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Abstract

In the classical lossy coding problem, one is allowed to encode long sequences of source symbols in
order to achieve a lower distortion. This is undesirable in many delay-sensitive applications. Accordingly,
we consider the zero-delay case where one wishes to encode a source symbol causally. It has been shown
that this problem lends itself to stochastic control techniques, leading to existence and structural results.
However, attempting to develop analytical solutions or algorithmic implementation using these methods
has been computationally difficult. To that end, we propose a reinforcement learning approach. First, we
will establish some supporting results on regularity and stability properties. Afterwards, building on recent
results on quantized Q-learning, we show that a quantized Q-learning algorithm can be used to obtain a
near-optimal policy for this problem. Finally, we provide some relevant simulation results.

1 Zero-Delay Lossy Coding and Optimal Quantizers
We are interested in a variant of Shannon’s lossy source coding problem: Given an information source {Xt}t≥0from a finite alphabetX, we wish to compress this source at rateR bits per source symbol, and then reproduce
the source as {X̂t}t≥0, where X̂ is the (also finite) reproduction alphabet. In particular, a (2RT , T ) block code
encodes T source symbols X[0,T−1] as e ∶ XT → {1,… , 2RT }, and decodes them as d ∶ {1,… , 2RT } →

X̂T . The goal is often to minimize the distortion, given by:

DT (R) ∶=
1
T
E[

T−1
∑

t=0
d(Xt, X̂t)]

where d ∶ X×X̂ → [0,∞) is an (additive) distortion measure. We call a rate-distortion pair (R,D) achievable
if there exists a sequence of (2RT , T ) codes (e, d) such that

lim sup
T→∞

DT (R) ≤ D

The minimum achievable distortion for a given rate R is denoted by D(R), and classically we can obtain
this distortion by taking the block length T to infinity (provided that the source is stationary and ergodic), i.e.
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D(R) = lim
T→∞

DT (R)

However, this approach requires encoding very large blocks of data at a time, and hence incurs large delay.
This delay may not be allowable in many real-time applications. Accordingly, we study a causal variant of this
lossy coding problem, where we enforce zero delay (hence a block coding approach is not viable). We will
assume throughout that the source {Xt}t≥0 is a discrete-timeMarkov process with probability matrix P , which
is irreducible and aperiodic (and thus admits a unique invariant measure). After encoding, the (compressed)
information is sent over a discrete noiseless channel with input and output alphabets  ∶= {1,… ,M}.

Thus, the encoder is defined by an encoder policy {et }t≥0, where et ∶ t × Xt+1 → . That is, the
encoder can use all past encoder outputs and all past and current source inputs to generate the current encoder
output. This can be viewed as the encoder policy selecting a quantizer Qt ∶ X →  using past information,
then quantizingXt as qt = Qt(Xt) [1]. Then, the decoder generates the reconstruction X̂t without delay, usingdecoder policy {dt }t≥0, where dt ∶t+1 → X̂. Thus we have X̂t = dt (q[0,t]).Note that, since the source alphabet is finite, there exists an optimal decoding policy for every encoding
policy. Thus we will denote (with an abuse of notation) the encoding policy by  ∶= e, and assume it is
paired with an optimal decoding policy. We can then restrict our search only to optimal encoding policies.

In general, for the zero-delay coding problem, the goal is to minimize the average cost/distortion. In the
infinite horizon case where X0 ∼ �, this is given by:

J (�, ) ∶= lim sup
T→∞

E�

[

1
T

T−1
∑

t=0
d(Xt, X̂t)

]

However, we will also consider the discounted cost problem, as this problem is easier to tackle using
reinforcement learning methods (to be discussed later). That is, for some � ∈ (0, 1), we wish to minimize:

J�(�, ) ∶= lim
T→∞

E�

[

1
T

T−1
∑

t=0
�td(Xt, X̂t)

]

For the finite horizon problems, we have the following results on the structure of optimal zero-delay codes,
the first from Witsenhausen and the second from Walrand and Varaiya:
Theorem 1.1. [2] For the problem of coding a Markov source over a finite time horizon T , any zero delay
encoder policy  = {t} can be replaced, without loss in distortion performance, by a policy ̂ = {̂t} which
only uses q[0,t−1] and Xt to generate qt, i.e., such that qt = ̂t(q[0,t−1], Xt) ∀ t = 1,… , T − 1.

