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Abstract

In stochastic games where players measure a cost-relevant exogenous state variable

through measurement channels, an information structure is the joint probability mea-

sure induced on the state space and player measurement spaces.

For single-player decision problems in finite spaces, a theorem due to Blackwell

leads to a complete characterization of when one information structure is “better” than

another. For zero-sum games with finite state, measurement, and action spaces, Pęski

produced necessary and sufficient conditions for ordering information structures. In

this thesis, we obtain an infinite dimensional (standard Borel) generalization of Pęski’s

result. A corollary is that more information cannot hurt a decision maker taking part

in a zero-sum game. We also establish two supporting results which are essential

and explicit, though modest contributions to the literature: (i) a partial converse

to Blackwell’s ordering in the standard Borel setup and (ii) an existence result for

equilibria in zero-sum games with incomplete information.

Then we study continuity properties of stochastic game problems with respect

to various notions of convergence of information structures. For zero-sum games,

team problems, and general games, we will establish continuity properties of the

value function under total variation, setwise, and weak convergence of information

structures.
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Chapter 1

Introduction

1.1 Motivation

In every decision problem, information arises as a fundamental attribute. In decision

and control theory, information always has a positive value, meaning that more infor-

mation can never hurt. Nonetheless, the dependence on information of the optimal

cost in a decision problem can be rather technical.

In game theory, the analysis is even more complicated: the value of information

may not be positive and even the strongest notions of informational convergence may

not entail continuity or regularity.

In this thesis, we will study information structures in the context of stochas-

tic zero-sum games, team problems, and general games. Information structures in

stochastic games capture the information available to decision-makers regarding a

cost-relevant exogenous state variable. Each decision-maker’s policy, which defines

how the decision-maker selects actions, is a measurable function of the decision-

maker’s personal information.
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In the context of stochastic games, a natural question that arises is how to char-

acterize when one information structure is “better” than another over a large class of

games. This topic was first addressed for single-player decision problems by David

Blackwell in [10], who defined an information structure as being better than another

if a decision-maker is guaranteed to not perform worse under the former than under

the latter in any valid game. This definition can be extended to classes of game prob-

lems in which there exists a unique value that defines the outcome of a game, such as

zero-sum games. Finding necessary and sufficient conditions to compare information

structures according to this definition allows for a partial ordering on the space of

information structures.

Another natural question to pose is: Under what notions of convergence is the

equilibrium value of a game continuous under perturbations of the information struc-

ture? Such a question has consequences for robustness of models to incorrect infor-

mation.

We will address the first question in the context of zero-sum games in Chapter

3, while we will present results on the second question for zero-sum games, team

problems, and general non-zero-sum games in Chapter 4.

1.2 Stochastic Games and Information Structures

In a general static stochastic game, there are N ∈ N decision-makers (DMs), some-

times also known as agents or players. The set of all DMs in a game will be denoted

by N := {1, . . . , N}. The outcome of the game depends on actions that the DMs

select, as well as an exogenous random variable known as the state of nature. We use

X to denote the state space from which the state of nature x is drawn, and we will
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assume X is a standard Borel space (that is, a Borel subset of a complete, separable,

metric space). x is drawn according to a prior distribution ζ, which is a probability

distribution defined on (X,B(X)), where B(X) denotes the Borel sigma field on X.

In our setup, the distribution ζ is common knowledge to all DMs, but the realized

value of x is not. Instead, each DM makes a private measurement of x, which is

available only to the DM that made it. We will denote this measurement by yi,

where the superscript indicates the measurement belongs to DM i from N . yi takes

value in DM i’s standard Borel measurement space Yi and is defined by:

yi = gi(x, ωi),

for some measurable function gi and noise variable ωi which is independent of x (and

which, without any loss, can be taken to be [0, 1]-valued).

Using stochastic realization results (see Lemma 1.2 in [27], or Lemma 3.1 of [12]), it

follows that the functional representation in yi = gi(x, ωi) is equivalent to a stochastic

kernel description of an information structure. Thus, in the above, we can view

gi as inducing a measurement channel Qi, which is a stochastic kernel or a regular

conditional probability measure from X to Y in the sense that Qi( · |x) is a probability

measure on the (Borel) σ-algebra B(Yi) on Yi for every x ∈ X, and Qi(A| · ) : X →

[0, 1] is a Borel measurable function for every A ∈ B(Yi).

For notation, we let P(X) denote the set of all probability measures on (the Borel

sigma field over) X. For ζ ∈ P(X) and kernel Q, we let ζQ denote the joint distribution

induced on (X× Y,B(X× Y)) by channel Q with input distribution ζ:

ζQ(A) =

∫
A

Q(dy|x)ζ(dx), A ∈ B(X× Y).
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We denote the joint probability measure on X×Y1×· · ·×YN induced by the func-

tions gi by µ(dx, dy1, . . . , dyN), and define this measure as the information structure.

The information structure is common knowledge to all DMs.

Note that it is not necessarily true that the DMs’ measurements are condition-

ally independent, as no assumption was made that the measurement noise variables

ωi were independent of each other, only of x. Thus, we will typically work with the

general information structure representation of information, rather than the measure-

ment channel representation. We will use the channel representation under certain

circumstances, such as when a conditional independence assumption is made on the

measurements.

Each DM also has a standard Borel action space Ui, and a personal cost function

ci(x, u1, . . . , uN) : X× U1 × · · · × UN → R.

For fixed prior, state space, and measurement spaces ζ, X, Y1, . . . ,YN , a game is

a 2N -tuple consisting of a measurable and bounded cost function and an action space

for each DM, g = (c1, . . . , cN ,U1, . . . ,UN).

The DM’s goal is to minimize their expected cost functional for a given game g:

J i(g, µ, γ1, . . . , γN) := Eµ,γ̄[ci(x, γ1(y1), . . . , γN(yN))]

where the DMs select their policies from the set of all admissible policies Γi := {γ :

Yi → Ui}, which are measurable functions from a DM’s measurement space to their

action space. We refer to ui = γi(yi) as the action of the DM, and γi as their policy.

We use γ̄ = {γ1, . . . , γN} to denote a collection of policies for all N DMs.

For our analysis, we will allow policies to be randomized with independent ran-

domness. Which is to say, the set of all admissible measurable policies Γi will be
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the set of all measurable functions γi, where ui = γi(yi, νi) for some independent

[0, 1]-valued noise variable νi (which is independent not only of x, but also of any

other DM’s noise variable νj, j ∈ {N \ i}). Admissible randomized policies can be

viewed as stochastic kernels from Yi to Ui.

Note that in this setup, each DM’s measurement is conditionally independent of

other DMs’ measurements given the state of nature.

We now present a brief example to serve as an illustration of this setup.

Example 1.1 (A General Game). Let X = [0, 1], with prior distribution ζ defined

by the continuous uniform distribution. Let Y1 = [0, 1] and Y2 = {0, 1, 2}, where the

measurements for the respective DMs are defined by:

y1 = ω1

y2 =


0, x ∈ [0, 1/3),

1, x ∈ [1/3, 2/3],

2, x ∈ (2/3, 1]

where ω1 is a uniformly distributed random variable on [0, 1]. In this setup, DM 1

receives no information regarding x, as y1 is generated solely by random noise. DM

2’s channel is a quantizer consisting of 3 bins.

We define the action spaces of the respective DMs as U1 = U2 = [0, 1], and the

cost functions as:

c1(x, u1, u2) = |u1 − u2|

c2(x, u1, u2) = (x− u2)2
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Here, DM 1 has no effect on DM 2’s cost, so DM 2 is faced with a single-DM decision

problem and will attempt to minimize Eµ[(x − u2)2]. For each observation y2, DM

2 knows which third of the interval [0,1] that x falls into. For instance, if y2 = 0,

DM 2 knows that x ∈ [0, 1/3). Given this information, DM 2’s problem then becomes

selecting u2 to minimize E[(z−u2)2] where z is uniformly distributed on [0, 1/3); this

is minimized when u2 = 1/6 is selected. It follows that DM 2’s optimal strategy is:

γ2,∗(y2) =


1/6, y2 = 0

1/2, y2 = 1

5/6, y2 = 2.

This leads to the expected cost for DM 2 being equal to the variance of z, which is

1/108.

For DM 1, the only way to reduce the cost is to play an action as close in absolute

value to DM 2’s action as possible. Under DM 2’s optimal strategy, DM 2 will play

1/6, 1/2, and 5/6 each with probability 1/3, respectively. Thus, DM 1 wants to

minimize the term 1/3 (|1/6− u1|+ |1/2− u1|+ |5/6− u1|).

This is minimized by DM 1 playing u1 = γ(y1) = 1/2, for all y1 ∈ Y1, resulting

in an expected cost of 2/9 for DM 1.

So far, we have discussed the setup for a general static stochastic game. We will

now look at two special classes of games within this setup.
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1.2.1 Zero-Sum Games

In the zero-sum game case there are two DMs who share a common cost function.

DM 1’s goal is to minimize the expected cost, while DM 2’s goal is to maximize it.

The DMs are commonly referred to as the minimizer and the maximizer, respectively.

Given fixed X, Y1, Y2, and ζ such that x ∼ ζ, a zero-sum game g = (c,U1,U2) is

a triple of a measurable cost function c : X×U1×U2 → R and standard Borel action

spaces for each DM U1,U2.

The induced cost under policies γ1, γ2 for the players is given by

J(g, µ, γ1, γ2) :=

∫
c(x, γ1(y1), γ2(y2))µ(dx, dy1, . . . , dyN).

Since the problem has been reformulated such that DM 1 wants to minimize J

and DM 2 wants to maximize J , the single value J(g, µ, γ1, γ2) fully describes the

expected outcome of the game for both players.

We will assess the outcome or value of a zero-sum game by the expected value

of the cost function of the game at a saddle-point equilibrium. This equilibrium is

defined as follows:

Definition 1.1. Given an information structure µ, we say that γ1,∗, γ2,∗ is an equi-

librium for a zero-sum game g if

inf
γ1∈Γ1

J(g, µ, γ1, γ2,∗) = J(g, µ, γ1,∗, γ2,∗) = sup
γ2∈Γ2

J(g, µ, γ1,∗, γ2).

The value function at equilibrium is denoted by J∗(g, µ). Existence results for

such saddle-point equilibria will be discussed in Chapter 2.
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1.2.2 Team Problems

In a team problem, there are N DMs working together to minimize a common cost

function. A game for a team-problem is an N + 1-tuple consisting of a common cost

function c : X×U1×· · ·×UN → R and standard Borel action spaces Ui for each DM

i ∈ {1, . . . , n}.

The induced cost under a collection of policies γ̄ := {γ1, · · · , γN} for a team

problem is given by

J(g, µ, γ̄) :=

∫
c(x, γ1(y1), . . . , γN(yN))µ(dx, dy1, . . . , dyN).

For a team problem, an equilibrium solutions is a team-optimal policy γ̄∗ :=

(γ1,∗, . . . , γN,∗) which minimizes J(g, µ, ·). As in zero-sum games, the value func-

tion at equilibrium is denoted by J∗(g, µ). General existence results for team-optimal

policies will be discussed further in Chapter 4.

1.3 Organization of Thesis

In Chapter 2 we study the existence of saddle-point equilibria in zero-sum games. We

provide an overview of existing results, and present a theorem which demonstrates

existence of equilibria under mild conditions, as well as a further relaxation of this

theorem. These results will be used to ensure the existence of an equilibrium value

when discussing zero-sum games in Chapters 3 and 4.

In Chapter 3 we examine the problem of comparing information structures in zero-

sum games. First, we will extend a partial converse to Blackwell’s original ordering

of information structures for single-DM decision problems to problems with standard
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Borel spaces, and we will demonstrate the relation of this result to one developed

by Strassen. We then present necessary and sufficient conditions for the comparison

of information structures in zero-sum games with standard Borel spaces, extending

results developed by Peski for finite-space problems.

In Chapter 4 we study regularity properties of the value function under pertur-

bations of the information structure. In particular, we demonstrate continuity and

semicontinuity properties of the equilibrium value for zero-sum games and team prob-

lems, using weak, setwise, and total variation convergence of information structures.

We then present a counterexample to show continuity does not hold in general for

general non-zero-sum games even under strong conditions.

In this thesis, we will see that zero-sum games share many of the positive attributes

of stochastic teams. Zero-sum games have unique values and share the property that

‘additional information can not hurt a decision-maker’ (though with a much more

tedious argument as compared to the team theoretic setup, where a ‘choose to ignore

the additional information’ argument applies).

1.4 Contributions

The contributions of this thesis are as follows:

(i) As a minor technical contribution, in Chapter 2 we present sufficient conditions

for the existence of saddle points in Bayesian zero-sum games with incomplete

information in standard Borel spaces (Theorem 2.1). This will build on placing

an appropriate topology on the space of policies adopted by the decision-makers.

Our analysis is nearly equivalent to others in the literature, such as [6], but is
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presented for completeness1.

(ii) In Chapter 3, as a supporting theorem, we will present a partial converse to

Blackwell’s ordering theorem for standard Borel spaces in Chapter 3, using a

separating hyperplane argument and properties of locally convex spaces (The-

orem 3.3). This presents an explicit, self-sufficient derivation for a converse

theorem to be utilized in the comparison theorem, though related comprehen-

sive results have been reported in the literature, as we note in the chapter.

(iii) As the main result of Chapter 3, we will derive a theorem characterizing an

ordering of information structures for zero-sum games in standard Borel spaces

(Theorem 3.5). This extends results shown in [44] for finite-space problems.

(iv) In Chapter 4, we show that the value function for a zero-sum game is continu-

ous in total variation convergence of the information structure if the game has a

bounded measurable cost function (Theorem 4.3). In addition, when the prior is

fixed, the value function is either upper or lower semicontinuous in setwise con-

vergence of an information structure, if the sequence of information structures is

a minimizer-garbling or maximizer-garbling sequence (Theorem 4.5). The same

results hold for weak convergence of the information structures, when the as-

sumptions on the cost function are such that it is continuous and bounded, and

the DM action spaces are convex (Theorem 4.4). If the channels are fixed and

continuous in total variation, continuity under weak convergence of the prior

holds (Theorem 4.6).
1We note that our results were derived independently and were presented in [31] with an accom-

panying literature review prior to our awareness of the nearly equivalent results in [6].
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(v) In Chapter 4, we also show that the value function for team problems is con-

tinuous in total variation convergence of the information structure for bounded

cost functions, upper semicontinuous in setwise convergence for measurable and

bounded cost functions, and upper semicontinuous in weak convergence for

games with continuous and bounded cost functions and convex action spaces

(Theorems 4.7, 4.10, 4.9). If the channels are fixed and continuous in total

variation, continuity under weak convergence of the prior holds (Theorem 4.8).

