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On Optimal Coding of Non-Linear
Dynamical Systems

Christoph Kawan and Serdar Yüksel , Member, IEEE

Abstract— We consider the problem of zero-delay coding of a
dynamical system over a discrete noiseless channel under three
estimation criteria concerned with the low-distortion regime.
For these three criteria, formulated stochastically in terms of a
probability distribution for the initial state, we characterize the
smallest channel capacities above which the estimation objec-
tives can be achieved. The results establish further connections
between topological and metric entropies of dynamical systems
and information theory.

Index Terms— Source coding, state estimation, non-linear
systems, topological entropy, metric entropy, dynamical systems.
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I. INTRODUCTION

IN THIS paper, we develop further connections between the
ergodic theory of dynamical systems and information the-

ory, in the context of zero-delay coding and state estimation for
non-linear dynamical systems, under three different criteria.
In the following, we first introduce the problems considered
in the paper, and present a comprehensive literature review.

A. The Problem

Let f : X → X be a homeomorphism (a continuous map
with a continuous inverse) on a compact metric space (X, d).
We consider the dynamical system generated by f , i.e.,

xt+1 = f (xt ), x0 ∈ X, t ∈ Z.

The space X is endowed with a Borel probability measure π0
which describes the uncertainty in the initial state.

Suppose that a sensor measures the state at discrete sam-
pling times, and a coder translates the measurements into
symbols from a finite coding alphabet M and sends this
information over a noiseless digital channel to an estimator.
The input signal sent at time t through the channel is denoted
by qt . At the other end of the channel, the estimator generates
an estimate x̂t ∈ X of xt , using the information it has received

Manuscript received November 22, 2017; revised March 30, 2018; accepted
May 24, 2018. Date of publication June 5, 2018; date of current version
September 13, 2018. This work was supported by the Natural Sciences and
Engineering Research Council of Canada.

C. Kawan is with the Faculty of Computer Science and Mathematics,
University of Passau, 94032 Passau, Germany (e-mail: christoph.kawan@
uni-passau.de).

S. Yüksel is with the Department of Mathematics and Statistics,
Queen’s University, Kingston, ON K7L 3N6, Canada (e-mail: yuksel@
mast.queensu.ca).

Communicated by N. Merhav, Associate Editor for Shannon Theory.
Digital Object Identifier 10.1109/TIT.2018.2844211

through the channel up to time t . We consider arbitrary
(but causal / zero-delay) coding and estimation policies. That
is, qt is generated by a (measurable) map

qt = δt (x0, x1, . . . , xt ), δt : Xt+1 → M, (1)

and the estimator output at time t is given by a map

x̂t = γt (q0, q1, . . . , qt ), γt : Mt+1 → X. (2)

Throughout the paper, we assume that the channel is noiseless
with finite input alphabet M. Hence, its capacity is given by

C = log2 |M|.
Our aim is to characterize the smallest capacity C0 above

which one of the following estimation objectives can be
achieved for every ε > 0.

(E1) Eventual almost sure estimation: There exists
T = T (ε) ∈ N s.t.

P(d(xt , x̂t ) ≤ ε) = 1 for all t ≥ T .

(E2) Asymptotic almost sure estimation:

P
(
lim sup

t→∞
d(xt , x̂t ) ≤ ε

) = 1.

(E3) Asymptotic estimation in expectation:

lim sup
t→∞

E[d(xt , x̂t )
p] ≤ ε, p > 0.

The smallest channel capacity above which one of these
objectives can be achieved for a fixed ε > 0 will be denoted
by Cε . We are particularly interested in

C0 := lim
ε↓0

Cε.

In most of our results we will additionally assume that π0
is f -invariant, i.e., π0 = π0 ◦ f −1. Sometimes we will need
the stronger assumption that π0 is ergodic.

Given an encoding and decoding policy, the estimate x̂t

at time t is determined by the initial state x0, e.g., x̂1 =
γ1(δ0(x0), δ1(x0, f (x0))). To express this, we sometimes write
x̂t (x0). In terms of the map f and the measure π0, the estima-
tion criteria described above can be reformulated as follows.