While this greatly simplifies our optimal encoder, we still have that its memory space expands with time.
To avoid this, we define the following conditional probability measure on X. Let (X) be the space of prob-
ability measures on X, and define �t ∈ (X) as:

�t(A) ∶= Pr(Xt ∈ A|q[0,t−1])

Theorem 1.2. [3] For the problem of coding a Markov source over a finite time horizon T , any zero delay
encoder policy  = {t} can be replaced, without loss in distortion performance, by a policy ̂ = {̂t} which
only uses �t and Xt to generate qt, i.e., such that qt = ̂t(�t, Xt) ∀ t = 1,… , T − 1. Alternatively, at time
t such a policy uses �t to select a quantizer Qt = ̂t(�t) (where Qt ∶ X → ), and then qt is obtained by
qt = Qt(Xt).

Encoders with the above structure are called Walrand-Varaiya type policies in [1], [4], or alternatively,
Markov policies (because they endow Markov properties onto the process {�t}, which we will see momen-
tarily). We also have an infinite-horizon analog of the above theorem, which was proven in [4]:
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Theorem 1.3. [4, Proposition 2] For the problem of coding an irreducible and aperiodic Markov source,
for any initial distribution �, there exists a stationary Walrand-Varaiya type policy ∗ that solves the infinite-
horizon discounted cost problem, i.e. one that satisfies:

J�(�, ∗) = inf∈Γ
J�(�, )

where Γ is the set of all admissible encoder policies and J�(�, ) is defined in (1).
Under Walrand-Varaiya type policies, it was shown in [1] that {�t} is a controlled Markov process with

control {Qt}. More specifically, we have the following result:
Theorem 1.4. [1] Under a Walrand-Varaiya type policy, the update equation for �t is given by

�t+1(xt+1) =
1

�t(Q−1t (qt))

∑

xt∈Q−1t (qt)

P (xt+1|xt)�t(xt) (1)

Therefore �t+1 is conditionally independent of (�[0,t−1], Q[0,t−1]) given �t and Qt, and hence {�t} is a
controlled Markov process with control {Qt}.

Proof. Assume that we use aWalrand-Varaiya type policy. Then the quantizer output qt is determined entirely
by �t and xt. That is, P (qt|�t, xt) = 1{Qt(xt)=qt}, where Qt = t(�t). Then we have:

�t+1(xt+1) =
P (xt+1, qt|q[0,t−1])
P (qt|q[0,t−1])

=

∑

xt∈X �t(xt)P (qt|�t, xt)P (xt+1|xt)
∑

xt+1∈X
∑

xt∈X �t(xt)P (qt|�t, xt)P (xt+1|xt)

Using the above fact that P (qt|�t, xt) = 1{Qt(xt)=qt}, this simplifies to:

�t+1(xt+1) =
1

�t(Q−1t (qt))

∑

xt∈Q−1t (qt)

P (xt+1|xt)�t(xt)

We will denote the transition kernel induced by the above update equation by P (d�t+1|�t, Qt) (this is adistribution on (X)). We also define the following cost function for this Markov decision process (MDP) in
terms of �t and Qt (this is the average distortion if the optimal decoder is used for a given Qt).

c(�t, Qt) ∶=
M
∑

i=1
min
x̂∈X̂

∑

x∈Q−1t (i)

�t(x)d(x, x̂) (2)

Note that by this definition of c(�t, Qt) and our assumption that we are using an optimal decoder for a
given encoder, we have:

E�

[

1
T

T−1
∑

t=0
c(�t, Qt)

]

= E�

[

1
T

T−1
∑

t=0
d(Xt, X̂t)

]
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1.1 A Topology on Quantizers
As we will be discussing convergence and continuity regarding quantizers, we need to define an appropriate
topology. Viewing a quantizer Q as a map from X to , we denote the itℎ bin of Q as Bi = Q−1(i), i =
1,… ,M , and we denote the set of all possible quantizers by  (since X is finite, so is ). Following [1], [5],
we note that a quantizer with bins {B1,… , BM} can alternatively be represented as a stochastic kernel from
X to M such that Q(i|x) = 1{x∈Bi}, i = 1,… ,M . Then if P is a probability measure on X, we denote by
PQ the joint probability measure PQ(x, y) = P (x)Q(y|x). If we introduce the equivalence relation Q ≡ Q′
iff PQ = PQ′, then we can imbue these equivalence classes with the weak convergence topology (that is, we
say Qn → Q weakly iff PQn → PQ weakly). Under this topology, [1] showed the following property of the
controlled Markov chain {�t}.
Lemma 1.5. [1, Lemma 11]. The transition kernel P (d�t+1|�t, Qt) is weakly continuous in (�t, Qt). That is,

∫(X)×
f (�

′
)P (d�

′
|�,Q)

is continuous on (X) × for all continuous and bounded f .

We briefly remark on the setup so far.
Remark 1.