(vi) A counterexample in Chapter 4 reveals that DMs in general non-zero-sum games

may not have value functions that are continuous in total variation convergence

of information structures, even for bounded cost functions (Example 4.2).
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Chapter 2

Existence of Equilibria in Zero-Sum Games

2.1 Introduction

Prior to focusing on the ordering and regularity properties of information structures,

we present a supporting result regarding when equilibrium solutions to zero-sum

games exist. In the finite case, equilibrium solutions always exist [60] (through e.g.

[5, Theorem 4.4]), but this does not hold true in general. Theorems 2.1 and 2.2 below

gives sufficient conditions for equilibrium solutions to exist for games with incomplete

information.

The existence of a value for games with incomplete information has been studied

rather extensively. For readers’ convenience, and as a direct proof, we present the re-

sults below. Our results essentially replicate those of [6, Theorem 3.1], which presents

an existence result under an absolute continuity condition on information structures

with respect to a reference measure. We also refer the reader to [40] which presents

complementary conditions where the absolute continuity condition is relaxed. Finally,

[6, Theorem 3.4] presents a generalization where action sets are information depen-

dent. The essence of these results is the same as those below, although the results
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below were arrived at independently.

Additionally, Milgrom and Weber present an existence result for more general

games in [43, Theorem 1], which presents conditions whose generality is difficult to

interpret: a careful look at condition R1 in [43, p. 625] leads to the conclusion that

the authors have nearly (but not exactly) the same condition (ii) we note below; that

is continuity of the cost function in the actions for every fixed hidden state variable

x is sufficient, though the statements given in [43] imposes conditions that are not

conclusive on this; we attribute this to the fact that the authors utilize [43, Prop.

1(c)] without establishing its relation to item (ii) below (due to the measurability

requirement in the statement of [43, Prop. 1(c)]). Our analysis affords the simplicity

and generality in the condition, since we build on the w-s topology, rather than weak

topology and directly Lusin’s theorem [20] as followed in [43] (we also note that the

relation between weak and w-s topologies on probabilities defined on product spaces

with a fixed marginal can in fact be established using Lusin’s theorem). Hence, in a

strict sense, our conditions are more direct and general as stated.

The comprehensive book [41, Proposition III.4.2.] imposes continuity in all the

variables (unlike what is presented below). Furthermore, [41, Proposition III.4.2.]

builds on a topology construction on policies which is different from what we present

here; regarding the construction in [41] we would like to caution that in the absence

of absolute continuity conditions on the information structure, this construction may

lead to a lack of closedness on the sets of admissible policies (or strategic measures) as

the counterexample [67, Theorem 2.7] reveals: in this counterexample, which would

reduce to the setup studied here with y1 = y2 = y, a sequence of policies is constructed



2.2. ON EXISTENCE OF SADDLE-POINTS AND EQUILIBRIA 14

so that for each element of the sequence, the action variables of the two decision-

makers are conditionally independent given their measurements, but the setwise (and

hence, weak) limit of the sequence is not conditionally, or otherwise, independent;

and thus the limit measure does not belong to the original information structure. For

a more detailed discussion, we refer the reader to [52, Section 7.2].

While the results presented below are not novel given the wealth of previous

results on existence of equilibria for standard zero-sum games, the general proof

framework is quite simple and robust, and the proofs demonstrate the utility of both

the independent measurements reduction and the w-s topology in this setting.

2.2 On Existence of Saddle-Points and Equilibria

We now present two conditions for the information structure µ in a zero-sum game.

We note that Assumption 2.2 implies Assumption 2.1, but this assumption often

allows for a simpler interpretation. That this implication holds is a consequence

of the independent measurements reduction formulation to be explained in greater

detail later in Theorem 2.1. Theorem 2.1 will be presented under the more general

Assumption 2.1. However, the conditional independence assumption in Assumption

2.2 will allow for a useful characterization of the results in Chapter 3.

Assumption 2.1. The information structure is absolutely continuous with respect to

a product measure:

P (dy1, dy2, dx) ≪ Q̄1(dy1)Q̄2(dy2)ζ(dx),

for some reference probability measures Q̄i, i = 1, 2. That is, there exists an integrable
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f which satisfies for every Borel A,B,C

P (y1 ∈ B, y2 ∈ C, x ∈ A) =

∫
A,B,C

f(x, y1, y2)ζ(dx)Q̄1(dy1)Q̄2(dy2).

Assumption 2.2. The following conditional independence (or Markov) condition

holds:

P (dy1, dy2, dx) = Q1(dy1|x)Q2(dy2|x)ζ(dx).

where the measurements of agents are absolutely continuous so that for i = 1, 2, there

exists a non-negative function f i and a reference probability measure Q̄i such that for

all Borel S:

Qi(yi ∈ S|x) =
∫
S

f i(yi, x)Q̄i(dyi).

We now present the results on the existence of saddle-point equilibria in stochas-

tic zero-sum games. The first result utilizes Assumption 2.1, while the second result

relaxes this condition. The first result remains included for comparison to the lit-

erature, namely [6, Theorem 3.1], as well as to demonstrate the applicability of the

independent measurements reduction, which is utilized frequently in stochastic team

problems.

Theorem 2.1 (Existence of Equilibria). For a fixed information structure µ and a

given game g, assume that Assumption 2.1 holds. Further, let the following hold:

(i) The action spaces of DMs, U1,U2, are compact.

(ii) The cost function c is bounded and continuous in DMs’ actions, for every state

of nature x.
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Then an equilibrium exists under possibly randomized policies, and so there exists a

value of the zero-sum game.

Proof. Step (1): By Assumption 2.1, we can reformulate the problem in a new

probability space in which the measurements are independent from the unknown

variable x. This reformulation, called an independent-measurements reduction, is

essentially due to Witsenhausen [62], with a detailed discussion in [64, Section 2.2.].

Figure 2.1 provides an illustration of the concept.

y2y1
Q1 Q2

⇐⇒

Q̄1 Q̄2y1 y2

c(x, u1, u2)

c̄(x, y1, y2, u1, u2) = c(x, u1, u2)f (x, y1, y2)

u1

u1

u2

u2

γ
1

γ
1

γ
2

γ
2

x

Figure 2.1: Reformulation of two information structures (with respect to an indepen-
dent measurements reduction)

The main benefit of this approach is to define a compact/convex policy space for

the DMs (e.g. see [67, Section 2.2]). To complete this reformulation, we note the

following holds for some function f and reference probability measures Q̄i:

P (dx, dy1, dy2, du1, du2) = ζ(dx)f(x, y1, y2)Q̄1(dy1)1{γ1(y1)∈du1}Q̄
2(dy2)1{γ2(y2)∈du2)},

where 1{·} is the indicator function. Thus, the value function for the game g can be
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written as:

J(g, µ, γ1, γ2) =

∫
f(x, y1, y2)c(x, u1, u2)Q̄1(dy1)Q̄2(dy2)ζ(dx).

We then create a new cost function c(x, u1, u2, y1, y2) := c(x, u1, u2)f(x, y1, y2).

Step (2): Let x ∈ X be the random state of nature. Let γ1, γ2 be the policies for

the DMs, and u1, u2 be the resulting actions chosen by the DMs. We allow for policies

γi where ui is chosen in a random way, i.e. ui = γi(yi, ωi), where ωi is some [0, 1]-

valued independent random variable (we note that any randomized policy, defined

as a stochastic kernel from Yi to Ui, admits such a stochastic realization; see [27,

Lemma 1.2], or [12, Lemma 3.1]).

Step (3): Let c be the reformulated cost function of this game, under the new

product probability measure, we have:

J(g, µ, γ1, γ2) =

∫
c(x, u1, u2, y1, y2)(Q̄1γ1)(dy1, du1)(Q̄2γ2)(dy2, du2)ζ(dx).

Here, (Q̄1γ1)(dy1, du1) and (Q̄2γ2)(dy2, du2) are the probability measures induced

on the measurement and the action variables. By independence due to the reduc-

tion, we can consider the expected cost as a function of the reduced-form policies:

J(g, µ, γ1, γ2) = J(g, µ, Q̄1γ1, Q̄2γ2). Now, without loss of generality, we fix Q̄1γ1,

allowing us to express the above equation in the following form:

J(g, µ, Q̄1γ1, Q̄2γ2) =

∫
(Q̄2γ2)(dy2, du2)

∫
c(x, u1, u2, y1, y2)(Q̄1γ1)(dy1, du1)ζ(dx).

Let
∫
c(x, u1, u2, y1, y2)(Q̄1γ1)(dy1, du1)ζ(dx) be defined as c̄(u2, y2).
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Now that we have an independent-measurements reduction, we will (similar to

the analysis from [43, 12, 67]), identify, almost surely, every admissible policy with

a probability measure on the product space: we adopt the view that, given game

(g, µ), Q̄iγi is a probability measure on Yi × Ui with fixed marginal Q̄i(dyi) on Yi.

Let Γi denote the space of all such measures since every Q̄iγi can be identified with

an element in Γi almost surely. The pairing of an information structure and a policy

induces a probability measure P on the five-tuple: (X,Y1,Y2,U1,U2), with

P (dx, dy1, dy2, du1, du2) = γ1(du1|y1)γ2(du2|y2)Q1(dy1|x)Q2(dy2|x)ζ(dx).

This construction allows us to obtain a proper topology to work with for spaces

of policies with desirable convexity and compactness properties.

We now recall the w-s topology [54] on the set of probability measures P(X×U);

this is the coarsest topology under which
∫
f(x, u)ν(dx, du) : P(X × U) → R is

continuous for every measurable and bounded f which is continuous in u for every

x (but unlike weak topology, f does not need to be continuous in x). We note that

functions which are continuous in one argument and measurable in the other are

sometimes referred to as Carathéodory functions. Now, since the exogenous variables

are fixed, weak convergence in this setting is equivalent to w-s convergence (see [64]),

and continuity in the exogenous variable is not needed here. Consider a sequence of

actions (Q̄2γ2)m(dy
2, du2) which converges to (Q̄2γ2)(dy2, du2) weakly. We have that

c̄(u2, y2) is continuous in u2. Since µ is fixed, the marginals on Y2 are fixed. Therefore,

by [54, Theorem 3.10] (or [7, Theorem 2.5]), we can use the w-s topology on the set of

probability measures P(Y2×U2). And so we have continuity of J(g, µ, Q̄1γ1, Q̄2γ2) in

Q̄2γ2 in the w-s topology and, by the equivalence in this setting, the weak topology.
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This also holds for continuity in Q̄1γ1 in the reverse case where we fix Q̄2γ2.

Therefore, in general, we have that J(g, µ, ·, ·) is continuous in (Q̄iγi) when (Q̄−iγ−i)

is fixed.

Step (4): Let Γ = {λ ∈ P(Y×U) : λY = Q̄} be our reduced policy space, where

Q̄ is the fixed marginal of the measure λ on Y. Following from [67, Section 2.1], the

space of all Q̄iγi (which we denote by Γi) is compact under weak convergence.

Step (5): We observe that for fixed g and µ, J(g, µ, Q̄1γ1, Q̄2γ2) is linear and

hence is both concave and convex in the third and fourth entries. For completeness,

we establish this linearity result. Take θ ∈ (0, 1). Then, without loss of generality,

we fix Q̄1γ1 and obtain the following:

J(g, µ, Q̄1γ1, θQ̄2γ2 + (1− θ)Q̃2γ̃2)

=

∫
(θQ̄2γ2 + (1− θ)Q̃2γ̃2)(dy2, du2)

∫
y2,u2

c̄(x, u2, y2)

=

∫
(θQ̄2γ2)(dy2, du2)

∫
y2,u2

c̄(x, u2, y2) +

∫
(1− θ)(Q̃2γ̃2)(dy2, du2)

∫
y2,u2

c̄(x, u2, y2)

=θJ(g, µ, Q̄1γ1, Q̄2γ2) + (1− θ)J(g, µ, Q̄1γ1, Q̃2γ̃2).

Lastly, we recall that, under the weak topology, the space of probability measures

is a metric space, and thus our spaces Γi are Hausdorff spaces.

Since J(g, µ, Q̄1γ1, Q̄2γ2) is continuous, and convex/concave in the compact Haus-

dorff spaces Γi, we have the following equality [24, Theorem 1]:

min
Q1γ1

max
Q2γ2

J(g, µ,Q1γ1, Q2γ2) = max
Q2γ2

min
Q1γ1

J(g, µ,Q1γ1, Q2γ2).

This establishes a (saddle-point) equilibrium for the game.
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Thus, we have obtained an existence result for the value of the games considered,

and also provided an approach to topologize and convexify/compactify the policy

spaces.

We also present the following theorem, which is a mild relaxation of the theorem

above. The proof below follows similarly to Theorem 2.1.

Theorem 2.2 (Existence of Equilibria with a Further Relaxation). For fixed infor-

mation structure µ and a given game g, assume the following hold.

(i) The action spaces of DMs, U1,U2, are compact.

(ii) The cost function c is bounded and continuous in DMs’ actions, for every state

of nature x.

Then an equilibrium exists under possibly randomized policies, and so there exists a

value of the zero-sum game.

Proof. (Sketch.) Here, we let µYi denote the marginal of the information structure

µ on Yi. We will combine our policies with these marginals to form the product

measures µY1(dy1)γ1(du1|y1) and µY2(dy2)γ2(du2|y2) on the DMs’ measurement and

action spaces. We will denote these measures by (µY1γ1) and (µY2γ2)

Similar to the previous proof, without loss of generality, we fix DM 2’s strategy

γ2. Then we have:

J(g, µ, γ1, γ2)

=

∫
µY1(dy1)γ1(du1|y1)

(∫
X×Y2×U2

µ(dx, dy2|dy1)γ2(du2|y2)c(x, u1, u2)

)

Let
∫
X×Y2×U2 µ(dx, dy

2|dy1)γ2(du2|y2)c(x, u1, u2) be defined as c̄(u1, y1).
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We can observe that, by assumption, c̄(u1, y1) is bounded and is continuous in u1.

