendix A.3). (5.7) uses the mean criteria of the theorem. (5.6)
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follows from proof in Appendix A.2. In (5.8) we add supz EFρz [ρz+1− ρz] rather than

EFρz [ρz+1 − ρz] and we know that supz EFρz [ρz+1 − ρz] <∞.

In (5.9) we define our consensus set Γ by

Γ ={x : ||x− µ(x)||1 ≤
U + T (D +W ) + ε

1− δ
}

Finally, ∀x
Ex[min(t > 0 : xt ∈ Γ)] ≤ V (x) + b

for some b > 0. Therefore,

Px(min(t > 0 : xt ∈ Γ) ≥M) ≤ Ex[min(t > 0 : xt ∈ Γ)]

M

Now letting M →∞ we get that Px(min(t > 0 : xt ∈ Γ) <∞) = 1.

Thus Xt achieves stochastic agreement.

Thus, we have satisfied the relevant criteria in Theorem 2.3.1.

3

Remark 5.1.1 In contrast to the work of Hajnal and Wolfowitz [14] [27] which

makes the assumption that |ρz+1 − ρx| < M surely for some M ∈ R, Theorem 5.1.1

only assumes that suptE[ρt+1 − ρt|Fρt ] <∞.

5.2 Example

Another way that Theorem 5.1.1 differs from the theorems presented in Chapters 3

and 4 is that it does not require the consensus matrix to be doubly stochastic. This

allows for some more interesting examples including one-way communication as the

following example taken from social dynamics illustrates.

Let us consider a small company of 8 people. This company has a power structure.

There is a president, two managers and five workers. This company is beginning a

new project. The opinion of each employee about the project on day t is given by a

vector xt ∈ R8. Let xt(1) represent the president’s opinion, xt(2) and xt(3) represent

the manager’s opinions and all others represent the worker’s opinions. For this model

let x0 be a standard normal random vector.
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Let us model the opinion dynamics of the company in the following way

• Each employee’s opinion is affected by noise which is a modelled by a standard

normal random variable - see equation (5.10)

• Each worker is also likely to see new information in light of their current opinion

- that is, the opinion of each worker who already see the project negatively

will continue to go down, and vice versa for the workers who see the project

positively. The president has seen many projects so his/her opinion is not

affected by the others’ opinions. For the managers, one is a pessimist and one

is an optimist. These dynamics are modelled by

D(xt)(i) =



0 if i = 1

−.25 if i = 2

.25 if i = 3

−.25 if i = 4, 5, 6, 7, 8 and xt(i) ≤ 0

.25 if i = 4, 5, 6, 7, 8 and xt(i) > 0

• Each day each employee sends an email to another randomly selected employee.

If the recipient of the email is of equal or lower rank to the sender, their opinion

will change to be 7% closer to that of the sender’s. E.g if employee i who is a

worker gets emails from employees j and k on day t then

xt+1(i) = (1− 2(.07))xt(i) + .07xt(j) + .07xt(k) +D(xt)(i) + wt(i) (5.10)

Thus the maximum weight by which an employee can be influenced is 49%.

Let us note that under these dynamics the noise is a standard normal random

vector and the drift term is bounded.

Because the president never changes his opinion based on signals from other
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Figure 5.2

agents, it can also be seen that for all T , almost surely

lim
s→∞

s∏
t=T

At =


1 1 · · · 1

0 0 · · · 0
...

...
...

0 0 · · · 0


Since there are finitely many possible realizations of At each with δ(At) > 0, one

can apply Wolfowitz’s Theorem 2.2.1, and thus suptE[ρt+1 − ρt|Fρt ] <∞. Thus this

scheme fits the criteria for Theorem 5.1.1.

The results of a simulation run under these dynamics can be seen in Figure 5.2.

As can be seen, the beliefs of the agents in the simulation tend to stabilize into a

tube but the average value of the tube is not itself stable. The tube moves with the

president’s opinion which behaves as a random walk.



Chapter 6

Conclusion

6.1 Contributions

The notions of stochastic agreement and stochastic absolute agreement allow for a

more realistic and general notion of stability. The main contribution of this the-

sis is providing criteria for different processes to achieve stochastic agreement and

stochastic absolute agreement.

6.2 Future Research Areas

This thesis concerns itself with stability. A process can be stable in the sense of

stochastic agreement or even stochastic absolute agreement without actually being

practically stable. The criteria that a process return to a consensus set in finite time

with probability 1 may be useful, however for many practical applications the rate of

return to agreement may be more relevant. A possible direction for further research

would be establishing a degree of consensus for such processes; e.g. a process that

has an expected return time of 1000 steps to the consensus set is in some sense less

in agreement than a process that has an expected return time of 10 steps.

In Chapter 4 we provide criteria for a process to be positive Harris Recurrence,

this means that it has a unique invariant distribution (the uniqueness is due to the

irreducibility of the process). This invariant distribution would be a way to access the

degree of consensus in the sense that if we know the steady state distribution on the
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consensus set, through Kac’s Theorem (see Theorem 10.4.9 in [18]), we may obtain

useful bounds.



Appendix A

Additional Proofs

A.1 Proof of Theorem 3.2.1

First since by assumption Ext [δ(
∏m−1

i=0 F (Xt+i))] > α we know thatExt [γ(
∏m−1

i=0 F (Xt+i))] <
α
N

Next, let us also define a function V : RN → R+ as V (Xt) = ||Xt − µ(Xt)||1.

