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Abstract— This paper performs a joint analysis of control

and coding for stability and performance of LTI systems
connected over communication networks. We study the
communication rate required for stability of the differential
entropy and mean-square stability of the state estimation
error. We show that the optimal control and coding
problems in the minimization of an LQR cost are separable;
we further show that the optimal control is linear in
its argument and we provide the solution to the optimal
quantization problem. Mean-square stability of an LTI
system, as a function of the rate and network reliability, is
also studied.
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I. INTRODUCTION AND PROBLEM DEFINITION

Classical control analysis assumes perfect informa-
tion sharing between the system plant and the decision
maker/controller, with no delay, no precision effects, and
no communication constraints. However, in recent ap-
plications such as control over wireless systems, control
over the Internet, control in decentralized and distributed
systems, and digital control of automatic systems, a
communication-theoretic approach as well as a non-
traditional control approach is crucial to the design of
a system with optimal performance under a specified
criterion. Communication networks might be specifically
important in applications such as the control of a plant
by a supercomputer which can handle complex tasks
which the plant cannot, or remote control where the
controller/decision maker uses Internet to control a robot.
Along these general lines, some of the related papers are
[5], [6], [4], [7], [11], [3], [9], [10].

The basic model we introduce here focuses on the
unreliable character of the links in both directions (see
Fig. 1). We model this character of the links by a
Bernoulli process, in which links fail, or equivalently
packets are lost, independently. Thus, the controller has
access to the measured output only at times governed
by the underlying link-failure, or packet-loss, process.
Similarly, the plant has access to the controller output
only at times governed by an independent second link-
failure process. Losses introduce an uncertainty in the
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state to be controlled, and the system is to be designed
so as to achieve a degree of stability in state estimation
error as well as in the state itself. For the state estimation
problem, stability in mean-square estimation error and in
differential entropy of the estimation error is considered.
With the information structure induced by encoding
and uncertainties in the network, optimal control is
determined by minimizing some performance index.

The problem of control of a linear system over a
network with packet losses can be modeled as a Markov
jump linear system if the controller has an appropriate
information set, and then the standard solutions are
directly applicable [14], [15], [16]. However, for com-
municating over a network, the information structure of
the controller does not permit a direct application of the
theory of jump linear systems to obtain the solution.
Thus, we resort here to basic dynamic-programming to
derive the optimal controllers that minimize the quadratic
cost under the induced information structure. We show
that separation of estimation and control holds, thus
the optimal controller can be designed independently
from the optimal coder, which is also a solution of
a separate dynamic programming equation. We finally
analyze conditions on mean-square stability of an LTI
system.
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Fig. 1. Control over networks.

In a control setting, the failures in the transmission
of the control signal potentially leads to a dual effect
of the control values in the state estimation error, for if
the controller does not know whether its message was
successfully received or not the estimation error would
be a function of the control signals as well. In this
case the expected estimation error would have a linear
contribution from the control signal [12]. However, for
the popular communication protocol currently used in
the Internet, TCP/IP (Transmission Control Protocol), for



instance, feedback is rezlized by ACK (acknowledge-
ment) signals. For the case with UDP (User Datagram
Protocol), on the other hand where there is no explicit
feedback within the protocol, one could embed an ACK
signal in the data sent and received, and can eliminate
the dual effect of the control [1]. We finally note that,
optimal control without explicit feedback is analyzed in
[12] and [10].

For future reference, we write the state equation for
LTI systems as �������	� 
��������������� (1)� � � � ����� � ��� (2)

where � � is the state vector, � � is the control, ������� is
the causal encoding vector which has access to all the
past encoded and actual values as well as the sequence� �! "�# , and finally � � is the observation vector (all vectors
are of appropriate dimensions). The initial state � # is
also random and is characterized by a given probability
distribution $�%'& which is continuous over a compact
support set. The plant is remotely controlled over a
network with links that are prone to failure. Link failures
correspond to packet losses. The stochastic process ���
models this unreliable nature of the links. Basically,���(�*) (zero control) when the link from the controller
to the plant (uplink) fails, i.e. the control packet is lost,
and ���+�-, , otherwise. We will assume the former to
take place with probability � . Likewise the observation
is also subject to failures and the controller receives
information only if � � �., which is assumed to take
place with probability ,0/1� . The plant is assumed to
be incapable of making intelligent decisions when the
uplink fails, and the control data is lost. However, an
alternative strategy for the plant that does not require
much intelligence could be to use the last available
control instead of using zero control when the link fails.
This case can be captured with the above model if one
defines the control ��� as a state 2��� , adds this new state
to the existing state vector to obtain the augmented state3 ��� 2���!465 , and rewrites the state equation by using the fact
that 2� � will be � � if the link is up, and it will be 2� �! 7� if
it is down. Since the last available control case can be
converted into the zero control one by augmenting the
state space, for most of the discussions we only consider
the zero control case.