Furthermore, it is also evident that c̄(u1, y1) is measurable in y1. By the same argu-

ments of Step (2) of the preceding theorem, via the machinery of the w-s topology

[54], we can show that c̄(u1, y1) is continuous in (µY1γ1) under w-s convergence, and

thus also under weak convergence. This also holds for continuity in (µY2γ2) in the

reverse case where we fix γ1.

Following from [67, Section 2.1], the space of all µi
Yiγi is compact under weak

convergence, and we can observe that J(g, µ, µY1γ1, µY2γ2) is linear and hence is both

concave and convex in the third and fourth entries.

The existence of a (saddle-point) equilibrium for the game then follows by [24,

Theorem 1].
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Chapter 3

Comparison of Information Structures

3.1 Introduction

Characterizing the value of information structures is a problem in many disciplines

involving decision making under uncertainty. In stochastic control theory, it is well-

known that more information cannot hurt a given decision-maker since the decision-

maker can always choose to ignore this information. In statistical decision theory

involving a single decision-maker, one says that an information structure is better

than another one if for any given measurable and bounded cost function involving a

hidden state variable and an action variable which is restricted to be only a function

of some measurement, the solution value obtained under optimal policies under the

former is not worse than the value obtained under the latter. For finite probability

spaces, Blackwell’s celebrated theorem [10] on the ordering of information structures

obtains a precise characterization of when an information structure is better. This

finding has inspired much further research as reviewed in e.g. [15, 47].

Since Blackwell’s seminal 1953 paper [10], significant work has been done to extend

Blackwell’s results to team problems and games. Stochastic team problems (known
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also as identical interest games) were studied in a finite-space setting by Lehrer,

Rosenberg, and Shmaya [21]; see also [65, Chapter 4]. The value of information in

various types of repeated games has also been explored in [34], [35], and [37].

In general games, information can have both positive and negative value to a

DM since additional information can lead to a perturbation which is not necessarily

monotone due to the presence of competitive equilibrium, unlike in a team setup.

Some of the earlier accounts on such phenomena are [30] and [4], where the latter

studied the comparison of information structures for team-like (LQG) and zero-sum

like (quadratic duopoly) games.

As noted above, for general non-zero sum game problems, informational aspects

are very challenging to address and more information can hurt some or even all of

the DMs in a system, see [30, 28, 33, 3]. To make this discussion more concrete, we

provide the following example from the literature, Example 3.1, found in some form

in e.g. [9, 33]. While Example 3.1 simply illustrates the desired point, it utilizes a

dynamic game rather than a static one; for completeness, we have also included a

longer original example demonstrating the same phenomenon in a static game.

Example 3.1. Consider a card drawn at random from a deck, where its colour can

be either red or black, each with probability 1/2. DM 1 first declares his guess of the

colour, and then, after hearing what DM 1 guessed, DM 2 submits her guess for the

colour. If both DMs guess the same colour, the payout is $2 each, whereas if one DM

guesses correctly, that DM receives a payout of $6 and the other DM receives $0.

In the case where both DMs are uninformed about the colour of the card, the

expected payout is $3 each, as DM 1’s optimal strategy is arbitrary, and DM 2’s

optimal strategy is to guess the opposite colour of what DM 1 guessed.
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In the case where both DMs are informed of the colour of the card prior to declaring

their guess, the equilibrium for the game occurs when both DMs guess the true colour

of the card. In this case, the expected payout becomes $2 for each DM. ⋄

In the case where only the first DM is informed of the colour of the card prior

to declaring his guess, the pure-strategy equilibrium also occurs when both DMs guess

the true colour of the card with an expected payout of $2 each, and so DM 1 gaining

information results in a loss for both players.

Example 3.2. Let X = [0, 1], with prior distribution ζ defined by the continuous

uniform distribution. Let Y1 = Y2 = [0, 1].

We define the action spaces of the respective DMs as U1 = U2 = [0, 1], and the

cost functions as:

c1(x, u1, u2) =


(x− u1)2 + 2, u2 = x

2(x− u1)2 + (u1 − u2)2, u2 ̸= x

c2(x, u1, u2) =


(x− u2)2 + 2, u1 = x

2(x− u2)2 + (u1 − u2)2, u1 ̸= x

Under measurement channels where neither DM has any information regarding x,

(which could be achieved for instance by measurement channels returning y1 = 0 =

y2,∀x ∈ X), there exists a unique Nash equilibrium solution given with u1 = 1
2
= u2.

Uniqueness can be seen as follows: when the DMs have no information regarding x,

the event that u1 = x or u2 = x has zero measure and therefore the complementary

conditions are active for defining the cost in the above. Note though that in this case

the cost functions essentially turn the problem into a team problem since minimization
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over u1 of

2(x− u1)2 + (u1 − u2)2

will lead to the same solution as the minimization of

2(x− u1)2 + (u1 − u2)2 + 2(x− u2)2.

The same applies for u2, and so we can view the DMs as solving essentially the same

problem. Therefore, we have a standard static quadratic team problem which admits

a unique optimal solution [65, Theorem 2.6.3] with u1 = 1
2
= u2. This leads to an

expected cost of 1
6

for each DM.

However, when the DM measurement channels are such that both DMs have per-

fect information regarding x (e.g. through y1 = x = y2), we first see that another

equilibrium solution arises: with u1 = x = u2. One can observe this is a Nash equilib-

rium by noting that if DM 2 holds their strategy constant as u2 = x, then DM 1 will

play the game with cost function (x−u1)2+2, which is minimized by playing u1 = x.

The same holds true for DM 2 in the reverse case where DM 1’s strategy is fixed. We

now make the point that this is the unique deterministic Nash equilibrium:

The equilibrium under no information of u1 = 1
2
= u2 is no longer a Nash equi-

librium under perfect information. We can observe this by noting that if DM 2 holds

their strategy constant as u2 = 1
2
, then DM 1 will almost surely be tasked with mini-

mizing 2(x−u1)2+(u1− 1
2
)2. However, now that DM 1 knows x, and because the first

term is weighted more heavily, the expected value of the cost function is minimized by

DM 1 playing u1 = 2
3
x+ 1

6
.

In fact, if the condition u1 = x = u2 is not active, we would again reduce to a
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team problem and in this case, we would have

γ1(x) =
2

3
x+

1

3
γ2(x), γ2(x) =

2

3
x+

1

3
γ1(x)

leading to, by uniqueness [65, Theorem 2.6.3], γ1(x) = x = γ2(x), which however

would take us back to the inefficient equilibrium given above. Thus, the unique pure

strategy Nash equilibrium for the full-information problem is at u1 = x = u2. This

results in an expected cost of 2 for each DM.

This example demonstrates a static game in which more information hurts both

DMs.

Bassan et al. provided sufficient conditions for games to have the ‘positive value

of information property’, where providing additional information to some or all DMs

results in greater or equal payoffs for all DMs [9]. Gossner and Mertens highlighted

zero-sum games as a particularly interesting class to study in the context of ordering

information structures in games and did preliminary work on this ordering [28]; zero-

sum games provide a worthwhile class of games to study due to the fact that, under

mild conditions, every game has a value (achieved at a saddle point), as discussed in

Chapter 2.

For comparison of information structures in zero-sum games with finite measure-

ment and action spaces, Pȩski provided necessary and sufficient conditions, and thus

a complete characterization [46]. Prior to Pȩski’s results, De Meyer, Lehrer, and

Rosenberg had shown that the value of information is positive in zero-sum games,

albeit with a slightly different setup than Pȩski, where their payoff depended on an

individual ‘type’ for each DM rather than a common state of nature; their results

were applicable for infinite action spaces and finite type spaces [19]. Furthermore,
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Lehrer and Shmaya studied a ‘malevolent nature’ zero-sum game played between na-

ture and a DM in a finite setting, and characterized a partial ordering of information

structures for these games [42]. A recent comprehensive study on the value and topo-

logical properties of information structures in zero-sum games, which also generalizes

[46] to the countably infinite probability space setup, is [26].

In this chapter, we generalize Pęski’s results to a broad class of zero-sum games

with standard Borel measurement and action spaces.

Toward this goal, we also present sufficient conditions for a partial converse to

Blackwell’s ordering when the DM has standard Borel measurement and action spaces

and the unknown variable also takes values from a standard Borel space.

3.2 Preliminaries and Literature Review

3.2.1 Comparison of information structures in single-agent problems

Consider a stochastic game following the setup of Section 1.2 with N = 1. That

is, where there is only one decision-maker. We refer to this as a single-DM decision

problem.

The comparison question for a single DM is the following: when can one com-

pare two measurement channels Q1, Q2 (which induce information structures µ1, µ2,

respectively) such that

inf
γ∈Γ

J(g, µ1, γ) ≤ inf
γ∈Γ

J(g, µ2, γ),

for all games g in a large class of single-DM decision problems?

We now recall the notion of garbling. We note that garbling is sometimes defined
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to be equivalent to physical degradedness of communication channels (as opposed

to stochastic degradedness) [17], however we will take stochastic degradedness and

garbling to be equivalent.

Definition 3.1. An information structure induced by some channel Q2 is garbled (or

stochastically degraded) with respect to another one, Q1, if there exists a channel Q′

on Y× Y such that

Q2(B|x) =
∫
Y
Q′(B|y)Q1(dy|x), B ∈ B(Y), ζ a.s. x ∈ X.

We also define the notion of more informative than and introduce a useful result:

Definition 3.2. An information structure µ is more informative than another infor-

mation structure ν for some class of single DM decision problems G if

inf
γ∈Γ

Eν,γ
ζ [c(x, u)] ≥ inf

γ∈Γ
Eµ,γ

ζ [c(x, u)],

for all single DM decision problems (c(x, u),U) in G.

Proposition 3.1. The function

V (ζ) := inf
u∈U

∫
c(x, u)ζ(dx),

is concave in ζ, under the assumption that c is measurable and bounded.

For a proof of this proposition see [65, Theorem 4.3.1].
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We emphasize that in Definition 3.2, U is also a design variable for the decision

problem. With this in mind, and in view of Proposition 3.1, we state Blackwell’s

classical result in the following.

Theorem 3.1. [Blackwell [10]] Let X,Y be finite spaces. The following are equivalent:

(i) Q2 is stochastically degraded with respect to Q1 (that is, a garbling of Q1).

(ii) The information structure induced by channel Q1 is more informative than the

one induced by channel Q2 for all single DM decision problems with finite U.

That (i) implies (ii) for general spaces follows from Proposition 3.1, which is an

immediate finding in statistical decision theory, and Jensen’s inequality [65, Theorem

4.3.2]. We also note that this result will hold, and the proof will follow in an identical

manner, if the DM is allowed to use randomized policies, i.e. u = γ(y, ω), where ω is

an independent noise variable.

The converse, ii) implies i), is significantly more challenging. For the case with

general spaces, related results are attributed to [11], and [16], [57], which relate an

ordering of information structures in terms of dilatations and their relation with

comparisons under concave functions defined on conditional probability measures. A

very concise yet informative review is in [15, p. 130-131] and a more comprehensive

review is in [58]. We will present a direct proof that will be utilized in our main result

of the chapter and present a comparative discussion.

In single DM setups, a related result to that of Blackwell is due to Le Cam

[14], to be discussed further in Chapter 4 in some detail in the context of regularity

problems. In addition, there is a comparison criterion for channels (and the joint

map from a source and channel output after coding and decoding) developed by
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Shannon in [56] and expanded upon in [47]. This leads to a comparison criterion

for information structures in single-DM decision problems, based on communication-

theoretic relaxations of such problems.

3.2.2 Comparison of information structures in zero-sum game problems

Now, consider a zero-sum game generalization of the problem above, with two DMs,

following the setup of Section 1.2.1.

Recall that the joint measure P (dy1, dy2, dx) defines the information structure for

the game and let us denote this with µ. For a zero-sum game with the conditional

independence assumption in Assumption 2.2, an information structure µ consists of

private information structures µ1 and µ2 defined with Qi, i = 1, 2. Define µi as the

joint probability measure induced on P(X×Yi) by measurement channel Qi with input

distribution ζ. We will present the main results of this chapter with an additional

characterization using Q1 and Q2, when the conditional independence assumption

holds.

Recall that DM 1 (the minimizer) wishes to minimize the cost and DM 2 (the

maximizer) wishes to maximize the cost. In the spirit of Blackwell, we now define the

notion of an information structure being “better” than another in the zero-sum game

setup.

Definition 3.3. For fixed X,Y1,Y2 and ζ such that x ∼ ζ, we say that an information

structure µ is better for the maximizer than information structure ν (written as ν ≲ µ)

over all games in a class of games G if and only if for all games g in G:

J∗(g, µ) ≥ J∗(g, ν).
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Definition 3.4. We denote by κiµ the information structure in which DM i’s infor-

mation from µ is garbled by a stochastic kernel κi. We let -i denote the other DM in

the game. Explicitly, this means the information structure becomes:

(κiµ)(B, dy−i, dx) =

∫
Yi

κi(B|yi)µ(dyi, dy−i, dx), B ∈ B(Yi).

We use Ki to denote the space of all such stochastic kernels κi for DM i.

Theorem 3.2 (Pęski [46]). Let X,Y1,Y2 be finite. For any two information structures

µ and ν, µ is better for the maximizer than ν over all games with finite action spaces

U1,U2 if and only if there exist kernels κi ∈ Ki, i = 1, 2, such that

κ1ν = κ2µ,

In particular, under Assumption 2.2, we have the more explicit characterization with

κ1Q1
ν = Q1

µ and Q2
ν = κ2Q2

µ.

Where Qi
µ and Qi

ν are the measurement channels for DM i under information struc-

tures µ and ν, respectively.