1. We now have a controlled Markov chain {�t}, which takes values in (X), with-valued control {Qt}.Equipped with an appropriate cost function (2), we see that finding an optimal Walrand-Varaiya type
policy is equivalent to finding an optimal policy for thisMDP (see Section 2 and [6] formore information
on MDPs). Furthermore, in light of Theorem 1.3, this Walrand-Varaiya type policy is optimal for the
discounted-cost zero-delay coding problem. Other important structural results, such as near-optimality
conditions and existence of Walrand-Varaiya type solutions for the average-cost problem were also
presented in [4], leveraging this stochastic control perspective.

2. Given this formulation, we would like to utilize tools from stochastic control to find this optimal policy
in practice. Indeed, if we are given the transition kernel P (xt+1|xt), then we know exactly how {�t}evolves and the cost function (2). Then, there exist iterative algorithms (in fact, such algorithms are
used in [2] and [4] to prove some of the above theorems) to solve for an optimal policy. However, in
this setup, our dynamics and the transition kernel are quite complicated and so implementing such an
algorithm is very difficult. Therefore, we propose to use reinforcement learning.

3. We note that, although our information source X is finite, the state space for our new MDP is (X)
and therefore uncountable. We will see how this impacts the approach proposed above in the following
section.

2 Q-learning and Quantized Q-learning
We begin with a remark on notation. In order to align with the standard Q-learning literature, we have re-used
a significant amount of notation from the previous section. We will unify the notation in Section 4, but for
now we will consider the notation in this section to be totally distinct, and will redefine any notation shared
with the previous section.
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2.1 Q-learning for Finite Models
As in [6, Chapter 2], we define a Markov decision process as a 4-tuple (X,U, P , c), where:

1. X is the state space, which we assume is Polish (i.e. a Borel subset of a complete, separable metric
space).

2. U is the action space, also Polish.
3. P = P (⋅|x, u) is the transition kernel, a stochastic kernel on X given X × U.
4. c ∶ X × U → [0,∞) is the cost function.
For now, we will assume X and U are both finite, and deal with the infinite case shortly.
An admissible policy is a sequence  = {t}t≥0 such that t ∶ Ut × Xt+1 → U. Such a policy, along with

the transition kernel P and an initial distribution X0 ∼ �, define a unique distribution for (Xt, Ut)t≥0. Thegoal (for the infinite-horizon, discounted-cost case) is to find a policy  minimizing:

J�(�, ) ∶= lim
T→∞

E�

[T−1
∑

t=0
�tc(Xt, Ut)

]

for some � ∈ (0, 1).
We define the optimal value function as the above cost when an optimal policy is used:

J ∗� (�) ∶= inf J�(�, )

We also note that if � = �x, we denote the above by J ∗� (x). A key result in stochastic control theory is that
a function satisfies the optimal value function iff it satisfies the discounted cost optimality equation (DCOE):

J ∗� (x) = minu∈U

{

c(x, u) + �
∑

y∈X
J ∗� (y)P (y|x, u)

}

(3)

As previously mentioned, there are several algorithms one could use to find an optimal policy based on the
above DCOE. However many of these require usage of the transition kernel, which (as noted in Remark 1.1)
may be impossible or at least very complicated. A common workaround is to use Q-learning, which we now
define.

Let Qt ∶ X × U → ℝ be the Q-factor at time t ≥ 0. Suppose that, starting at some arbitrary Q0, thedecision maker applies an arbitrary admissable policy  and for t ≥ 0 updates its Q-factors as follows:
Qt+1(x, u) = (1 − �t(x, u))Qt(x, u) + �t(x, u)(c(x, u) + � min

v∈U
Qt((Xt+1, v)) (4)

Assumption 2.1. For all (x, u) and for all t ≥ 0, we have

1. �t(x, u) ∈ [0, 1].

2. �t(x, u) = 0 if (x, u) ≠ (Xt, Ut).

3. �t(x, u) is a (deterministic) function of (x0, u0),… , (xt, ut).

4.
∑

t≥0 �t(x, u) = ∞ almost surely.

5.
∑

t≥0 �
2
t (x, u) <∞ almost surely.
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A well-known result in stochastic control theory is the following:
Theorem 2.1. Under Assumption 2.1, the algorithm in (4) converges almost surely to the fixed pointQ∗(x, u)
of the following mapping:

Q∗(x, u) = F (Q∗)(x, u) = c(x, u) + � ∫X
min
v∈U

{

Q(y, u)
}

P (dy|x, u)

Note that by taking the minimum of the above equation over U for each x, we get the solution of the
DCOE (3), and hence the policy made up of these minimizing actions is optimal.