We start in section II with the problem of state esti-
mation through communication networks. We then study
the optimal control and encoding of an LTI system over a
network in section III, where the structure of the optimal
control and the conditions for stability in the mean-
square are presented. Section IV includes concluding
remarks.

II. STATE ESTIMATION OVER A COMMUNICATION

NETWORK

In this section, we analyze the problem of state
tracking, where we use differential entropy of the error
and the mean-square error as measures of uncertainty in
the information the controller has with regard to the state
at the plant.

Let 8��� be the estimate of state at the controller and9:���;���7/ 8��� be the state estimation error. We now have
a few definitions.

Definition 2.1: An error system is stable in the
mean-square sense if the second moment of the error,< 36=>= 9:� =>= ? 4 , converges to zero.

Definition 2.2: An error system is stable in
the differential entropy of the estimation error if@BA>CED�F�G �IH�J < �IK�� 9 � = 8� ����� �L/NM .

Definition 2.3: Let O:PRQ�TS U � , SWVXS �Y�Y� S[Z \,^] ,
and O:_`Q�aSbU �c, SdVXS �Y�'� Z ] be the bin edges and the
reconstruction values, respectively, at time e of a Z -
level scalar quantizer. Let P � and _ � denote the � Z f, � /
and Z / dimensional vectors corresponding to these sets.
Then, such a quantizer is time invariant if the vectors P �
and _ � change over time only up to a scaling constant,
that is for some constant � and for all U and e ,P Q����� �*� P Q�TS _ Q���g� �h� _ Q� (3)

A. Mean-Square Stability in State Estimation

1) Convergence to the uniform density:
Lemma 2.4: Let � # be the realization of a scalar

random variable i # with a continuous pdf � # ��� � and
with finite support

3 /�j #`k VXS j #:k V 4 . Suppose that at each
time step, �������l�nmo��� is quantized successively using
a Z level uniform quantizer with a bin size equal toj # = m = � k Zqpdr ��s��g� , for each time e , where t � e �vu e is the
number of quantization operations performed until timee . If

@>ABC �IH�J pdr ��s� �hwyx � ) S ,T4 then, the Kullback-Leibler
distance between the zero-mean uniform error density
with bin size j{z|�}j # = m � = k Z~pdr ��s and the quantization
error density (conditioned on the sample path) converges
to zero as e�� M [1].
Remark Assuming that a stationary binomial distribu-
tion exists for the packet losses through the network from
the state to the controller, and the loss probability is � ,
then w will be equal to ,�/~� in Lemma 2.4. �

Henceforth, in this subsection, we investigate the
conditions on the communication rate to ensure stability
in mean-square state estimation error.

We now assume that 
 is diagonalizable with possibly
complex eigenvalues, and that the initial state � # is an
outcome of a random variable with a bounded distribu-
tion. Since the control values do not have dual effects,
they do not contribute to the state estimation error, thus
the system we have is effectivelya control free system,�����g���;
���� �



Proposition 2.5: Consider the LTI system in (1), con-
nected through a communication network, with packet
loss probability � . Let the eigenvalues of the system
matrix 
 are � Q S�U ��, S �'�Y� S[� . Suppose the system is
diagonalized and a uniform quantizer with Z Q number
of levels (bins) is used for each of the components of the
state vector. Then the following bound has to be satisfied
for each component of the vector to achieve mean-square
stability in state estimation:Z Q�� � � ,�/~� � k � ,= � Q = ? /q� �Y� (4)

Proof. For each of the components of the state vec-
tor, let 9 Q� denote the support size of the state estimation
error of the U th component at time e .

Now, asymptotically we have the quantization error
as uniformly distributed. First let us assume that the
eigenvalues are real. In case there is a packet loss,
the expected mean-square state estimation error will be
scaled by

= � Q = ? :< 3 � 9 Q����� � ? 4"� = � Q = ? < 3 � 9 Q� � ? 4 �
On the other hand, if there is a successful transmis-

sion, the expected mean-square state estimation error
will be < 3 � 9 Q���g� � ? 4�� � = � Q = k Z Q � ? < 3 � 9 Q� � ? 4 S
where Z Q is the number of levels in the quantizer of theU th component which is assumed to be uniform.