In this chapter we will obtain a standard Borel generalization of this result. We

also note that [26] extends the above result to a setup with countably-infinite spaces;

this result will be discussed further in Chapter 4 in the context of continuity of the

value function.
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3.2.3 Team Theoretic Setup

For completeness, we also discuss the team theoretic setup in our review.

Lehrer, Rosenberg and Shmaya extended Blackwell’s ordering of information struc-

tures to team problems in finite-space settings for various solution concepts, including

Nash equilibrium and several forms of correlated equilibrium, in [39]. For these results

to hold, various degrees of correlation between the DMs’ private signals is allowed.

These solution concepts for correlated equilibrium are adopted from [25], which builds

on ideas first introduced in [2]. These provide an ordering of information structures

for static stochastic team problems. Related results are discussed in [65, Chapter 4].

Recently, advances have been made in understanding the topological properties of

strategic measures in team problems in [67].

3.3 On a Partial Converse to Blackwell Ordering in the Standard Borel

Setup

We need to address the extension of Blackwell’s ordering of information structures to

the infinite case, as this will form a key aspect of the proof of the main result of this

chapter, Theorem 3.5.

Here, we present a partial converse to Blackwell’s theorem.

The forward direction to Blackwell’s theorem holds in the infinite case (see [65,

Theorem 4.3.2]), i.e. when X, Y are standard Borel spaces for a single-DM setup, ν

being a stochastically degraded version of µ implies that µ is more informative than ν

over all single-DM decision problems with standard Borel action spaces and bounded

cost functions that are continuous in the DM’s action for every state of nature.
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As noted earlier, related results were presented by C. Boll in 1955 in an unpub-

lished thesis paper [11]. Le Cam presents a summary of these results in [15], with

a detailed review reported in [58]. The approach in the literature often builds on

the construction of dilatations of conditional probability measures, which is related

to Blackwell’s comparison of experiments theorem through what is known as the

Blackwell-Sherman-Stein theorem. A detailed comparative analysis is provided fur-

ther below. Our main contribution here is an explicit converse compatible with the

conditions on existence results presented in the previous section and a comparison to

be presented in the next section. This result serves as a supporting step with a direct

proof; the results reported in the literature are often very technical and the explicit

implication for our setup is not evident a priori as we discuss in the next subsection.

We note that our setup differs slightly from that of Blackwell in [10], contributing

to the fact that this is a partial converse to Blackwell’s result. In Blackwell’s original

setup with finite X, information structures could be compared over different priors

on X as the comparison would apply uniformly to all such prior measures that satisfy

a positivity condition on each of the finitely many outcomes. In our setup, since the

space is possibly uncountable, we consider a fixed prior measure on X.

Theorem 3.3. Let us consider a single DM whose goal is to minimize the value of

the cost function c for a set of single-DM decision problems. If Y is compact and

an information structure µ is more informative than another information structure ν

over all single-DM decision problems with compact standard Borel action spaces and

bounded cost functions c : X × U → R that are continuous in u for every x, then ν

must be a garbling of µ in the sense of Definition 3.1.

Proof. We note that under the conditions of the theorem, an optimal policy (which
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is also deterministic) exists for every information structure (see Theorem 3.1 in [66]).

Step (1): Let ζ be the fixed probability distribution on X for any given decision

problem in our set. Take information structures µ, ν ∈ {P(X × Y) : PX = ζ}, where

µ is more informative than ν in Blackwell’s sense (i.e. J∗(g, µ) ≥ J∗(g, ν) over all

games with a compact standard Borel action space and a bounded cost function c

that is continuous in u).

Take the space Kµ, a subset of P(X×Y), to be the space of all possible garblings

of µ, where the garblings are from Y to Y.

Step (2): We now establish the weak compactness of the space of all garbled

information structures.

First, observe that the set of all induced garblings on the product space (involving

all of K) inducing probability measures of the form

Pκ(dx, dy, dỹ) := µ(dx, dy)κ(dỹ|y),

leads to a weakly pre-compact space in the space of probability measures on X×Y×Y.

If closedness can also be established, this would lead to a weakly compact space.

This follows from the proof of [64, Theorem 5.6] or [52, Theorem 5.2]: since the

marginals on X × Y are fixed, any limit of a weakly converging sequence will also

satisfy the property that the limit is a garbling of the original information structure.

For completeness, we present the following: With Pκ(dx, dy, dỹ) = κ(dỹ|y)µ(dx, dy),

consider a weakly converging sequence Pκn(dx, dy, dỹ). We will show that the weak

limit also admits such a garbled structure. Let Pκn(dx, dy, dỹ) converge weakly to
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P (dx, dy, dỹ). Then, for every continuous and bounded h

∫
h(x, y, ỹ)Pκn(dx, dy, dỹ) =

∫ (∫
h(x, y, ỹ)µ(dx|y)

)
Pκn(dy, dỹ).

Since the marginal on y is fixed, even though the function
∫
h(x, y, ỹ)µ(dx|y) is only

measurable and bounded in y and is continuous in ỹ, w-s convergence is equivalent

to the weak convergence of Pκn(dy, dỹ) and as a result we have that

∫ (∫
h(x, y, ỹ)µ(dx|y)

)
Pκn(dy, dỹ) →

∫ (∫
h(x, y, ỹ)µ(dx|y)

)
P (dy, dỹ).

As a result, P decomposes as P (dx, dy, dỹ) = µ(dx, dy)κ̃(dỹ|y) for some κ̃. This

establishes the weak compactness of the garbled information structure in the product

space X× Y× Y.

Now, take the projection of this space onto the measures on the first and the third

coordinate; as a continuous image of a weakly compact set, this map will also be

compact and gives us our space Kµ.

Finally, Kµ is convex, since the space of stochastic kernels is convex. As a result,

the space Kµ of all possible garblings of µ is a convex and compact subset of P(X×Y)

under the weak convergence topology.

Now, assume there does not exist a stochastic kernel κ ∈ K such that ν = κµ.

Which is to say, we assume ν is not a garbling of µ and proceed with a proof by

contradiction. Then, Kµ ∩ ν = ϕ. That is, ν /∈ Kµ.

Step (3): We now use the Hahn-Banach Separation Theorem for Locally Convex

Spaces by treating the space of probability measures P(X × Y) as a locally convex

space of measures (see [51, Theorem 3.4]). As such, since our spaces Kµ and {ν}
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are subsets of this space and are convex, closed and compact, in addition to being

disjoint, we can separate them using a continuous linear map from P(X× Y) to R.

To apply [51, Theorem 3.4], we require local convexity of P(X × Y), and so we

define the locally convex space of probability measures with the following notion of

convergence: We say that νn → ν if
∫
f(x, y)νn(dx, dy) →

∫
f(x, y)ν(dx, dy) for every

measurable and bounded function which is continuous in y for every x. We note that

our measures must still have fixed marginal ζ on X.

Since continuous and bounded functions separate probability measures (in the

sense that, if the integrations of two measures with respect to continuous functions

are equal, the measures must be equal), it follows from [51, Theorem 3.10] that we can

represent every continuous linear map on P(X×Y) using the form
∫
f(x, y)ν(dx, dy)

for some measurable and bounded function f(x, y) continuous in y for every x. It

also follows from [51, Theorem 3.10] that, given this notion of convergence, P(X×Y)

is a locally convex space.

Therefore, we have the following statement from combining [51, Theorem 3.4] and

[51, Theorem 3.10]: there exists a measurable and bounded function (continuous in

y) f : X× Y → R and constants D1, D2 ∈ R where D1 < D2 such that:

⟨ν, f⟩ ≤ D1, ⟨κµ, f⟩ ≥ D2, ∀ κ ∈ K.

Where we use the following notation:

⟨ν, f⟩ =
∫
X×Y

f(x, y)ν(dx, dy).

This gives us the following inequality: ⟨ν, f⟩ < ⟨κµ, f⟩, ∀κ ∈ K.
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Step (4): Now consider the class of decision problems with bounded cost func-

tions continuous in the actions, with compact Y, U, where U = Y. This is clearly

a subset of all decision problems considered so far in the proof. Now let f(x, y) be

the separating function found above. Consider a game in this particular subclass

where f(x, y) is the cost function (which is valid since U = Y and f(x, y) is bounded

continuous in y). We note that ⟨ν, f⟩ gives the expected value of the game with cost

function f(x, y) under information structure ν when the DM plays the identity policy

γid(y) = y. We can observe the following:

∫
X×Y

f(x, y)ν(dx, dy) <

∫
X×Y

f(x, y)κµ(dx, dy), ∀κ ∈ K,

and hence,

∫
X×Y

f(x, y)ν(dx, dy) < inf
κ∈K

∫
X×Y

f(x, y)κµ(dx, dy)

= inf
κ∈K

∫
X×Y

f(x, y′)

∫
Y
κ(dy′|y)µ(dx, y)

= inf
κ∈K

∫
X×Y

f(x, κ(·|y))µ(dx, dy).

Where we define:

f(x, κ(·|y)) :=
∫
Y
f(x, y′)κ(dy′|y)

Recalling that κ(·|y) has a functional representation γ(y) = g(y, ω) for some indepen-

dent noise variable ω, and since K is the space of all stochastic kernels from Y to Y,

we can observe that this gives us:

inf
κ∈K

∫
X×Y

f(x, κ(·|y))µ(dx, dy) = inf
γ∈Γ

∫
X×Y

f(x, γ(y))µ(dx, dy).
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Since we allow for randomized policies, this minimization is equivalent to finding the

optimal policy γ∗ ∈ Γ for the cost function f(x, y) under information structure µ. We

refer to this single-DM game with cost function f and action space Y as g̃. And so

we have:

∫
X×Y

f(x, y)ν(dx, dy) = J(g̃, ν, γid) < J(g̃, µ, γ∗) = inf
κ∈K

∫
X×Y

f(x, κ(y))µ(dx, dy).

Since we have found a game where, when playing its optimal policy, µ performs worse

than ν does under some policy, we have contradicted the fact that µ is better than

ν. Therefore, there must exist a κ ∈ K such that ν = κµ, and so ν is a garbling of

µ.

This result will allow us to use both directions of Blackwell’s ordering of infor-

mation structures in the standard Borel-type setup we are considering for DMs in

zero-sum games.

Dilatations as measures for comparisons of experiments and Strassen’s

theorem. Strassen, in [57, Theorem 2], presents a related result that is often in-

voked when comparison of experiments is studied in infinite dimensional probability

spaces, although the direct implication on Blackwell’s ordering (in the sense needed

in our main result to be presented in the next section) is not explicit as we note in

the following. Likewise, Cartier, Fell, and Meyer relate an ordering of information

structures in terms of dilatations (where the hidden variable x does not appear ex-

plicitly in the analysis) in [16]. A very concise yet informative review is in [15, p.

130-131]. A detailed discussion on comparisons of information structures along the

same approach is present in the comprehensive book [58]. Both for completeness as
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well as to compare the findings, we present a discussion in the following.

Let Ω be a convex compact metrizable subset of a locally convex topological

vector space. For Borel probability measures µ and ν write µ ≺ ν if and only if for

all y ∈ S = {all continuous concave functionals on Ω}

∫
y dµ ≥

∫
y dν.

Theorem 3.4. [57, Theorem 2] µ ≺ ν if and only if there is a dilatation P such

that ν = Pµ, where a dilatation P is a Markov kernel from Ω to Ω such that for

all continuous affine functions z on Ω, zP = z, where zP = z means that for any

continuous affine function z on Ω:

∫
Ω

z(r)P (dr, ω) = z(ω), ∀ω ∈ Ω.

Theorem 3.4 does not lead to a converse to Blackwell’s theorem in the generality

presented in Theorem 3.3: Let Ω be the space of probability measures on X. Let

µ be an information structure that is more informative than another information

structure ν in Blackwell’s sense. Let us restrict ourselves to decision problems where

U is compact. Let Qµ and Qν be the measurement channels for the DM under

information structures µ and ν, respectively. By definition, we have for all measurable

and bounded cost functions c continuous in the actions:

inf
γ∈Γ

∫
ζ(dx)Qµ(dy|x)c(x, γ(y)) ≤ inf

η∈Γ

∫
ζ(dx)Qν(dy|x)c(x, η(y)).
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Let P µ(dy)Q(dx|y) be the alternative disintegration of the information structure µ

following Bayes’ rule. Likewise, perform the same disintegration for ν. Then we can

rewrite the above equation as (due to the measurable selection conditions as in the

proof of Theorem 3.1 in [66]):

∫
P µ(dy)(inf

u∈U

∫
Q(dx|y)c(x, u)) ≤

∫
P ν(dy)(inf

u∈U

∫
Q(dx|y)c(x, u)), (3.1)

Now, we define:

Πµ(A) :=

∫
Y
P µ(dy)1Qµ(·|A)

We note that Πµ is a probability measure on Ω. Define Πν similarly. Then (3.1)

becomes

∫
Πµ(dπ)(inf

u∈U

∫
π(dx)c(x, u)) ≤

∫
Πν(dπ)(inf

u∈U

∫
π(dx)c(x, u)),

with the interpretation that π(dx) = Q(dx|y). Let W ∗(π) = infu∈U
∫
π(dx)c(x, u).

Then we can rewrite this once again as:

∫
Πµ(dπ)W ∗(π) ≤

∫
Πν(dπ)W ∗(π).

Since Πµ and Πν give probability distributions on Ω, and W ∗ is a function over Ω,

we will have ν ≺ µ in Strassen’s sense if the above inequality holds for all continuous

and concave functions over Ω.

We can show that W ∗ is continuous and concave in π provided that additionally

c is continuous both in x and u. Let πn → π weakly, and let u∗
n be optimal for πn.
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Then:

|
∫

c(x, u∗
n)πn(dx)−

∫
c(x, u∗)π(dx)|

≤ max(

∫
c(x, u∗

n)(πn(dx)− π(dx)),

∫
c(x, u∗)πn(dx)− π(dx)).

We note that
∫
c(x, u∗

n)(πn(dx)− π(dx)) goes to 0 following [55, Theorem 3.5] or [38,

Theorem 3.5] (since the action space is compact, there always is a converging subse-

quence u∗
nm

→ ū for some ū, and since for xn → x we have that c(xnm , u
∗
nm

) → c(x, ū)

the result follows from a generalized convergence theorem under weak convergence).