Although a powerful algorithm, there is a clear issue when dealing with infinite state and/or action spaces.
In particular, it is impossible to visit each state-action pair infinitely often, and therefore the algorithm is not
guaranteed to converge. A potential solution is to use “quantized” Q-learning - that is, we approximate the
original MDP using some other MDP with finite state and action spaces, and run Q-learning on this model.
Under some additional assumptions, [7] showed that one can indeed achieve near-optimality for the original
MDP in this fashion. We now mention some key results from that paper.

2.2 Finite Model Approximations
Action Space

Assumption 2.2. Our original MDP has the following properties:

1. The stochastic kernel P (⋅|x, u) is weakly continuous in (x,u), i.e. P (⋅|xn, un) → P (⋅|x, u) weakly
∀(xn, un)→ (x, u).

2. The cost function c is continuous and bounded.

3. The action space U is compact.

4. The state space X is �-compact.

Since U is assumed compact, there exists Un ∶= (un,1,… , un,kn ) ⊂ U such that Un is a 1
n -net in U. Then,

let MDPn ∶= (X,Un, P , c) and define J ∗�,n(x) as the optimal value function of MDPn (as in (3)). Then we
have the following:
Theorem 2.2. [8, Theorem 3.16] Under Assumption 2.2, for any compact K ⊂ X, we have

lim
n→∞

sup
x∈K

|J ∗�,n(x) − J
∗
� (x)| = 0

That is, we can approximate the MDP with a finite-state one. So in the following, we assume that As-
sumption 2.2 holds and that U is finite.

State Space

Let {Bi}Mi=1 be a partition of X, and let Y ∶= {y1,… , yM} where yi ∈ Bi. We define a quantizer on X as a
mapping q ∶ X → Y , such that

q(x) = yi if x ∈ Bi
Now let  ∈ (X) be a distribution on X. Then with an abuse of notation we define the resulting

conditional distribution
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 (A|yi) ∶=
 (A)
 (Bi)

Let ̂MDP ∶= (Y ,U, ĉ, P̂ ), where ĉ and P̂ are defined as the mean of the original c and P over the quanti-
zation bins. That is:

ĉ(yi, u) ∶= ∫Bi
c(x, u) (dx|yi) (5)

P̂ (yj|yi, u) ∶= ∫Bi
P (Bj|x, u) (dx|yi)

Then let Ĵ� be the optimal value function for ̂MDP, and note that we can extend this function over X by
making it constant over each Bi, i.e.

Ĵ�(x) ∶= Ĵ�(yi) ∀x ∈ Bi

We also define:
||L−||∞ ∶= max

i=1,…,M−1
sup

x,x′∈Bi
||x − x′||

.
And note that under Assumption 2.2, X is �-compact, and hence there exists a sequence of partitions

{Bi}Mi=1 such that ||L−||∞ → 0 and⋃M−1
i=1 Bi ↑ X asM → ∞. Then we have:

Theorem 2.3. [8, Theorem 4.27] Under Assumption 2.2, we have ∀ compact K ⊂ X and as ||L−||∞ → 0,

sup
x0∈K

|Ĵ�(x0) − J ∗� (x0)| → 0

and
sup
x0∈K

|J�(x0, ̂) − J ∗� (x0)| → 0

where ̂ is the optimal policy of ̂MDP extended to X

2.3 Quantized Q-learning
Based on the above theorems, we can find a near-optimal policy for our original MDP by quantizing our
state and action spaces finely enough, and finding an optimal policy for the new MDP. However, we do not
necessarily know that a Q-learning algorithm for this new MDP will converge, as the quantization process
introduces some non-Markovian features into the MDP [7]. A result from [7] does in fact guarantee conver-
gence of a Q-learning algorithm (to the finite model described in the previous section) under slighty different
assumptions. The algorithm is exactly as in (4), but using the quantized states, that is:

Qt+1(q(x), u) = (1−�t(q(x), u))Qt(q(x), u)+
�t(q(x), u)(c(x, u) + � min

v∈U
Qt(q(Xt+1), v))

(6)

Assumption 2.3. In the above Q-learning algorithm, we have:
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1.

�t(y, u) =

{ 1
1+

∑t
k=0 1(Yk,Uk)=(y,u)

(Yt, Ut) = (y, u)

0 otℎerwise

2. The policy  chooses control actions independently of everything and randomly, i.e.

Pr((⋅) = ui) = pi ∀i = 1,… , |U|

where pi > 0 ∀i and
∑

i pi = 1.