Thus the value of the second moment at time e ,< 3 � 9 Q� � ? 4 , will be� = � Q = ? < 3 � 9 Q�! 7� � ? 4X � ,�/q� �T� = � Q = k Z � ? < 3 � 9 Q�! 7� � ? 4� = � Q = ? � �l � ,�/q� � k Z ? � < 3 � 9 Q�! 7� � ? 4 � (5)

To achieve stability,
= � Q = ? � �q � ,0/�� � k Z ?Q � has to be

less than unity in magnitude. Thus, Z Q has to satisfyZ Q�� � � ,�/q� � k � ,= � Q = ? /~� �Y� (6)

In case an eigenvalue is complex, then there will be
a shift in the orientation of the quantizer. However the
same updates will apply in the bin edge and reconstruc-
tion values and what matters will be the the magnitude
of the eigenvalue. �

Remark With fixed-length coding (since the density
is asymptotically uniform) the minimum rate required
would be� ��� Q @B�^� ? �'��� � ,�/~� � k � , k = � Q = ? /q� ���`�a�
With variable-rate time-invariant coding one could fur-
ther decrease the rate (minimizing the effect of the
integer constraint on the number of levels), and get closer
to the value in (6) [2]. �

Remark Note that if Z � V , the condition in (4), for� Q , will become: = � Q =�� V� ,���R� �
Although the approach taken here is different, the result
is in agreement with [4]. �
B. Stability in differential entropy of the estimation error

Definition 2.6: Let there be a random variable i at
a source, and another one � at the receiver. Information
rate of a code, Z, transmitted over the channel to improve
the estimation at the receiver is�v��� � �!��� �*� � i¡ d� � /¢� � i¡ [� = �N�a�

Define the average information rate as:�v£T¤W¥ � 5 � @>ABC5 H�J ,¦ 5  "�� ��§ # � �W�
We now have the following proposition:

Proposition 2.7: Consider the system (1). For stability
in the differential entropy of the state estimation error in
this system connected through a communication network
with packet loss probability of � , the average information
rate required is at least

C©¨`ª � ) So« ¬dW® r°¯ ±(¯ s�W �² � , where
= 
 = is

the determinant of A.
Proof. If the system is stable, then there is no need for
communication, thus we will consider the case where
the system is unstable. Now the information rate of the
code 8� � at time e is given by,� � �*� � 8� �   � � = 8� �! 7�# � /¢� � 8� �   � � = 8� �# � (7)

where 8� �! 7�# denotes the past information on the quantizer
outputs, which are available both at the transmitter
and the receiver (thus the ones which are successfully
received by the controller). Since the system under
consideration is Markov, the entire information about the
state given all the past is captured in the previous output.
The optimal encoder (in the sense of minimization of any
measurable objective) would only use the last outcome
and the receiver’s state, 8� (see [8]). Thus, for a given
arbitrary code, the information rate,

� � , is Hence,K¡� ���g/ 8��� = 8��� � � K¡� ����/ 8��� = 8���! 7� � / � � � (8)

Since �����;
����! 7� , and K¡� 
 i � � @B�^� ? � = 
 = �  K�� i � for
any random variable i and matrix 
 , the above yields:K¡� ���`/ 8��� = 8��� � � @>�o� ? � = 
 = �  K¡� ���! "�³/ 8���! 7� = 8���! 7� � / � � �

(9)
However, if there is a packet loss, then the packets

carrying data will not have an impact on the evolution
of the entropy. In this caseK¡� ���g/ 8��� = 8��� � � @B�^� ? � = 
 = �  K¡� ���! "��/ 8���! 7� = 8���! 7� �a�

(10)



Thus, once could regard the entropy as a state with a
stochastic evolution, following (9) with probability ,7/´�
and following (10) with probability � . Since the packet
failures have a stationary distribution, we have< 3 K¡� � � / 8� � = 8� ��� 4�� e @B�^� ? � = 
 = � / � ,�/~� � 5  "�� ��§ # � �  K¡� � # �
Thus, for an arbitrary µ � )@BA>CED�F�G5 ,¦ 3 5  7�� ��§�� 3 @B�^� ? � = 
 = � / � ,�/~� � � � 4³ K�� � # � 4 u / µ (11)