The second term converges to zero by the weak convergence of πn to π. We emphasize

the requirement that c is continuous in both x and u, in Theorem 3.3 only continuity

in u was required (one can construct a simple counterexample, even when U is a sin-

gleton to show that continuity in x is necessary for this argument to hold). Concavity

of W ∗ in the conditional measure π(dx) follows from Proposition 3.1.

Now, if one can show that by using all bounded continuous cost functions c and

compact action spaces U, the space of all continuous and concave functions on Ω is

spanned by the space of all W ∗ functions, then a converse can be attained through

Strassen’s result. We note here that every concave and upper semi-continuous W can

be written as an infimum of a family of affine functions (Fenchel-Moreau Theorem

[48]) and an analysis can be pursued towards this direction at least for the case where

c can be assumed to be continuous in both variables and the condition on W is to

be relaxed in Strassen’s theorem. However, due to the conditions of upper semi-

continuity of W ∗ and the joint continuity of c noted earlier in both the state and

actions, the applicability of Strassen’s theorem to our setup does not hold in the
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generality reported.

In summary, we have presented a general condition and a direct proof, while we

recognize that Strassen’s theorem and accordingly its proof could be further modified

to allow for additional relaxations for arriving at a similar result.

3.4 Comparison of Information Structures for Zero-Sum standard Borel

Bayesian Games

We are now prepared to order information structures in the spirit of Theorem 3.2

for this standard Borel setup. We note that the following lemmas, theorem, and

corollary also hold in the general finite case studied by Pęski, as they rely solely

on the existence of equilibria (which are guaranteed to exist in the finite setup by

von Neumann’s min-max theorem, see [60]) and Blackwell’s ordering of information

structures. Therefore, these results also serve as a strict generalization of Theorem

3.2 to standard Borel Bayesian Games.

Definition 3.5. For fixed X with x ∼ ζ, and fixed Y1,Y2, we define a class of games

G̃ζ(X,Y1,Y2) to be all games for which the DMs have compact action spaces and the

cost function is bounded and continuous in DMs’ actions for every state x.

Lemma 3.1. Given fixed X, ζ, Y1, and Y2, for any information structure µ and any

kernels κi ∈ Ki:

κ2µ ≲ µ and µ ≲ κ1µ,

over all games in G̃ζ(X,Y1,Y2).
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Proof. Let us consider the first relation. This states essentially that garbling the

maximizer’s information results in lower or equal cost over all games.

Take an arbitrary zero-sum game g ∈ G̃ζ(X,Y1,Y2) with cost function c and

action spaces U1 and U2. Let (γ1, γ2) be the Nash equilibrium policies for the DMs

under information structure κ2µ and (η1, η2) be the Nash equilibrium policies under

information structure µ. By our assumption on G̃ζ(X,Y1,Y2), these policies exist

[Theorem 2.2]. Let Qi be the measurement channel for DM i under information

structure µ.

The expected value of the cost for the maximizer under the first information

structure is:

Jκ2µ
g (γ1, γ2) :=

∫
X×Y1×Y2

c(x, γ1(y1), γ2(y2))κ2µ(dx, dy1, dy2).

Since, the game g and information structure µ are fixed, we use Jµ
g (γ

1, γ2) :=

J(g, µ, γ1, γ2) to simplify notation and highlight dependence of expected cost on the

DMs’ policies.

By definition, the equilibrium solution (γ1, γ2) for g under κ2µ is given by the

solution to the min-max problem:

min
θ1∈Γ1

max
θ2∈Γ2

Jκ2µ
g (θ1, θ2).

Therefore, since γ1 is the minimizing policy under κ2µ, by perturbing the mini-

mizer’s policy γ1 to be the policy η1 ∈ Γ1 we have the following inequality (i.e. we
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make the minimizer no longer play her optimal policy):

Jκ2µ
g (γ1, γ2) ≤ Jκ2µ

g (η1, γ2).

We now wish to compare the two quantities Jκ2µ
g (η1, γ2) and Jµ

g (η
1, η2). To do

so, fix η1 across both terms and consider a cost function c̃(x, θ2(y2)) : X × U2 → R

such that c̃(x, θ2(y2)) = c(x, η1(y1)), θ2(y2))∀θ2 ∈ Γ2. I.e., by holding the minimizer’s

strategy constant as η1, we reduce c to c̃ such that we now have a cost function that

only reflects dependence on the maximizer’s policy when the minimizer’s policy is

held at η1. Such a function c̃ clearly exists, as the value of η1(y1) is only dependent

on x (potentially in some stochastic way, in that it depends on Q1(y|x)), when η1

(and µ1) are constant, and so can be absorbed into the dependency of c̃ on x.

We can now compare the single-DM decision problem for the maximizer given by

cost function c̃ and information structures (κ2µ)2 and µ2 (which we use to denote

the maximizer’s private information structures present in κ2µ and µ, respectively,

i.e. the marginals on (X × Y2)). This is a single-DM decision problem and as such

can be treated using the forward direction to Blackwell’s ordering of information

structures [10, Theorem 2], which holds in this infinite-dimensional case [65]. Since

c̃ and c are equal over all strategies in Γ2, we know that γ2 and η2 are still optimal

policies for the maximizer to play under the respective information structures for this

game. Thus, since (κ2µ)2 is a garbling of µ2 by channel κ2, and since c̃(x, η2(y2)) =

c(x, η1(µ1(x)), η2(y2)), we have that:

Jκ2µ
g (η1, γ2) =

∫
X×Y2

c̃(x, γ2(y2))κ2µ(dx, dy2)
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≤
∫
X×Y2

c̃(x, η2(y2))µ(dx, dy2) = Jµ
g (η

1, η2).

Putting this all together, we have Jκ2µ
g (γ1, γ2) ≤ Jκ2µ

g (η1, γ2) ≤ Jµ
g (η

1, η2). Since

this is true for any arbitrary game g ∈ G̃ζ(X,Y1,Y2), we have that κ2µ ≲ µ.

A nearly identical argument can be applied to show that µ ≲ κ1µ.

Using a similar reasoning, we also develop the following converse result:

Lemma 3.2. Take fixed X, ζ, fixed and compact Y1,Y2, and information structures

ν and µ. If ν ≲ µ over all games in G̃ζ(X,Y1,Y2), then there exist kernels κi ∈ Ki

such that:

κ1ν = κ2µ.

In particular, under Assumption 2.2, we have the more explicit characterization with

κ1Q1
ν = Q1

µ and Q2
ν = κ2Q2

µ.

Where Qi
µ and Qi

ν are the measurement channels for DM i under information struc-

tures µ and ν, respectively.

Proof. Let (γ1, γ2) be the equilibrium solution under ν and let (η1, η2) be the equilib-

rium solution under µ. As in Lemma 3.1, these equilibria exist and are the solutions

of the standard min-max problem.

Therefore, we have the following inequality:

Jν
g (γ

1, η2) ≤ max
θ2∈Γ2

Jν
g (γ

1, θ2) = Jν
g (γ

1, γ2).
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Likewise, we can determine the following:

Jµ
g (η

1, η2) = min
α1∈Γ1

Jν
g (α

1, η2) ≤ Jµ
g (γ

1, η2).

In addition, by assumption that ν ≲ µ, we have that for all g ∈ G̃ζ(X,Y1,Y2):

Jν
g (γ

1, γ2) ≤ Jµ
g (η

1, η2).

Putting this all together, one observes that Jν
g (γ

1, η2) ≤ Jµ
g (η

1, η2). In the same

manner as in Lemma 3.1, we hold η2 constant across both terms and develop a reduced

single-DM cost function c̃ for DM 1, with the action space remaining U1; we denote

this new single-DM decision problem by g̃. Once again, we use νi and µi to denote the

private (i.e. marginal) information structure for DM i under ν and µ, respectively.

We then have a single-DM decision problem where we observe that γ1 and η1 are still

the optimal policies for the minimizer for each respective information structure:

J∗(g̃, ν1) = J(g̃, ν1, γ1) =

∫
X×Y1

c̃(x, γ1(y1))ν(dx, dy1)

≤
∫
X×Y1

c̃(x, η1(y1))µ(dx, dy1) = J(g̃, µ1, η1) = J∗(g̃, µ1).

(3.2)

Since the inequality Jν
g (γ

1, η2) ≤ Jµ
g (η

1, η2) holds true for every arbitrary zero-sum

game g ∈ G̃ζ(X,Y1,Y2), it holds for every game in the subclass Ĝ, defined here to be

all games in G̃ζ(X,Y1,Y2) where the action space of the maximizer is fixed as U2 =

{0}. Moreover, we observe that for any action space U1 and any arbitrary bounded

single-DM cost function that is continuous in the DM’s action c̄(x, u1) : X×U1 → R,
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there exists a two-DM cost function ĉ(x, u1, u2) corresponding to some game in Ĝ

with action space U1 such that ĉ(x, u1, u2) = c̄(x, u1) ∀ u1 ∈ U1 (following naturally

from the fact that u2 = 0 for these games). One such construction of ĉ would be

ĉ(x, u1, u2) = c̄(x, u1) + u2; when played in Ĝ, ĉ(x, u1, u2) = c̄(x, u1) ∀ u1 ∈ U1. We

note that since c̄(x, u1) is continuous in u1 for all x and is bounded, it is a valid for a

game in Ĝ ⊂ G̃ζ(X,Y1,Y2) to use ĉ(x, u1, u2).

Therefore, any single-DM cost function c̄ is a valid single-DM reduction of some

zero-sum cost function ĉ. We can thus observe that, when the maximizer’s policy is

held constant, the reduction of all games in G̃ζ(X,Y1,Y2) to single-DM problems for

the minimizer is surjective on the entire space of single-DM problems with compact

action spaces and bounded cost functions that are continuous in the DM’s action.

Therefore, applying the reasoning for (3.2), it follows that J∗(g̃, ν1) ≤ J∗(g̃, µ1) for

all single-DM problems g̃ with compact action spaces and cost functions that are

bounded and continuous in the action.

Lastly, we observe that since c is framed such that a higher quantity is better

for the maximizer, the minimizer wants to minimize the value of c̃. Therefore, from

the minimizer’s perspective, the inequality J∗(g̃, ν1) ≤ J∗(g̃, µ1) indicates that she

can never perform worse under ν than under µ. Thus, by the converse direction to

Blackwell’s ordering of information structures [10, Theorem 6], which by the lemma

assumptions and the restrictions on the class G̃ζ(X,Y1,Y2) (namely compactness of

Yi and Ui) holds in this infinite setup due to Theorem 3.3, we have that µ1 must be

a garbling of ν1.

In a similar manner, by observing that Jν
g (γ

1, γ2) ≤ Jµ
g (γ

1, η2) one discovers that

ν2 must be a garbling of µ2.
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Therefore, we have that the minimizer’s information from ν is garbled in µ and

the maximizer’s information from µ is garbled in ν. Combining these two conditions

yields the desired equality for some κi ∈ Ki:

κ1ν = κ2µ.

The following is our main result.

Theorem 3.5. Take fixed X, ζ, fixed and compact Y1,Y2, and information structures

ν and µ. Then µ is better for the maximizer than ν (ν ≲ µ) over all games in

G̃ζ(X,Y1,Y2) if and only if there exist kernels κi ∈ Ki such that:

κ1ν = κ2µ.

Proof. The if direction follows directly from Lemma 3.1:

ν ≲ κ1ν = κ2µ ≲ µ

The only if direction is given in Lemma 3.2.

Corollary 3.1. Take fixed X, ζ, and fixed and compact Y1,Y2. The value of additional

information to a decision-maker is never negative for that decision-maker in any zero-

sum game in G̃ζ(X,Y1,Y2).

Proof. If µ is an information structure which has more information for the maximizer

than another information structure ν, then there exists a kernel κ2 such that ν = κ2µ,
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and so we know that J∗(g, µ) ≥ J∗(g, ν), and κ2 is a well-defined map since we can

map any additional information to a fixed number.

We note that the value of information is not always strictly positive to a DM,

since many situations (such as where the action set is a singleton) will result in no

change in performance despite additional information.

Corollary 3.1 is consistent with the work of De Meyer, Lehrer and Rosenberg [19,

Theorem 3.1], who found this result when studying the value of information in zero-

sum games with incomplete information with a slightly different setup, where the

‘state of nature’ was replaced by an individual ‘type’ for each DM drawn from a finite

space, and where the cost function depended on both DMs’ types.

We note that for Theorem 3.5, the proof will follow for any class of zero-sum

games for which every game has an equilibrium solution and Blackwell’s ordering

of information structures holds for each DM when holding the other DM’s policy

constant. Therefore, the ordering result can be generalized to be applicable for more

general classes of zero-sum games than G̃ζ(X,Y1,Y2).

3.4.1 Discussion

This main result comes with the following intuitive interpretation:

An information structure µ is better for the maximizer than ν if and only if one

of the following holds:

1. ν2 is a non-identity garbling of the maximizer’s channel from µ, and the mini-

mizer’s channel is identical.

2. µ1 is a non-identity garbling of the minimizer’s channel from ν, and the maxi-

mizer’s channel is identical.
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3. ν2 is a non-identity garbling of the maximizer’s channel from µ, and µ1 is a

non-identity garbling of the minimizer’s channel from ν.

4. The information structures are identical.

In plain terms, this has the following interpretation: In zero-sum games, improving

or hurting both DMs’ information structures will never give a general benefit to either

DM over all games. The only time a DM will not do worse under a new information

structure is if it only makes his channel better, only makes his opponent’s channel

worse, makes his channel better and his opponent’s channel worse, or is identical to

the previous information structure (and the DM is guaranteed to not do worse if any

of these conditions holds).

In the following, we present an example showing that we cannot view garbling from

decision-maker to decision-maker in isolation from the entire information structure.

Consider a finite probability space game with X = U = Y1 = Y2 = {1, 2, 3, 4}, with

x distributed according to the uniform distribution, and cost function:

c(x, u1, u2) =


−12, u1 = x and u1 ̸= u2

−5, u1 = x and u1 = u2

0, otherwise

DM 1 (the minimizer) gets rewarded for guessing x correctly, and DM 2 (the

maximizer) can only limit his losses by playing the same action as DM 1. We can

observe that DM 1’s optimal strategy will always be to attempt to guess x correctly,

since she is only penalized for guessing incorrectly, while DM 2’s optimal strategy

will always be to attempt to copy DM 1’s action since that is the only way he can
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positively affect the outcome for himself.