3. Under the above policy  , the state process {Xt} admits a unique invariant measure  ∗.

Theorem 2.4. [7, Theorem 3.2] Under Assumption 2.3, for each (yi, u) ∈ Y×U, the algorithm in (6) converges
to:

Q∗(yi, u) = ĉ(yi, u) + �
∑

yj∈Y
P̂ (yj|yi, u) minv∈U

Q∗(yj , v),

where ĉ and P̂ are defined as in (5) with  =  ∗ (i.e. they are defined using the unique invariant measure of
{Xt}).

We remark briefly on the connection of quantized Q-learning to our original zero-delay coding problem:
Remark 2.

1. We were able to reduce the zero-delay coding problem to an MDP in Section 1, but were unable to run
effective algorithms on it due to the complexity of the system dynamics. Moreover, the new MDP had
an infinite state space, and thus it was impossible to use standard Q-learning on it (recall that this MDP
had �t, a probability distribution, as its state).

2. Given the above theorems, we can use a quantized Q-learning algorithm to find a near-optimal policy
for this MDP, and then apply the resulting policy to the original zero-delay coding problem. We just
need to confirm that Assumption 2.2 and Assumption 2.3 hold.

3. Indeed, from Lemma 1.5 and our setup of the MDP, we already have that Assumption 2.2 holds. Parts 1
and 2 of Assumption 2.3 are determined by algorithm design, and so can be met. We are thus left with
proving that part 3 is met, i.e. that the process {�t} admits a unique invariant measure under a random
exploration policy. The next section is dedicated to showing this fact.

3 Unique Ergodicity Under a Memoryless Exploration Policy
Recall our setup from Section 1. In particular, we have a controlled Markov process {�t}, with control {Qt},where Qt ∶ X → . Here X is our source alphabet, is our message set, and we have Qt(Xt) = qt.We wish to show that if we choose the Qt randomly, {�t} admits a unique invariant measure. Note that
under a randomized policy, we can view a given quantizer output qt ∈  as an observation of the true state
Xt, dependent on an i.i.d. noise variable Zt. That is, we let  = {Q1,… , Qm} (m is finite since X is finite).
Then let qt = ℎ(xt, zt) = Qzt (xt), whereZt is an i.i.d random variable taking values in ∶= {1,… , m}, with
Z0 ∼ R positive everywhere. Then we can use some tools from the literature of Partially Observed Markov
Processes (POMPs) to determine the ergodicity of {�t}.
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Predictor and Filter Merging

Given the above characterization, we can view �t as what is known as a predictor in the POMDP literature.
Recall the recursion equation (1) and note that this is dependent on the initialization of �0, also called the
prior. We denote the predictor process resulting from the prior � as {��t }t≥0. A common question in the
POMDP literature is when measures such as the predictor are stable, which essentially means that the process
eventually forgets an incorrect prior, i.e. � ≠ �. More formally, we introduce the following definitions
Definition 3.1. Two sequences of probability measures {At}t≥0 and {Bt}t≥0 merge weakly if ∀f ∈ Cb(X),
we have limt→∞ | ∫ fdAt − ∫ fdBt| = 0.

Definition 3.2. For two probability measures A and B, the total variation norm is given by ||A − B||TV =
sup

||f ||∞≤1 | ∫ fdA − ∫ fdB| for f measurable.

Definition 3.3. A predictor process {�t} is stable in the sense of weak merging in expectation if for any
f ∈ Cb(X) and any prior � with � ≪ �, we have limn→∞ E�[| ∫ fd�

�
t − ∫ fd��t |] = 0.

Definition 3.4. A predictor process {�t} is stable in the sense of total variation in expectation if for any prior
� with � ≪ �, we have limn→∞ E�[||�

�
t − �

�
t ||TV ] = 0.

Note that merging (respectively, stability) in total variation implies merging (respectively, stability) weakly
since the continuous and bounded functions Cb(X) are a subset of the measurable and bounded functions.

The above definitions are of interest due to a result from [9, Theorem 2] relating stability to ergodicity.
We state and prove a slightly modified version of this result here, adapted for our setup.
Theorem3.1. Assume that there exists a unique invariant measure � (dx, dq) for theMarkov process {Xt, qt}t≥0
and that the predictor process {��t }t≥0 is stable in the sense of Definition 3.3. Then there is at most one in-
variant measure for the the joint Markov process {Xt, qt, ��t }t≥0 for any prior �.

Proof. Throughout, we use the notation �(f ) ∶= ∫ fd�. Assume that m1, m2 ∈ (X × × (X)) are
two invariant measures for the joint process {Xt, qt, ��t }. Then their projections on X × are invariant for
{Xt, qt}t≥0. Then, by unique invariance of � (dx, dq) we have

mi(dx, dq, d�) = Pmi (d�|x, q)� (dx, dq)

Then we show that m1(F ) = m2(F ) for each F on a set of measure-determining functions [9], namely
those s.t. F (x, q, �) = �(x, q)H(�(�1),… , �(�l)), where � ∈ C(X ×), �1,… , �l ∈ C(X),H is bounded
and Lipschitz continuous with constant LH , and l ∈ ℕ.