To achieve this, we need to have;�v£a¤W¥ � � � ,¦ 5  7�� ��§ # � � � ,,�/q� @>�o� ? � = 
 = �  µ � (12) �
Remark Entropy is not an appropriate measure for

multi-dimensional control systems. Suppose 
 has two
eigenvalues, V and , k V . In this case, the determinant is
1, and the uncertainty measured in differential entropy
will not increase, although clearly asymptotically the
estimation error is unstable in one direction. Further-
more, as pointed out in [4], classical Shannon theory is
not appropriate for such control systems even for scalar
systems. Nonetheless,

��a �² @B�^� ? � = 
 = � is a lower bound
on the rate. Achieving this information bound might not
always be possible in a practical situation. The bound
would be tight for instance, for a scalar system, since
uniform density is the stationary density (up to a support
set variation) where the same encoding scheme could
be used. At least for the case where �¶�·) and the
system is scalar, entropy is a useful measure [2] for the
characterization of optimal quantization. �

Remark: In the internet, usually packet errors take
place in bursts, thus one can improve the rate require-
ments by sending less data when the network is likely to
be congested. A Markov model can be used to capture
the state of reliability of the network. Using the Markov
model, let ��¸ and ��¹ be the steady state probabilities of
the reliable mode and the unreliable mode, respectively,
and � � � = º � S � � º³= � � denote the excursion probabilities.
The rate can be further reduced by sending no data,
except header bits to track the channel status. However
the net information rate required will not change. Since
typically the probability of excursion from the reliable
state to the unreliable mode is much lower than the
steady state probability of the unreliable mode, the data
rate sent might decrease significantly. �
III. CONTROL OF AN LTI SYSTEM OVER A NETWORK

A. Optimal LQR control, quantizer over a communica-
tion network

Consider the linear plant dynamics along with the
measurement equation (1,2). The information available

to the controller at time e is:� � � � � # S � � S �Y�'� S � �   � # S � � S �Y�'� S � �! 7�   � # S � � S �Y�Y� S � �  � # S � � S �Y�Y� S � �! 7�T� S e �», SdVXS �Y�'� S ¦ /�,
The objective is to minimize the expected cost¼o½ � < %:& � ¾o¿�� ² ¿�� �!ÀXÁ # � 5  "�!Â O � 55�Ã 5 � 5 5  7�� ��§ # � 5� Ã � � � ¡� 5� � � � � ] (13)

over Ä � O:Å # � � # � S �Y�'� S Å �W� � ��� ] where � � was defined
above. From the dynamic-programming equation we
have ¼ 5  7� � � 5  7� � � C{ABÆ¹`ÇXÈÊÉ 3 < O � 55  "� Ã 5  7�a� 5  7�N� 55  7� � 5  7� � 5  7�  � 
�� 5  7� ¡� 5  "� �Ë � 5  7�Y� 5 Ã 5 � 
�� 5  7� ¡� 5  "� �Ì� 5  7�Y� = � 5  "� S � 5  7� ]Y4� < O � 55  7� � 
 5 Ã 5 
� Ã 5  7�Y� � 5  7� = � 5  "� ] C{ABÆ¹`Ç�ÈÊÉ 3 � 55  7� � � 5  7�Í � ,�/q� � � 5 Ã 5 � � � 5  7� V � ,�/¢� � < O � 5  "� = � 5  7�:] 5 
 5 Ã 5 ��� 5  "�d4
The minimization yields the optimal policy for the last
stage:� 5  7�b� Å�Î5  "� � � 5  7� �� / � ,�/¢� �Y� � 5  "�  � ,�/¢� � � 5 Ã 5 � �  "�� 5 Ã 5 
 < O � 5  "� = � 5  7�`] (14)

Upon substitution, we obtain¼ 5  7� � � 5  7� � � < O � 55  7� Z 5  7�W� 5  "� = � 5  7�`] < O � � 5  "� / < O � 5  "� = � 5  "� ] � 5Ë $ 5  "�R� � 5  7� / < O � 5  "� = � 5  7� ] � = � 5  7� ]
where the matrices Z 5  "� and $ 5  7� are given by$ 5  7�b� � ,�/¢� � ? 
 5 Ã 5 � � � 5  "� � ,�/¢� � � 5 Ã 5 � �  "� � 5 Ã 5 
Z 5  "���h
 5 Ã 5 
;/ $ 5  7�� Ã 5  7�
Note that the optimal policy (14) is a linear function of
the conditional expectation