Now consider the following two information structures:

µ1: Under this information structure, both DMs receive the same random mea-

surement y1 = y2 = y, where y = x with probability 0.9 and y is any of the other

three incorrect values with probability 0.1/3. Under this information structure, the

best strategy for DM 1 (and thus also for DM 2) is to guess her observation, so

u1 = u2 = y and the expected payoff is −5(0.9) = −4.5.

µ2: Under this information structure, both DMs receive conditionally (given x)

independent measurements. For DM 1, y1 = x with probability 0.85, and is any of the

three incorrect values of x with probability 0.05 each. DM 2 has the same structure

as under µ1, with a 0.9 chance of success, albeit now uncoupled with DM 1’s chance

of success. The optimal strategies remain the same under this information structure,

but the expected payoff is now −5(0.9)(0.85) + (−12)(0.85)(0.1) = −4.845.

Therefore, µ2 is better for the minimizer than µ1. But, we can observe that the

minimizer’s channel in µ2 is garbled from µ1, in the sense that the distribution on

Y1 for DM 1 can be run through a stochastic kernel to get the distribution under µ2.

The maximizer’s channel is identical in both games in the sense that the distribution

on Y2 is unchanged. Yet, the ordering of information structures rule from Theorem

3.2 appears to have been violated, since the minimizer performs better under the

garbled information structure. This demonstrates that we cannot consider garbling

in isolation and the comparison should be in view of the entire information structure.

While µ2 appears to be a garbling of µ1 for the minimizer, it is not a garbling

in the sense of this chapter, since µ1 features dependent measurements between the

DMs, while µ2 has independent measurements between the DMs. Definition 3.4
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specifies that garblings are done in view of the entire information structure, and so

a garbling could not decouple dependence when going from µ1 to µ2. If the garbling

had been done in accordance with the results of this chapter so that y1 = y2 but y1

is then garbled to arrive at some ỹ1 whose probability measure is as specified under

µ2, then the DMs’ measurements would still contain dependence after the garbling.

Under this construction, naturally DM 1 would perform worse in the equilibrium

under the garbled information structure, since DM 2 has maintained a good ability

to copy DM 1’s actions when DM 1 is correct due to the dependence being maintained,

while DM 1 has received a disadvantage in being able to accurately guess x. If the

stochastic kernel garbling DM 1’s information is as given by κ̃ below, where the (i, j)

entry is the probability of DM 1 measuring ỹ1 = i given that the DMs originally

measured y1 = y2 = j, then the expected equilibrium payoff in this situation would

be −5(0.9)(0.9423) + (−12)(0.1)(0.0192) = −4.263, which is worse for DM 1, as

expected. Under this garbling, DM 1 has a probability of 0.85 of observing the

correct measurement ỹ1 = x and a 0.05 probability of observing any of the three

incorrect measurements, matching the distribution specified in the definition of µ2.

κ̃ =



0.9423 0.0192 0.0192 0.0192

0.0192 0.9423 0.0192 0.0192

0.0192 0.0192 0.9423 0.0192

0.0192 0.0192 0.0192 0.9423
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Chapter 4

Continuity of Equilibrium Value in Information

4.1 Introduction

A related problem to that of comparison of information structures, which was studied

in Chapter 3, involves continuity properties of optimal solutions/equilibrium solutions

in information structures under various topologies, which will be studied in this chap-

ter.

4.2 Preliminaries and Literature Review

4.2.1 Information Structure Models and Assumptions

We follow the setup for N DMs playing in single-stage stochastic game, as in Section

1.2.

Throughout this chapter, we allow for the entire information structure µ to vary as

it converges, meaning the prior on the state space ζ is not fixed. The sole exceptions

are Theorem 4.4 and Theorem 4.5, where the prior must be fixed for the proofs to

hold.

We now define the following assumptions, which will be used within the results of
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this chapter:

Assumptions.

A1 : The cost functions for DMs are measurable and bounded.

A2 : The cost functions for DMs are continuous and bounded.

A3 : The information structure is absolutely continuous with respect to a product

measure:

P (dy1, dy2, · · · , dyn, dx) ≪ Q̄1(dy1)Q̄2(dy2) · · · Q̄n(dyn)ζ(dx),

for reference probability measures Q̄i, i = 1, 2, · · · . That is, e.g., for n = 2, there

exists an integrable f which satisfies for every Borel A,B,C

P (y1 ∈ B, y2 ∈ C, x ∈ A) =

∫
A,B,C

f(x, y1, y2)ζ(dx)Q̄1(dy1)Q̄2(dy2).

A4 : The action space of each agent is compact.

A5 : The bounded measurable cost function is continuous in DMs’ actions for

every state of nature x.

A6 : The individual DM channels Qi are fixed and independent (i.e., given x, all

the measurement variables yi are conditionally independent). Furthermore, each Qi

is continuous in total variation, i.e., as xm → x then ∥Qi(·|x)−Qi(·|xm)∥TV → 0.

A7 : The action spaces for the DMs are convex subsets of Rk, for some k.

Note that A3 is simply Assumption 2.1 extended to allow for N DMs.



4.2. PRELIMINARIES AND LITERATURE REVIEW 55

4.2.2 Convergence of information structures

For a standard Borel space X, recall that we let P(X) denote the family of all prob-

ability measures on (X,B(X)), where B(X) denotes the Borel sigma-field over X. Let

{µn, n ∈ N} be a sequence in P(X). Recall that {µn} is said to converge to µ ∈ P(X)

weakly if

∫
X
c(x)µn(dx) →

∫
X
c(x)µ(dx) (4.1)

for every continuous and bounded c : X → R. On the other hand, {µn} is said

to converge to µ ∈ P(X) setwise if (4.1) holds for every measurable and bounded

c : X → R. Setwise convergence can also be defined through pointwise convergence

on Borel subsets of X, that is µn(A) → µ(A), for all A ∈ B(X). For two probability

measures µ, ν ∈ P(X), the total variation metric is given by

∥µ− ν∥TV := 2 sup
B∈B(X)

|µ(B)− ν(B)|

= sup
f : ∥f∥∞≤1

∣∣∣∣ ∫ f(x)µ(dx)−
∫

f(x)ν(dx)

∣∣∣∣. (4.2)

A sequence {µn} is said to converge to µ ∈ P(X) in total variation if ∥µn−µ∥TV → 0.

Setwise convergence is equivalent to pointwise convergence on Borel sets whereas total

variation requires uniform convergence on Borel sets. Thus these three convergence

notions are in increasing order of strength.

We also recall the w-s topology introduced by Schäl [54], and used earlier in

Chapter 2: the w-s topology on the set of probability measures P(X × Y) is the

coarsest topology under which, for every measurable and bounded f(x, y) which is
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continuous in y for every x, the map
∫
f(x, y)µ(dx, dy) : P(X×Y) → R is continuous

(but unlike the weak convergence topology, f does not need to be continuous in x).

An important relevant result [54, Theorem 3.10] or [7, Theorem 2.5] is that if µn → µ

in weakly but if the marginals µn(dx×Y) → µ(dx×Y) setwise, then the convergence

is also in the w-s sense.

Definition 4.1. A sequence of information structures µn in P(X × Y1 × · · · × Yn)

converges to µ weakly/setwise/in total variation if µn → µ in the corresponding sense.

4.2.3 Literature review

Single decision-maker/Player Problems

For a single decision-maker setup, [66, Theorem 3.4], for a fixed prior, showed that

the value function is continuous under total variation convergence of information

structures. Counterexamples also revealed that continuity is not necessarily preserved

under weak or setwise convergence, but the value function is upper semicontinuous

under both under mild conditions.

The case where priors also change has been studied in [36], where conditions for

optimality under both total variation and weak convergence were established: total

variation convergence of the priors always leads to convergence [36, Theorem 2.9], but

continuity under the weak convergence of priors requires a total variation continuity

condition on the information channels [36, Theorem 2.5].

A related result due to Le Cam [14] will be discussed further below in the con-

text of zero-sum games. We also note that a related result due to Wu and Verdú

[63] establishes continuity of the quadratic (minimum mean-square estimation) error

under weak convergence of the priors when the channel is additive, the additive noise
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has a finite variance and it admits a continuous and bounded density function (such

as a Gaussian). [1], [29] study the effects of uncertainties in the input distribution

in the quantizer design, which may be viewed as a decision problem. [45, 59] study

the effects of variations in system models, and thus also information structures, in a

general relative entropy perturbation framework in the context of minimax LQG con-

trol; we note that relative entropy is a more stringent distance measure via Pinsker’s

inequality [18].

Zero-Sum Games

The specific form of an information structure has been shown to have subtle impact

on (different types of) equilibria in games, as well as on their existence, uniqueness,

and characterization (see for example [61, 5, 8]). In spite of the existence of several

studies on the impact of information structure on equilibria of games, there does

not exist a complete theory of such impact. The theory of and regularity properties

on information structures in stochastic games is significantly more challenging when

compared with that for stochastic team theory, since the value of information is not

necessarily positive and informational changes lead to variations in the equilibrium

behaviour in intricate ways [9, 33, 3]).

Zero-sum games, however, form a class of problems where strong regularity prop-

erties can be established. For example, under mild conditions as reviewed in Chapter

2, every zero-sum game, and accordingly every information structure, has a value.

Furthermore, as discussed earlier in Chapter 3, a theory of ordering of information

structures can be obtained and, in particular, no additional information can hurt a

DM in a zero-sum game.
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In view of the above, we can interpret zero-sum games as an intermediate category

between team problems and non-zero sum game problems as far as their informational

properties are concerned. The findings of this chapter will further contribute towards

such an interpretation.

Among contributions, [22] shows uniform continuity of the value function for zero-

sum games under convergence of DM information fields using a notion of convergence

of sigma fields developed by Boylan in [13], under Lipschitz continuity assumptions

on the cost function; while [23] establishes continuity of the value function in the

prior distribution on the state space for zero-sum games using the total variation

metric. In [26], for countable X,Y1,Y2, a value-distance is introduced, which is a

method of comparison of information structures that can be characterized using the

total variation distance in zero-sum games.

Definition 4.2 ([26]). Take countable X,Y1,Y2. Let G̃ be all games with cost func-

tions satisfying A1 (and where the cost is bounded by 1) and countable action spaces U1

and U2. The value-distance between two information structures for zero-sum games

is: d2(µ, ν) =: supg∈G̃ |J∗(g, µ)− J∗(g, ν)|.

We recall the definition and notation of garbling introduced in Definition 3.4.

Theorem 4.1 (Theorem 1, [26]). Take countable X,Y1,Y2. The following equality

holds:

d2(µ, ν) = max{ min
κ1∈K1,κ2∈K2

∥κ1µ− νκ2∥TV , min
κ1∈K1,κ2∈K2

∥µκ2 − κ1ν∥TV }.

Via this distance, it follows that convergence of {µn} to µ in total variation results

in convergence of J∗(g, µn) to J∗(g, µ) when the state, measurement and action spaces
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are countable. In this chapter we will consider general standard Borel spaces and

demonstrate that if {µn} converges to µ in total variation, then J∗(g, µn) converges

to J∗(g, µ) for all games g for which saddle-point equilbria exist under {µn} and µ.

Furthermore, we will establish upper semi-continuity properties that J∗(g, ·) exhibits

under weak and setwise convergence of measurement channels for each DM.

We also note that Theorem 4.1 is closely related in the single-DM case to a result

from Le Cam in [14]. We recall the definition of the Le Cam distance for a single-DM

decision problem with information structures µ and ν.

Definition 4.3. The Le Cam distance between two information structures µ and ν is

∆(µ, ν) := max{δ(µ, ν), δ(ν, µ)}

:= max{ inf
κ∈K

sup
x∈X

∥κµ(·|x)− ν(·|x)∥TV , inf
κ∈K

sup
x∈X

∥µ(·|x)− κν(·|x)∥TV }.

δ(µ, ν) is referred to as the Le Cam deficiency of µ with respect to ν. We now

recall the following theorem adapted from Le Cam [14], which holds in the standard

Borel setup.

Theorem 4.2 (Theorem 3, [14]). For a given ϵ > 0, if δ(µ, ν) ≤ ϵ then for any policy

γν under ν and any single-DM game with a bounded cost function ∥c∥∞ ≤ 1, there

exists a policy γ̄µ under µ such that

Eµ
ζ [c(x, γ̄µ(y))] ≤ Eν

ζ [c(x, γν(y))] + ϵ.

Remark 4.1. We observe that the “value-distance” in Definition 4.2 is similar to the

Le Cam distance, with the difference being that the Le Cam distance looks at max-

imizing the total variation distance over individual states, rather than incorporating
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the prior. Theorem 4.2 is also closely related to Theorem 4.1 in the single-DM case.

Theorem 4.2 implies that if δ(µ, ν) = ϵ then the maximum possible decrease in value

over all valid games when changing from µ to ν is upper-bounded by ϵ. Similarly,

if δ(ν, µ) = α then the maximum possible increase in value going from µ to ν is

upper-bounded by α. If we define d1 similar to Definition 4.2, as the supremum of

the absolute difference in value over all valid single-DM games, as a natural restric-

tion of d2 to the single-DM case, we would have that d1(µ, ν) ≤ max{δ(µ, µ), δ(ν, µ)},

and so d1(µ, ν) ≤ ∆(µ, ν). Thus, the Le Cam distance gives an upper-bound on the

value-distance.

Stochastic Team Problems

We recall the team problem setup introduced in Section 1.2.2.

In team problems, equilibrium solutions are team policies γ̄∗ := (γ1,∗, . . . , γn,∗)

which minimize the value function, which is the expected value of the common cost

function. The value function at equilibrium is denoted by J∗(c, µ). General existence

results for team-optimal policies can be found in [64, Section 5]; in particular, an

equilibrium solution exists under assumptions A1, A3, A4, and A5.

General Stochastic Games

The value of information may not be well-posed for general games, since unlike team

and zero-sum game problems, one cannot talk about the unique value of a general

non-zero-sum game. Each DM has a personal value function in a general game.