Let S be the transition operator associated with the process {Xt, qt, ��t }. Then by invariance we have for
i = 1, 2:

mi(F ) = ∫X××(X)

1
n

n−1
∑

j=0
SjF (x, q, �)Pmi (d�|x, q)� (dx, dq)

And thus,
|m1(F ) − m2(F )|

≤∫X××(X)×(X)

1
n

n−1
∑

j=0
|SjF (x, q, �1) − SjF (x, q, �2)|Pm1 (x, q, �1)Pm2 (x, q, v2)� (dx, dq)

≤LH ||�||∫X××(X)×(X)

1
n

n−1
∑

j=0
E�[

l
∑

i=1
|��1j (�i) − �

�2
j (�i)|]Pm1 (x, y, �1)Pm2 (x, q, v2)� (dx, dq)
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Since the predictors are stable in the sense of Definition 3.3, and by the dominated convergence theorem, the
last line converges to zero as n→ ∞.

Note that the above result concerns the joint process {Xt, qt, �t}t≥0. The following theorem from [9]
extends this to {qt, �t}t≥0.
Theorem 3.2. [9, Theorem 3] If the joint process {Xt, qt, �t}t≥0 is Feller and admits at most one invariant
measure, then {qt, �t}t≥0 admits at most one invariant measure.

Note that the above Feller assumption is trivially satisfied in the case where X and  are finite, since
{�t}t≥0 was already shown to be Feller in [1]. We have the following result concerning {�t}t≥0.
Theorem 3.3. If the joint process {qt, �t}t≥0 admits at most one invariant measure, then {�t}t≥0 admits at
most one invariant measure.

Proof. Let m(dq, d�) be the unique invariant measure for {qt, �t}. Then we have,
m(dq, d�) = P (dq|�)P (d�)

= P (x ∈ Q−1(dq)|�)P (d�)

= �(Q−1(dq))P (d�)

Now, �(Q−1(dq)) (i.e. the pushforward measure of � under Q) depends only on the process {qt, �t} and the
choice ofQt. ButQt is chosen i.i.d. and randomly, and thusm(dq, d�) induces a unique pushforward measure
�(Q−1(dq)). Therefore P (d�) is a unique invariant measure for {�t}.

Predictor Stability

In light of Theorem 3.1, we want to show that our predictor process {�t}t≥0 is stable in the sense of Defini-
tion 3.3. While stability (and even unique ergodicity) of the predictor have been studied extensively (see e.g.
[10], [11] for discussions), the assumptions of these theorems are in general quite strong and not applicable
for large classes of sources. For example, they may require that the state has a uniformly positive transition
density, etc. [10].

In order to generalize our sources and quantizers as much as possible, we will utilize results in [12], which
relate the stability of the predictor to stability of the filter. The filter has the same form as the predictor but is
further conditioned on qt (that is, �∗t = P (xt|q[0,t])). We have the following result.
Lemma 3.4. [12, Theorem 2.11] The filter merges in total variation in expectation if and only if the predictor
merges in total variation in expectation.

And finally, we present a result to prove that the filter is stable in total variation in expectation. Recall
that we defined qt = ℎ(xt, zt) = Qzt (xt), where Qzt was our random quantizer choice. Then we denote
ℎx(⋅) ∶= ℎ(x, ⋅). The following lemma is originally from [13], which was presented in a more general context.
Lemma3.5. [13, Corollary 5.5] Consider the conditional probability measure defined byP (q|x) = R(ℎ−1x (q)).
If this is strictly positive for all x, q, then the filter converges in total variation in expectation.

To show that this density is positive in the quantizer case, recall that under a memoryless exploration
policy we have thatR is positive everywhere. Then, since contains every posssible quantizerQ ∶ X → ,
we have that ∀(x, q), there exists at least one quantizer s.t. Q(x) = q, and thus ℎ−1x (q) is nonempty ∀(x, q).
Then, since R is positive everywhere, we obtain by Lemma 3.5 that the filter is stable in total variation in
expectation.

10



Note that the above arguments also hold as long as, ∀(x, q), our set of quantizers contains at least one
quantizer Q st Q(x) = q, and therefore we could operate with a reduced set of quantizers. More concretely,
we impose the following assumption on our set of quantizers .
Assumption 3.1. Let Q̄xq = {Q ∈  ∶ Q(x) = q}. Then ∀x ∈ X and ∀q ∈ we have Q̄xq ≠ ∅.