< O � 5  "� = � 5  7� ] . Now the DP
equation for period

¦ / V is¼ 5  ? � � 5  ? � � C{ABÆ¹`ÇXÈ ® 3 < O � 55  ? Ã 5  ? � 5  ?N� 55  ? � 5  ? � 5  ?  ¼ 5  7�`� � 5  7�'� = � 5  ? S � 5  ? ]Y4� < O � 55  ? Ã 5  ? � 5  ? = � 5  ? ]� C{ABÆ¹ ÇXÈ ® 3 � 55  ? � 5  ? � 5  ? < O � 55  7�TZ 5  "�W� 5  "� = � 5  ? S � 5  ? ]Y4 < O � � 5  "��/ < O � 5  "� = � 5  "�Ï] � 5 $ 5  7�Ë � � 5  7��/ < O � 5  7� = � 5  7�`] � = � 5  ? S � 5  ? ]



One can exclude the last term from the minimization
with respect to � 5  ? , as there is no dual effect of the
control, i.e. ���`/ < O ��� = �a�W] is not a function of the control
signals due to the acknowledgments. Minimization yields� 5  ? � Å�Î5  ? � � 5  ? ��L/ � ,�/¢� �Y� � 5  ?  � ,�/¢� � � 5 Z 5  "�a� �  7�� 5 Z 5  "�a
 < O � 5  ? = � 5  ? ]
We can proceed similarly to obtain the optimal policy
for every stage:� �a� � ��� � Å Î� � � ��� �;Ð � < O � � = � � ]
where the matrix ÐÍ� is given byÐ��(�»/ � ,�/q� �T� � �� � ,�/¢� � � 5 Z �����a� �  "� � 5 Z �����T

with the matrices Z � given recursively by the Riccati
equation, starting with Z 5 � Ã 5 :$ � � � ,�/¢� � ? 
 5 Z ����� � � � � � ,�/¢� � � 5 Z ���g� � �  7� � 5 Z ����� 
Z � �*
 5 Z ����� 
;/ $ �  Ã �
Thus, the total cost has two separate components, one
due to control and the other due to estimation. Note that
the optimal controller is a function of only the packet
loss probability of the uplink, � . Link failure probability
of the downlink, � , has no affect on the control, but it
does affect the optimal cost through estimation.

The cost associated with the state estimation error,
from e through

¦
is:5  7�� Ñ §7� < O � � Ñ / < 3 � Ñ = � Ñ 4 � 5 $ Ñ � � Ñ / < 3 � Ñ = � Ñ 4 � ] � (15)

Let 9 � �*� � / < 3 � � = � � 4 . Information theoretically, the
minimum rate required for the encoder to send informa-
tion to a receiver with side information is achieved by
transmitting the conditioned information [13]. Further-
more, since the system is Markov, the sufficient statistic
about the density for encoding is captured by the latest
outcome, and the current information at the receiver’s
memory [8]. Suppose the encoder at each stage encodes
the innovation (state conditioned on the information
available at the controller), Ò , over the channel:Ò ���g� �;� ����� /¢
 < 3 � � = � � 4�/¢� � �Ì� � �h
 � 9 ���a�
Suppose the quantizer that we seek has a fixed number,
K, of cells (bins). Let 9YÓ S!Ô �-, S �Y�'� S�� be the compo-
nents of the state estimation error vector, � Q be the U th
quantization bin; � Q � O �ÖÕ��ÖxÖ� Q ] S[U �×, S �'�Y� SdZ
and � Q � ��� � = �¢x~� Q � S�U �}, S �Y�'� SdZ be the conditional
probability density for the U th bin. Then, the evolution
in the estimation error would be

¦ �Ø��� 9 �� S �'�Y� S 9 z� � = 9'��xÙ� Q S �����», � � � ,= 
 = � Q � 
  7� � �l/ _ Q ��� S¦ �Ø��� 9 ��RS �'�Y� S 9 z� � = 9 � xÙ� Q S � � �;) � � � ,= 
 = � Q � 
  7� � � ��� S
where the first line takes place when there is a

successful transmission from the plant to the controller
and the second happens when there is a failure in the
channel.

Let Ú �! 7� denote the state estimation error cost from
stage e /©, through

¦
. The optimal quantizer at time e /©,

would satisfy the following DP equation.