Furthermore, more information may have a positive or negative value to a DM who

receives it, unlike in zero-sum games and team problems. An example of such an
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occurrence was discussed in Example 3.1. The electronic mail game from [50] is

a further relevant classic example where equilibria do not converge (although the

information does not converge in total variation in this example). We note that a

somewhat different notion of ϵ-equilibria (a uniform-ϵ equilibrium concept where ϵ-

proximity, with ϵ being uniform for each conditional expected cost/reward given the

private information realization, regardless of how unlikely the realizations are) has

been studied in [32] and [49] for finite games, where it has been shown that total

variation continuity does not hold under this concept.

4.3 Continuity Results for Zero-Sum Games

We have the following theorem.

Theorem 4.3. (i) For a fixed zero-sum game which satisfies Assumptions A1, A4

and A5, the value function is continuous in information structures under total

variation convergence of information structures.

(ii) The value function is not necessarily continuous under weak or setwise conver-

gence of information structures even under Assumptions A2 and A4 and with

a fixed prior.

Proof. (i) By Theorem 2.2, A1, A4, and A5 guarantee that an equilibrium exists

under µ and ν. Assume that µ and ν are such that ∥µ − ν∥TV ≤ ϵ for some ϵ > 0.

Without loss of generality, assume that J∗(g, µ) − J∗(g, ν) ≥ 0 for some game g (a

symmetric argument can be applied in the case where J∗(g, µ)− J∗(g, ν) ≤ 0). Then

we have the following:

J∗(g, µ)− J∗(g, ν)
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=

∫
c(x, γ1,∗

µ (y1), γ2,∗
µ (y2))µ(dx, dy1, dy2)−

∫
c(x, γ1,∗

ν (y1), γ2,∗
ν (y2))ν(dx, dy1, dy2)

≤
∫

c(x, γ1,∗
ν (y1), γ2,∗

µ (y2))µ(dx, dy1, dy2)−
∫

c(x, γ1,∗
ν (y1), γ2,∗

µ (y2))ν(dx, dy1, dy2).

The inequality comes from perturbing the minimizer’s equilibrium strategy in the

first term, making the expected cost larger, and perturbing the maximizer’s equilib-

rium strategy in the second term, making the expected cost smaller. Then, viewing

γ1,∗
ν and γ2,∗

µ as fixed, we can view c(·, γ1,∗
ν (·), γ2,∗

µ (·)) as a measurable and bounded

function from X× Y1 × Y2 → R. Let M ∈ R≥0 be such that ∥c∥∞ ≤ M . We have:

∫
c(x, γ1,∗

ν (y1), γ2,∗
µ (y2))µ(dx, dy1, dy2)−

∫
c(x, γ1,∗

ν (y1), γ2,∗
µ (y2))ν(dx, dy1, dy2)

≤ M∥µ− ν∥TV ≤ Mϵ.

Thus, if ∥µn − µ∥TV → 0, then |J∗(g, µ)− J∗(g, ν)| → 0.

(ii) For stochastic control problems (which can be viewed as single-DM games), [66,

Sections 3.1.1. and 3.2.1] establish that value functions are not necessarily continuous

under weak or setwise convergence. These counterexamples directly extend to the

zero-sum game case: one can extend such a single-DM game to a two-DM zero-sum

game where the action of one DM has no impact on the cost: e.g. |U2| = 1 so that

DM 2 has no freedom to select a control action and the information structure of DM

1 changes.

We now study weak and setwise convergences of information structures. First, we

make the following definitions.

Definition 4.4. For a fixed prior ζ, a sequence of information structures {µ}∞k=1 is a

maximizer-garbling (or a minimizer-degarbling) sequence if for every j ∈ {1, . . . ,∞}
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there exist kernels κ1
j and κ2

j such that κ1
jµj+1 = κ2

jµj.

Definition 4.5. For a fixed prior ζ, a sequence of information structures {µ}∞k=1 is a

minimizer-garbling (or a maximizer-degarbling) sequence if for every j ∈ {1, . . . ,∞}

there exist kernels κ1
j and κ2

j such that κ2
jµj+1 = κ1

jµj.

We note that, under appropriate assumptions, following the results of Lemma

3.1, the value function for any zero-sum game will be monotonically decreasing for a

maximizer-garbling sequence and monotonically increasing for a minimizer-garbling

sequence. For the purpose of illustration, we present examples of maximizer-garbling

sequences.

Example 4.1 (Maximizer-Garbling Sequences). Consider two DMs in a zero-sum

game with state space X = [0, 1] endowed with the uniform distribution as ζ. Let

Y1 = Y2 = R.

(i) For m ∈ Z≥0, define µm by the following independent measurement channels

for the DMs: DM 1 receives measurement y1, which is drawn randomly from

a Gaussian distribution with mean x and variance 1 + 1
m

; DM 2 receives mea-

surement y2 which is drawn randomly from a Gaussian distribution with mean

x and variance 1 − 1
m+1

. Since Gaussian distributions with higher variances

are garblings of Gaussian distributions with lower variances, this sequence is a

maximizer-garbling sequence, since for any i ∈ Z≥0, the maximizer’s channel

under µi+1 is a garbling of his channel under µi, while the minimizer’s channel

under µi is a garbling of her channel under µi+1. Furthermore, this sequence

converges weakly to the information structure in which both DMs’ channels have

variance 1. One can also construct such an example where we have y1 = x+v1m,
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and if the variance of v1m decreases to zero, we will have weak convergence to a

point distribution.

(ii) Another example involves noiseless but quantized measurement channels. Let

y2 = 1 be a constant measurement for DM 2, and y1 = Q1
m(x) for DM 1, where

Q1
m is a uniform quantization of [0, 1] into 2m bins. In this case, the sequence

of information structures is a maximizer-garbling sequence (as the channels for

the minimizer are successive refinements as m increases, and the maximizer’s

information is constant) and the weak limit consists of the fully informative

channel for DM 2: Q1(dy1|x) = δx(dy
1).

We emphasize that not all information structures can be related to each other as

either minimizer or maximizer-garbling sequences.

Theorem 4.4. Let Assumptions A1, A4, and A7 hold and the prior be fixed. Let µm

be a sequence of information structures converging weakly to information structure

µ. If the sequence is a maximizer-garbling, then the value function is lower semi-

continuous. If the sequence is a minimizer-garbling, then the value function is upper

semicontinuous.

Proof. Consider a minimizer-garbling sequence. By A2, our cost function is bounded;

let M ∈ R≥0 such that ∥c∥∞ = M . Let µYj be the marginal of µ on its (j + 1)th

component. Let γj be an arbitrary policy for DM j. We note that every Polish space

is second countable (i.e. has a countable basis), since it is separable and metrizable.

Thus, every standard Borel space is second countable. Then, by Lusin’s theorem,

using the fact that Uj is convex by assumption, we have that for any ϵ > 0, there

exists a continuous function f j : Yj → Uj such that µYj({yj : f j(yj) ̸= γj(yj)}) < ϵ.
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Letting B2 := {y2 : f 2(y2) ̸= γ2(y2)}, we have:

∫
X×Y1×Y2

c(x, γ1(y1), γ2(y2))µ(dx, dy1, dy2)−Mϵ

<

∫
X×Y1×Y2

c(x, γ1(y1), f 2(y2))µ(dx, dy1, dy2)

<

∫
X×Y1×Y2

c(x, γ1(y1), γ2(y2))µ(dx, dy1, dy2) +Mϵ (4.3)

This holds since the cost function is bounded by [−M,M ] and so the expected

cost on X × Bi × Y−i is bounded by [−Mϵ,Mϵ]. Denote by Γj
C the policy space for

DM j in which the DM’s policy is continuous from Yj to Uj. We note that if DM 1’s

strategy is fixed, DM 2 receives the same cost if supremizing over policies in Γ2 or Γ2
C :

that the value must be greater when Γ2 is used is a consequence of Γ2
C ⊂ Γ2. That the

value must be greater than or equal to that under Γ2 when Γ2
C is used is a consequence

of (4.3), since the policies, as well as ϵ, were arbitrary. The same reasoning applies in

the reverse case.

We now observe that, for any m ∈ Z>0:

inf
γ1∈Γ1

C

sup
γ2∈Γ2

∫
c(x, γ1(y1), γ2(y2))µm(dx, dy

1, dy2)

= inf
γ1∈Γ1

sup
γ2∈Γ2

∫
c(x, γ1(y1), γ2(y2))µm(dx, dy

1, dy2). (4.4)

To prove this, let γ1,∗ and γ2,∗ be the equilibrium policies under µm. Then, fol-

lowing the discussion on Lusin’s theorem, for any ϵ > 0, there exists a continuous

policy γ̂1 ∈ Γ1
C , which is equal to γ1,∗ except on a set B1 such that µm,Y1(B1) = ϵ.

If DM 1 plays this strategy, then for any strategy that DM 2 selects in Γ2, the value

for the game will increase by at most 2Mϵ. This is because, if DM 2’s arbitrary new
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strategy γ̂2 results in a change in performance on A := {X×B1×Y2}, the maximum

possible difference in expected cost on this set is 2Mϵ. If DM 2’s new strategy results

in better performance on C := {X × (Y1 \ B1) × Y2}, then the difference between

playing γ̂2 and γ2,∗ is at most 2Mϵ, because γ̂1 is identical to γ1,∗ on this set, so

a larger difference would necessarily contradict the fact that γ2,∗ is DM 2’s best re-

sponse to γ1,∗ under µ (since DM 2 could lose at most 2Mϵ on set A while employing

this strategy against γ1,∗ instead of playing γ2,∗, and so by gaining more than 2Mϵ

on C, DM 2 would guarantee better expected performance playing γ̂2 against γ1,∗

over playing γ2,∗, violating the Nash-equilibrium condition). Thus, since DM 1 has

a continuous strategy that guarantees a worst possible outcome of a 2Mϵ increase in

expected cost, we know that:

inf
γ1∈Γ1

C

sup
γ2∈Γ2

∫
c(x, γ1(y1), γ2(y2))µm(dx, dy

1, dy2)

≤ inf
γ1∈Γ1

sup
γ2∈Γ2

∫
c(x, γ1(y1), γ2(y2))µm(dx, dy

1, dy2)− 2Mϵ

We also know that since Γ1
C ⊂ Γ1, we have:

inf
γ1∈Γ1

C

sup
γ2∈Γ2

∫
c(x, γ1(y1), γ2(y2))µm(dx, dy

1, dy2)

≥ inf
γ1∈Γ1

sup
γ2∈Γ2

∫
c(x, γ1(y1), γ2(y2))µm(dx, dy

1, dy2).

Since ϵ was arbitrary, (4.4) follows. Applying a similar argument again, it follows

that:

inf
γ1∈Γ1

C

sup
γ2∈Γ2

C

∫
c(x, γ1(y1), γ2(y2))µm(dx, dy

1, dy2)
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= inf
γ1∈Γ1

sup
γ2∈Γ2

∫
c(x, γ1(y1), γ2(y2))µm(dx, dy

1, dy2). (4.5)

Now take arbitrary large M ∈ Z≥0. Then, we have:

inf
γ1∈Γ1

sup
γ2∈Γ2

∫
c(x, γ1(y1), γ2(y2))µM(dx, dy1, dy2)

= inf
γ1∈Γ1

C

sup
γ2∈Γ2

C

∫
c(x, γ1(y1), γ2(y2))µM(dx, dy1, dy2)

≤ inf
γ1∈Γ1

C

sup
γ2∈Γ2

C

lim sup
M→∞

∫
c(x, γ1(y1), γ2(y2))µM(dx, dy1, dy2) (4.6)

= inf
γ1∈Γ1

C

sup
γ2∈Γ2

C

∫
c(x, γ1(y1), γ2(y2))µ(dx, dy1, dy2)

= inf
γ1∈Γ1

sup
γ2∈Γ2

∫
c(x, γ1(y1), γ2(y2))µ(dx, dy1, dy2)

The first and final equalities follow from (4.5). The inequality (4.6) follows from

the fact that the value function will be monotonically increasing in M : this is because

the sequence of information structures is a minimizer-garbling sequence1. The second

equality follows from the weak convergence of {µ}m to µ; since the prior is fixed, weak

convergence is equivalent to w-s convergence in this setting, so continuity of c in x is

not required, and thus A1 and A5 are sufficient for this equality to hold. Since the

above holds for all M ∈ Z≥0, it will also hold in the limit of M , and thus:

lim sup
m→∞

inf
γ1∈Γ1

sup
γ2∈Γ2

∫
c(x, γ1(y1), γ2(y2))µm(dx, dy

1, dy2)

≤ inf
γ1∈Γ1

sup
γ2∈Γ2

∫
c(x, γ1(y1), γ2(y2))µ(dx, dy1, dy2).

1It is achieving this inequality which requires the sequence of information structures to be a
minimizer-garbling sequence, rather than an arbitrary weakly converging sequence of information
structures.
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Thus, the value function is upper semicontinuous. A similar proof applies for

maximizer-garbling sequences.

We now consider setwise convergence of information structures; the proof follows

closely that of Theorem 4.4.

Theorem 4.5. Consider a fixed prior and let Assumptions A1, A4, and A5 hold.

Let µm be a sequence of information structures converging setwise to information

structure µ. If the sequence is a maximizer-garbling, then the value function is lower

semicontinuous. If the sequence is a minimizer-garbling, then the value function is

upper semicontinuous.

Proof. Consider a maximizer-garbling sequence. We have that:

lim inf
m→∞

inf
γ1∈Γ1

sup
γ2∈Γ2

∫
c(x, γ1(y1), γ2(y2))µm(dx, dy

1, dy2)

≥ sup
γ2∈Γ2

lim inf
m→∞

inf
γ1∈Γ1

∫
c(x, γ1(y1), γ2(y2))µm(dx, dy

1, dy2).

The inequality above follows from interchanging the limit inferior and the supremum.

Following a similar reasoning as the proof of Theorem 4.4, we have the following for

any fixed policy γ2 ∈ Γ2:

lim inf
m→∞

inf
γ1∈Γ1

∫
c(x, γ1(y1), γ2(y2))µm(dx, dy

1, dy2)

≥ inf
γ1∈Γ1

∫
c(x, γ1(y1), γ2(y2))µ(dx, dy1, dy2).