Now,

Ext [V (Xt+m)] = Ext [||Xt+m − µ(Xt+m)||1]

= Ext [||Xt+m−1F (Xt+m−1) +D(Xt+m−1) +Wt+m−1 − µ(Xt+m)||1]

≤ Ext [||Xt+m−1F (Xt+m−1)− µ(Xt+m)||1] + Ext [||D(Xt+m−1)||1]

+ Ext [||Wt+m−1||1]

≤ Ext [||Xt+m−1F (Xt+m−1)− µ(Xt+m)||1] +D +W (A.1)

= Ext [||(Xt+m−2F (Xt+m−2) +D(Xt+m−2) +Wt+m−2)F (Xt+m−1)

− µ(Xt+m)||1] +D +W

= Ext [||(Xt+m−2F (Xt+m−2)F (Xt+m−1)− µ(Xt+m)

+D(Xt+m−2)F (Xt+m−1) +Wt+m−2F (Xt+m−1)||1] +D +W

≤ Ext [||(Xt+m−2F (Xt+m−2)F (Xt+m−1)− µ(Xt+m)||1]

+ Ext [||D(Xt+m−2)F (Xt+m−1)||1]

+ Ext [||Wt+m−2F (Xt+m−1)||1] +D +W

≤ Ext [||(Xt+m−2F (Xt+m−2)F (Xt+m−1)− µ(Xt+m)||1
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+ ||D(Xt+m−2)||1 + ||Wt+m−2||1 +D +W (A.2)

≤ Ext [||(Xt+m−2F (Xt+m−2)F (Xt+m−1)− µ(Xt+m)||1 + 2(D +W ) (A.3)

≤ Ext [||(Xt+m−2F (Xt+m−2)F (Xt+m−1)− µ(Xt+m)||1 + 2(D +W )

≤ Ext [||(Xt

m−1∏
k=0

F (Xt+k)− µ(Xt+m)||1 +mD +mW

= Ext [||(Xt

m−1∏
k=0

F (Xt+k)− µ(Xt) + µ(Xt)− µ(Xt+m)||1 +mD +mW

≤ Ext [||(Xt

m−1∏
k=0

F (Xt+k)− µ(Xt)
m−1∏
k=0

F (Xt+k)||1 + U +mD +mW (A.4)

≤ Ext [1− δ(
m−1∏
k=0

F (Xt+k))]||xt − µ(xt)||1 + U +mD +mW

≤ Ext [Nγ(
m−1∏
k=0

F (Xt+k))]||xt − µ(xt)||1 + U +mD +mW (A.5)

Let Ext [||D(Xt)||1] < D and Ext [||Wt||1] < W which gives us (A.1) and (A.3)

above. (A.2) comes from ||D(Xt)F (Xt)||1 ≤ (1 − δ(F (Xt)))||D(Xt)||1 ≤ ||D(Xt)||1.

(A.4) comes from µ(Xt)F (Xt) = µ(Xt) for all F (Xt) and ||µ(Xt)− µ(Xt+m)||1 ≤ U .

(A.5) follows from Theorem 2.2.3.

Let us define a set:

Γ = {x : ||x− µ(x)||1 ≤
mD +mW + U + ε

α
}

where α is defined as above. We therefore arrive at:

Ext [V (Xt+m)] ≤ EXt [Nγ(
m−1∏
k=0

F (Xt+k))]||xt − µ(xt)||1 +mD +mW

≤ α||xt − µ(xt)||1 +mD +mW

= V (Xt)− α||xt − µ(xt)||1 +mD +mW + U (A.6)

≤ V (Xt)− ε+ (mD +mW + U + ε)1Xt∈Γ

For some ε small. See proof of Theorem 3.1.1 for the details of A.6.
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Also, ∀x
Ex[min(t > 0 : xt ∈ Γ)] ≤ V (x) + b

for some b > 0. Therefore,

Px(min(t > 0 : xt ∈ Γ) ≥M) ≤ Ex[min(t > 0 : xt ∈ Γ)]

M

Now letting M →∞ we get that Px(min(t > 0 : xt ∈ Γ) <∞) = 1.

Thus Xt achieves stochastic agreement.

A.2 Bounding the Mean

We wish to showEXt [||λµ(Xt)−µ(Xt+1)||1] < U for some U whenXt+1 = λXt·F (Xt)+

D(Xt) + Wt. Note that when λ = 1 this becomes EXt [||µ(Xt) − µ(Xt+1)||1] < U for

some U when Xt+1 = Xt · F (Xt) +D(Xt) +Wt.

Proof: Let 1N,N be the N ×N matrix of all ones.

Ext [||λµ(Xt)− µ(Xt+1)||1] = Ext [||λµ(Xt)−
1

N
1N×NXt+1||1]

= Ext [||λµ(Xt)−
1

N
1N×N (λXtF (Xt) +D(Xt) +Wt)||1]

= Ext [||λµ(Xt)− λµ(Xt)F (Xt) +
1

N
1N×N (D(Xt) +Wt)||1]

= Ext [||λµ(Xt)− λµ(Xt) +
1

N
1N×N (D(Xt) +Wt)||1]

= Ext [||
1

N
1N×N (D(Xt) +Wt)||1]

Which is bounded since E[||D(X)||] and E[||Wt||] are bounded by assumption. 3

A.3 Product of a Random Stochastic Matrix and

a Random Vector

Let At be a possibly random N × N stochastic matrix. Let u ∈ RN be a random

vector such that there exists U ∈ R such that E[||u||1] < U . We wish to show that

E[||uAt||1] < U .
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Proof:

E[||uAt||1] = E[

N∑
i=1

|
N∑
j=1

u(j)A(j, i)|] ≤ E[

N∑
i=1

N∑
j=1

|u(j)|A(j, i)] = E[

N∑
j=1

|u(j)|] = ||u||1

3
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