Ú�Û rBÜ ¿ ÈÊÉ s � C{A>ÆÝ ¿ ÈÊÉ < 3 9 5�! "� $ �! 7�T9'�! "�.Þ� Q §g�³ß � 9:�! 7�NxÙ� Q ��à"� ,�/q� � Ú 5 r Û rBÜ ¿ s ¯ Ü ¿ ÈÊÉaÀ^á7â � ² ¿ ÈÊÉ�§g��sN� Ú 5 r Û rBÜ ¿ s ¯ Ü ¿ ÈÊÉ À^á âäã ¿�� ² ¿ ÈÊÉ § # s!å 4 S (16)

However, this solution does not provide much insight.
As a suboptimal but a practical solution, one could
use sequential quantization of scalar components. In
this case, since asymptotically the errors are known to
converge to uniform densities, and a uniform quantizer
applied to a uniform density regenerates uniform error,
the quantizer minimizing the one-stage myopic cost
is identical to the quantizer (up to a scaling update)
minimizing the long-run cost. Thus, an analysis similar
to Proposition 2.5 should be followed; let Z Q be given
by (6), then the estimation error for each component will
be independent and of the form< 3 9 Q� ? 4�� ,,�/ � = � Q = ? � �l � ,�/q� � k Z ?Q � j Q# ? �
B. Mean-Square Stability of State

In this subsection we find the conditions on the con-
troller and the uniform quantizer which would achieve
mean-square stability in the state. We will consider scalar
systems, which can be interpreted as the decoupled
components of a vector. We will restrict the controller to
be linear and the quantizer to be uniform, following the
results of the previous sections. We also include a case
where the latest available control is used, in addition to
the case where zero control is used; in both cases the
control is assumed to be linear in its state estimate.

1) Case where zero control is used in case of a packet
loss: Consider the case where zero control is used in
case of a packet loss, which occurs with probability � .

Defining a two-dimensional state � �æ� ç < 3 � � � ?� 4< 3 � 9 � ?� 4Iè ,

with probability ,0/1� the mean-square evolution will



be � �������*� � � , where é is��Õê� ç � mv éTë � ? / éTë � éYë  V m �) m ? k Z ? è �
In case of a packet loss, the system evolution will be� �������;
 � � , where 
 is
*� ç m ? )) m ? è �
These together lead to a Bernoulli random evolution of
the expanded state, � . Defining ì Õ�� � ��
í � ,"/{� � � � ,
we have < 3 � �����d4"� ì < 3 � �°4 �
Thus, the system will be stable if;mÊ� ?  � ,�/q� � C©¨Rª �[� m0 éYë � ? S m ? k Z ? � � , � (17)

Note that, to achieve stability mÊ� ? should always be less
than , , as a necessary condition.

2) Case where latest available control is used:
Defining a four-dimensional state

� � �ïîððñ < 3 ��ò ?� 4< 3 � ?�! "� 4< 3 � � � �! 7� 4< 3 9 ?� 4
óõôôö S

with probability ,l/÷� the system evolution will be� ����� �;� � � , where � is

�ø� îððñ � m0 éTë � ? )ù) / éTë � V mv é  ë �ë ? )ù) / ë ?� m0 é  ë � ë )ù) / � m0 é  ë � ë) )ù) m ? k Z ?
óõôôö �

On the other hand, in case of a packet loss, the system
equation will be � �������*
 � � , where 
 is


ú� îððñ m ? é ? V m é )) , ) )) é m )) ) ) m ?
óõôôö �

Again, there will be a Bernoulli random evolution of the
expanded state, � . Let û Õê�E��
 Q  � ,�/f� � é . Then, we
have < 3 � ����� 4�� û < 3 � � 4 S (18)

which is stable if all the eigenvalues of û , � Ó , are within
the unit circle.

IV. CONCLUSIONS

This paper has investigated the problem of remotely
controlling an LTI plant over communication links. In
particular, we have established the rate requirements
to achieve stability under different criteria. Also, we
showed that the optimal control problem with a quadratic
cost has a solution that is separable into a control and an
estimation part, where the estimation part alone affects

the communication rate requirements when the measured
state is quantized. Optimal controller and encoders are
provided.

V. ACKNOWLEDGEMENTS

We are thankful to Dr. Christoforos Hadjicostis and
Akshay Kashyap, UIUC, for valuable discussions.

REFERENCES
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