This gives us

lim inf
m→∞

inf
γ1∈Γ1

sup
γ2∈Γ2

∫
c(x, γ1(y1), γ2(y2))µm(dx, dy

1, dy2)
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≥ sup
γ2∈Γ2

inf
γ1∈Γ1

∫
c(x, γ1(y1), γ2(y2))µ(dx, dy1, dy2).

Thus, the value function is lower semicontinuous. A similar proof can show the result

for minimizer-garbling sequences.

We can also show that when the DM channels are fixed, independent and total-

variation continuous, the value function is continuous under weak convergence of the

priors. This generalizes a single-DM result from [36].

Theorem 4.6. Under Assumptions A2, A4, and A6, the value function is continuous

under weak convergence of the priors.

Proof. Let ζm be a sequence of priors on X converging weakly to ζ. Following the

same reasoning as in Theorem 4.3, if for some j, J∗(g,Q1ζQ2) − J∗(g,Q1ζjQ
2) ≥ 0,

then we have:

J∗(g,Q1ζQ2)− J∗(g,Q1ζjQ
2)

≤
∫

c(x, γ1,∗
j (y1), γ2,∗(y2))Q1(dy1|x)Q2(dy2|x)ζ(dx)

−
∫

c(x, γ1,∗
j (y1), γ2,∗(y2))Q1(dy1|x)Q2(dy2|x)ζj(dx)

=

∫
(ζ − ζj)(dx)

∫
c(x, γ1,∗

j (y1), γ2,∗(y2))Q1(dy1|x)Q2(dy2|x).

Considering the case J∗(g,Q1ζQ2)− J∗(g,Q1ζjQ
2) ≤ 0 also as above we get

|J∗(g,Q1ζQ2)− J∗(g,Q1ζmQ
2)|

≤max{|
∫

(ζ − ζm)(dx)

∫
c(x, γ1,∗

m (y1), γ2,∗(y2))Q1(dy1|x)Q2(dy2|x)|,

|
∫

(ζ − ζm)(dx)

∫
c(x, γ1,∗(y1), γ2,∗

m (y2))Q1(dy1|x)Q2(dy2|x)|}. (4.7)
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Then, following the proof of [36, Theorem 2.5], since the channels are continuous in

total variation, ∫
c(x, γ1,∗

m (y1), γ2,∗(y2))Q1(dy1|x)Q2(dy2|x),

and ∫
c(x, γ1,∗(y1), γ2,∗

m (y2))Q1(dy1|x)Q2(dy2|x),

are equicontinuous families of functions. Using this fact and that ζm converges weakly

to ζ, by [20, Corollary 11.3.4] it follows that both terms in (4.7) converge to zero, and

so |J∗(g,Q1ζQ2)− J∗(g,Q1ζQ2)| → 0.

4.4 Continuity Results for Stochastic Teams

Now we evaluate the regularity properties of the value function for team problems in

information structures under total variation, weak, and setwise convergence.

Theorem 4.7. Consider an n decision-maker team and let Assumptions A1, A3, A4

and A5 hold for a fixed team problem. Then the value function is continuous under

total variation convergence of information structures.

Proof. An optimal solution exists for any given information structure under the as-

sumptions [64, Section 5]. Let µ and ν be two information structures, and let γi,∗
µ

and γi,∗
ν denote DM i’s individual strategy as part of the team-optimal strategies γ̄∗

µ,

γ̄∗
ν under each respective information structure. Let the cost function be bounded in

absolute value by M .

Without loss of generality, assume J∗(c, µ)− J∗(c, ν) ≥ 0. Then

J∗(c, µ)− J∗(c, ν) =

∫
c(x, γ1,∗

µ (y1), . . . , γn,∗
µ (yn))µ(dx, dy1, . . . , dyn)
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−
∫

c(x, γ1,∗
ν (y1), . . . , γn,∗

ν (yn))ν(dx, dy1, . . . , dyn)

≤
∫

c(x, γ1,∗
ν (y1), . . . , γn,∗

ν (yn))µ(dx, dy1, . . . , dyn)

−
∫

c(x, γ1,∗
ν (y1), . . . , γn,∗

ν (yn))ν(dx, dy1, . . . , dyn) ≤ M∥µ− ν∥TV .

Where the first inequality holds by perturbing the strategy under µ to be γ̄∗
ν , rather

than the team-optimal policy γ̄∗
µ, and the second inequality holds by the definition of

total variation distance. The result follows.

Theorem 4.8. If DM action spaces are compact and Assumptions A2, A3, A4 and

A6 hold, the value function is continuous under weak convergence of the priors.

Proof. Let ζm be a sequence of priors on X converging weakly to ζ. Without loss of

generality we assume that J∗(g,Q1 . . . Qnζ) − J∗(g,Q1 . . . Qnζm) ≥ 0 for some game

g. Following the same procedure as in Theorem 4.7, we get

J∗(g,Q1 . . . Qnζ)− J∗(g,Q1 . . . Qnζm)

≤
∫

(ζ − ζm)(dx)

∫
c(x, γ1,∗

m (y1), . . . , γn,∗
m (yn))Q1(dy1|x) . . . Qn(dyn|x).

Continuing as in the proof of Theorem 4.6, using equicontinuity, the result follows.

Theorem 4.9. Assume Assumptions A1, A3, A4, A5, and A7 hold. Let µm be a

sequence of information structures converging weakly to an information structure µ.

If the prior is not fixed, then we also impose continuity in x (under A2). Under these

conditions the value function is upper semicontinuous in µ under weak convergence.

Proof. Let Γ̄ = Γ1×· · ·×Γn. Let µYj be the marginal of µ on its (j+1)th component.

Let γj be an arbitrary policy for DM j. The action spaces for DMs are convex by
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Assumption A4. Let M = ∥c∥∞. Then, by Lusin’s theorem, for any ϵ > 0, there

exists a continuous function f j : Yj → Uj such that µYj({yj : f j(yj) ̸= γj(yj)}) < ϵ.

Letting Bj denote the set Bj = {yj : f j(yj) ̸= γj(yj)}, and proceeding with this

for j = 1, . . . , n, we have:

∫
c(x, f 1(y1), . . . , fn(yn))µ(dx, dy1, . . . , dyn)

<

∫
c(x, γ1(y1), . . . , γn(yn))µ(dx, dy1, . . . , dyn) + nMϵ.

Denote by Γj
C the policy space for DM j in which the DM’s policy is continuous

from Yj to Uj. By the above, it follows that the value for a game will be the same if

each DM uses Γ or ΓC . Thus, applying the fact that µm converges weakly to µ:

lim sup
m→∞

inf
γ̄∈Γ̄

∫
c(x, γ1(y1), . . . , γn(yn))µm(dx, dy

1, . . . , dyn)

= lim sup
m→∞

inf
γ̄C∈Γ̄C

∫
c(x, γ1

C(y
1), . . . , γn

C(y
n))µm(dx, dy

1, . . . , dyn)

≤ inf
γ̄C∈Γ̄C

lim sup
m→∞

∫
c(x, γ1

C(y
1), . . . , γn

C(y
n))µm(dx, dy

1, . . . , dyn)

= inf
γ̄C∈Γ̄C

∫
c(x, γ1

C(y
1), . . . , γn

C(y
n))µ(dx, dy1, . . . , dyn)

= inf
γ̄∈Γ̄

∫
c(x, γ1(y1), . . . , γn(yn))µ(dx, dy1, . . . , dyn).

We note that if the prior is fixed, in the inequality above we do not need continuity

of c in x since weak convergence of a product measure with a fixed marginal is

equivalent to w-s convergence of the joint measure. If the prior is not fixed, then we

impose continuity in x also under A2 and the inequality holds.

Following a similar argument, without Lusin’s theorem, we have the following.
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Theorem 4.10. Assume Assumptions A1, A3, A4 and A5 hold. Let µm be a sequence

of information structures converging setwise to an information structure µ. Then the

value function is upper semicontinuous in µ under setwise convergence.

Proof. By interchanging the limit superior and the infimum, and then applying the

fact that {µm} → µ setwise, we get:

lim sup
m→∞

inf
γ̄∈Γ̄

∫
c(x, γ1(y1), . . . , γn(yn))µm(dx, dy

1, . . . , dyn)

≤ inf
γ̄∈Γ̄

lim sup
m→∞

∫
c(x, γ1(y1), . . . , γn(yn))µm(dx, dy

1, . . . , dyn)

= inf
γ̄∈Γ̄

∫
c(x, γ1(y1), . . . , γn(yn))µ(dx, dy1, . . . , dyn).

4.5 Continuity Results for General Games

While we have shown that zero-sum games and team problems both exhibit continuity

under total variation convergence of information structures for games with measurable

and bounded cost functions, here we present a counterexample that reveals this is not

true for general non-zero-sum games.

Example 4.2. Consider a two-DM game with state space X = [−1, 1] endowed with

the continuous uniform distribution as ζ. Let Y1 = {1, 2, 3} and Y2 = {0}, and

U1 = U2 = [−1, 1]. For m ∈ Z≥1, define information structure µm by channels Q1
m

and Q2
m for DMs 1 and 2 respectively, where Q1

m is a quantizer with three bins:
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y1m =


1, x ∈ [−1,−1

2
− 1

8m
)

2, x ∈ [−1
2
− 1

8m
, 1
2
+ 1

4m
]

3, x ∈ (1
2
+ 1

4m
, 1]

and Q2
m returns y2 = 0 for all x ∈ X.

Following [66, Theorem 5.7], since our information structure is defined by quantiz-

ers that converge setwise at input ζ, {µm} → µ in total variation, where µ is defined

by the quantizer for DM 1 which sorts x into the bins [−1,−1/2), [−1/2, 1/2], and

(1/2, 1], and DM 2 has the same channel that always returns y2 = 0.

Now we define the following cost functions for the DMs:

c1(x, u1, u2) = (x− u1)2 − (u2)2, c2(x, u1, u2) =


(u2)2, u1 = 0

(u2 − 1)2, u1 ̸= 0

For each m, DM 1’s optimal strategy is to minimize (x − u1)2, and thus his optimal

policy is to play u1 = Eµn [x|y1]. Due to the asymmetry of DM 1’s measurement

channel, u1 ̸= 0 ∀m. Thus, DM 2’s optimal strategy is to play u2 = 1, and her

expected cost is 0.

However, under µ, DM 1 will play 0 with probability 1/2. Thus, DM 2’s optimal

strategy is to play u2 = 1/2, and her expected cost is 1/4. Thus, the value function

for DM 2 is not continuous under total variation convergence of the information

structure.

Going one step further, we can introduce a third DM with cost function c3 whose

cost is A when DM 2 plays u2 = 0, and −A otherwise, for some A ∈ R>0. For this
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DM, the difference in expected value between µn and µ is 2A for every n, which is

the maximum possible performance difference given the bounds of the cost function.

Thus, for any ϵ > 0, there exists an m̃ such that ∥µm̃ − µ∥TV < ϵ, while the value

distance for DM 3 between µm̃ and µ is 2A = 2∥c3∥∞. It follows that total variation

distance cannot be used to usefully bound performance change for general games.

We conclude that general non-zero-sum games do not necessarily exhibit continuity

under total variation, weak, or setwise convergence of information structures for games

with measurable and bounded cost functions (as total variation is a stronger notion

of convergence than both weak and setwise convergence).



76

Chapter 5

Conclusions

5.1 Summary

In this thesis we investigated properties of information structures in stochastic games.

In particular, we focused on the comparison of information structures and continuity

of the equilibrium value when perturbing the information structure.

In Chapter 2, we presented conditions for the existence of equilibria in zero-sum

games with incomplete information in standard Borel measurement and action spaces.

These results were closely related to existing results in the literature, although derived

independently.

In Chapter 3, we presented an ordering of information structures for a broad class

of zero-sum Bayesian games with incomplete information in standard Borel spaces,

demonstrating necessary and sufficient conditions for an information structure to be

“better” than another. We also provided a supporting result on a partial converse to

Blackwell’s ordering of information structures in this general setting.
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In Chapter 4, we presented continuity properties of value functions and equilib-

rium solutions in zero-sum, team, and general game problems with respect to infor-

mation structures. It was shown that the value function for both zero-sum games

and team problems is continuous under total variation convergence of information

structures. In both cases, the change in expected value when switching between two

information structures is bounded above by the product of the total variation dis-

tance and the L∞ norm of the cost function. For zero-sum games, the value function

is upper semicontinuous for minimizer-garbling sequences of information structures,

and lower semicontinuous for sequences of maximizer-garbling information structures

under weak (if the cost function is continuous and bounded and the action spaces

are convex) or setwise (if the cost function is measurable and bounded) convergence.

For team problems, the value function is upper semicontinuous under setwise conver-

gence for measurable and bounded cost functions, and upper semicontinuous under

weak convergence for bounded and continuous cost functions when the players’ action

spaces are convex. A counterexample revealed players in general non-zero-sum games

may not have value functions that are continuous under total variation convergence

of information structures, even when the cost functions are bounded.

5.2 Future Work

One possible direction for future research is to investigate the topics presented here

in greater depth for dynamic games. For regularity problems, while we studied static

games and teams in this thesis, since it is known that under absolute continuity condi-

tions there is an isomorphism relationship between equilibrium solutions to dynamic

teams/games and their static reductions (which turns out to be policy independent)
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[53], the results also apply to such dynamic games with absolutely continuous infor-

mation structures. Dynamic problems which do not admit static reductions may be

worth investigating in more detail in this context.

Another problem is characterizing properties of games in which additional in-

formation cannot hurt decision-makers. Sufficient conditions were provided in [9],

however the authors demonstrate the results do not provide necessary conditions.

In a similar vein, it may also be interesting to investigate sufficient conditions for

a broad class of general games to demonstrate continuity in information structures

under various notions of convergence.

Finally, a promising problem is to generalize the equilibrium and comparison re-

sults of Chapters 2 and 3 to team-against-team zero-sum games in standard Borel

spaces, which would strictly generalize existing results for both zero-sum games and

team problems.
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