To summarize, we have the following theorem.
Theorem 3.6. If the set of quantizers  satisfies Assumption 3.1, then there exists a memoryless exploration
policy such that the Markov process {�t}t≥0 admits a unique invariant probability measure.

Proof. First, under Assumption 3.1 and by Lemma 3.5, the filter is stable in total variation.
Then, by Lemma 3.4, the predictor is stable in total variation in expectation, which implies weak stability in

expectation, and so by Theorems 3.1, 3.2, and 3.3, we have that {�t}t≥0 admits at most one invariant measure.
Finally, the existence of an invariantmeasure for {�t} is guaranteed since {�t} is weak Feller (see Lemma 1.5)

on a compact space (X).
In light of Theorem 3.6 we now have that the quantized Q-learning results in [7] are applicable. We now

present some relevant algorithms.
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4 Algorithms
4.1 Quantizing �t
Since the state space X is finite, say with |X| = m, then (X) is a simplex in ℝm. For a given belief �t and n,
we wish to find the nearest (in terms of Eucilidean distance) �̂t = [k1n ,… , kmn ], where ki ∈ ℤ. Then we can
use the algorithm in e.g. [14], [15] to quantize �t as follows.

Algorithm 1: Predictor Quantization
1 Set Parameters
2 �t = (p1,… , pm)3 n
4 for i = 1,… , m
5 k′i = ⌊npi +

1
2⌋6 end

7 Set n′ = ∑

i k
′
i8 if n = n′

9 Return (
k′1
n ,… , k

′
m
n )10 else

11 for i = 1,… , m
12 �i = k′i − npi13 end
14 Sort �i s.t. �i1 ≤… ≤ �im15 Set Δ = n′ − n
16 if Δ > 0

17 kij =

{

k′ij j = 1,… , m − Δ

k′ij − 1 j = m − Δ + 1,… , m
18 else

19 kij =

{

k′ij + 1 j = 1,… , |Δ|

k′ij j = |Δ| + 1,… , m

20 Return (
k′1
n ,… , k

′
m
n )

We have the following lemma regarding the radius of these quantization bins under the above algorithm.
Lemma 4.1. [14, Proposition 2] The maximum radius of the quantization regions for �t under the L∞ norm
is given by

b∞ = 1
n
(1 − 1

m
)

Also note that the number of bins for �t when using Algorithm 1 is related to n by the following relation:
# bins = (n+m−1

m−1

) [14].
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4.2 Quantized Q-learning
Using the above algorithm to quantize �t, we have the following algorithm for quantized Q-learning.

Algorithm 2: Quantized Q-learning
1 Set Parameters
2 State space (X) and state transition kernel (P (xt+1|xt))3 Distribution of X0 (�0)4 Parameter for quantization of �t (n)5 Set of quantizers ()
6 Initialize arbitrary Q-table of size (n+m−1m−1

)

× ||
7 Initialize state x0 according to �08 Quantize �0 according to Algorithm 1, call this �̂09 Select quantizer Q0 according to randomized exploration policy 
10 Quantize x0 according to q0 = Q0(x0)11 for t = 0… T − 1
12 Receive cost of quantization according to c(�t, Qt) (see (2))13 Receive xt+1 according to P (xt+1|xt)14 Receive �t+1 according to update equation (1)
15 Quantize �t+1 according to Algorithm 1, call this �̂t+116 Update Q-table using (6)
17 Select quantizer Qt+1 according to randomized exploration policy 
18 Quantize xt+1 according to qt+1 = Qt+1(xt+1)19 end

Theorem 4.2. Under Assumption 3.1 and as n→∞, the above algorithm gives a near-optimal policy for the
zero-delay coding problem.

Proof. First, Assumption 3.1 allows us to use Theorem 3.6 to guarantee a unique invariant measure for {�t}under a random exploration policy. Therefore Assumption 2.3 is met. Then from Theorem 2.4, this algorithm
converges. Furthermore, as n→ ∞, by Lemma 4.1 we get ||L−||∞ → 0. Then by Theorem 2.3, the policy we
get from this algorithm performs near-optimally when applied to the to the original MDP. By our discussions
in Section 1, this policy is then near-optimal for the zero-delay coding problem.

5 Examples
For all the following, we will use MSE as our distortion measure, i.e. d(x, x̂) = (x− x̂)2, and a high discount
factor (0.9999). We approximate the long-term discounted cost by calculating a finite-horizon discounted cost
with T = 106.

5.1 Effects of Increasing n for a Fixed Rate
Say we consider all the two-cell quantizers (i.e.  ∶= {1, 2}) onX = {1,… , 5} (i.e. m = 5) with a randomly
generated transition matrix. We let n in the quantization of �t vary, and run Algorithm 2 for these different
values of n. Recall that the number of bins in this quantization is given by (n+m−1

m−1

). The first graph below
shows the performance gain as we increase the number of bins, while the second shows the convergence of
the algorithm for different numbers of bins. Each line in the second graph corresponds to increasing the value
of n by 1.
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Figure 1: Long-term discounted cost of learned policies

Figure 2: Convergece of learned policies

Note that the quantization gains are not significant after n = 2 (which corresponds to 15 bins), which
indicates that this is a sufficient quantization level for a near-optimal policy.
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Similarly, for 2-cell quantizers on X = {1,… , 16},

Figure 3: Long-term discounted cost of learned policies

Figure 4: Convergece of learned policies

In this example, additional quantization may be required to get closer to the optimal policy.

5.2 Comparison to Lloyd-Max Quantizer
In these simulations, we plot the distortion for different values of n and for different quantizer rates (i.e.
different sizes of). We also plot the comparison with a Lloyd-Max quantizer (another common algorithm
to find an optimal quantizer), and note that our algorithm results in a lower discounted cost. We use the source
alphabet X = {1,… , 13}, and the rate is calculated by log2(||).
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Figure 5: Comparison with Lloyd-Max in Markov case

Note that for coarse quantizations, a Lloyd-Max quantizer may perform better, but as we increase the
quantization, the Q-learning approach gives a lower distortion for a given rate.

Finally, we also note that our algorithm matches very closely with a Lloyd-Max quantizer in the case
where the source is i.i.d., as can be seen below. Note that in this case, the Q-learning algorithm only visits
one state (the one given by quantizing the distribution of X0), and hence raising n provides no performance
gain. Here we use X = {1,… , 8}.

Figure 6: Comparison with Lloyd-Max in i.i.d. case

We now remark on the algorithm performance and feasibility:
Remark 3.

1. As previously mentioned, the number of bins grows quickly with n, and so running the algorithm with
high n requires high amounts of memory in order to store a large Q-table. However, the number of
actual visited �̂t tends to be much lower than the total number of bins, and so it may be possible to
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increase the efficiency of this algorithm by quantizing �t in a non-uniform fashion (the results from [7]
used for convergence of the algorithm allow a non-uniform quantization).

2. As the number of bins grows, the time for the algorithm to converge becomes much higher, since it must
visit more states. One must trade much longer algorithm runtime for potential performance increases.
Also, since we only have weak continuity of the transition kernel for {�t}, we do not have a bound on
what quantization level we need to obtain a given performance (results from [7] provide these bounds
under stronger notions of continuity). Therefore it is somewhat trial-and-error to find the appropriate
quantization level for a given application.

3. As mentioned in Section 1, {�t} updates in a Markovian fashion, and so we do not need to store the
previous values of �t. Futhermore, from Section 3we have that the process {�t} is stable (i.e. it “forgets”an incorrect prior) under the random exploration policy used in learning. Therefore we do not need to
worry about errors accumulating over time, and in fact we can start the algorithm from any distribution
�0 (the choice to initialize to the stationary distribution in Algorithm 2 is just for convenience).

6 Future Work
We note that the above Q-learning algorithm only converges when � ∈ (0, 1) (i.e. for the discounted cost
problem) and therefore is not applicable for the average cost problem, which is generally what we are interested
in for source coding. It may be possible to adapt the Q-learning algorithm to solve the average cost problem
(see e.g. [16]), but this would require an extension of the results in [7] to this algorithm, which may require
additional constraints on the source X. Nevertheless, we can obtain a good approximation to the average cost
problem by taking � to be close enough to 1 (such an approach is called the “vanishing discount” method, see
e.g. [6, Chapter 5]). The necessary assumptions for this approach hold, at least when the source is finite, so
we can still obtain near-optimality for the average cost problem.

Furthermore, we would like to extend the algorithm to the case when X is continuous. The primary
obstable here would be that the number of possible quantizers is infinite, and so a method of quantizing the
space of quantizers would need to be developed. We note however that quantizing the action space (in this
context, the set of quantizers) is considered in the results from [7], and also all of the predictor stability/unique
invariance arguments in Section 3 hold when X is continuous. So with some minor alterations, the algorithm
will still converge in the continuous case. As mentioned above, one would still have to show that this gives a
near-optimal policy for the average cost problem, using the vanishing discount (or similar) method.

Finally, we wish to consider the case when the channel over which qt is sent is noisy. While most of the
results from Section 1 carry over in this case, additional considerations will have to be taken in other sections
(e.g. in proving uniqueness of the invariant measure).
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