Eventual almost sure estimation:

π0({x0 ∈ X : d( f t (x0), x̂t (x0)) ≤ ε}) = 1 for all t ≥ T . (3)

Asymptotic almost sure estimation:

π0({x0 ∈ X : lim sup
t→∞

d( f t (x0), x̂t (x0)) ≤ ε}) = 1. (4)
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Asymptotic estimation in expectation:

lim sup
t→∞

∫

X
π0(dx0)d( f t (x0), x̂t (x0))

p ≤ ε. (5)

It is easy to see that (3) implies both (4) and (5), and in
turn, (4) implies (5) due to the compactness of X . We will
see that this order is monotonically reflected in the conditions
required on the information transmission rates for the criteria
to be satisfied.

B. Literature Review

The results developed and the setup considered in this paper
are related to the following three general areas.

1) Relations Between Dynamical Systems, Ergodic The-
ory, and Information Theory: There has been a mutually
beneficial relation between the ergodic theory of dynami-
cal systems and information theory (see, e.g., [4], [45] for
comprehensive reviews). Information-theoretic tools have been
very effective in answering many questions on the behav-
ior of dynamical systems, for example the metric (also
known as Kolmogorov-Sinai or measure-theoretic) entropy
is crucial in the celebrated Shannon-McMillan-Breiman the-
orem as well as two important representation theorems:
Ornstein’s (isomorphism) theorem and the Krieger’s genera-
tor theorem [4], [6], [14], [36], [37]. The concept of sliding
block encoding [7] can be viewed as a stationary encoding
of a dynamical system defined by the shift process, lead-
ing to fundamental results on the existence of stationary
codes which perform as good as the limit performance of
a sequence of optimal block codes. For topological dynam-
ical systems, the theory of entropy structures and symbolic
extensions answers the question to which extent a system can
be represented by a symbolic system (under preservation of
some topological structure), cf. [4] for an overview of this
theory. Entropy concepts, as is well-known in the information
theory community, have extensive operational practical usage
in identifying fundamental limits on source and channel coding
for a very large class of sources [45]. We refer the reader
to [7] and [8] for further relations and discussions which also
include information-theoretic results for processes which are
not necessarily stationary.

In this paper, we will provide further connections between
the ergodic theory of dynamical systems and information
theory by answering the problems posed in the previous
section and relating the answers to the concepts of either
metric or topological entropy. As we note later in the paper,
some of the results presented here can be seen in analogy
to certain fundamental results of ergodic theory about repre-
senting and approximating a dynamical system by a symbolic
system, i.e., a subshift of a full shift on n symbols.

2) Zero-Delay Coding: In our setup, we will impose causal-
ity as a restriction in coding and decoding. Structural results
for a finite horizon coding problem of a Markov source have
been developed in a number of important papers, including the
classic works by Teneketzis [48], Walrand and Varaiya [50],
and Witsenhausen [51]. The findings in [50] and [51] have
been generalized to continuous sources in [55] (see also [3]
and [23], where the latter imposes a structure apriori); and the

structural results on optimal fixed-rate coding in [50] and [51]
have been shown to be applicable to setups when one also
allows for variable-length source coding in [10]. Related
work also includes [2], [9], [25], and [52] which have
primarily considered the coding of discrete sources. Refer-
ences [2], [3], [23], [25], and [52] have considered infinite
horizon problems and in particular [52] has established the
optimality of stationary and deterministic policies for finite
aperiodic and irreducible Markov sources. A related lossy
coding procedure was introduced by Neuhoff and Gilbert [33],
called causal source coding, which has a different operational
definition since delays in coding and decoding are allowed
so that efficiencies through entropy coding can be utilized
(though the causality condition is still preserved). We refer
the reader to [11], [12], and [32] for further setups on zero-
delay or causal coding in the multi-user as well as secure
communications contexts. Further discussions on the literature
are available in [2], [10], and [23].

Among those that are most relevant to our paper is [24]
where causal coding under a high rate assumption for
stationary sources and individual sequences was studied.
Linder and Zamir [24], among many other results, estab-
lished asymptotic quantitative relations between the differ-
ential entropy rate and the entropy rate of a uniformly and
memorylessly quantized stationary process, and through this
analysis established the near optimality of uniform quantizers
in the low distortion regime. This result does not apply to
the system we consider, since this system has a differential
entropy rate of −∞.

3) Networked Control: In networked control, there has been
an interest in identifying limitations on state estimation under
information constraints (see [16], [29], [54]). The results in
this area have typically involved linear systems, and in the
non-linear case the studies have only been on deterministic
systems estimated/controlled over deterministic channels, with
few exceptions. State estimation over discrete noiseless chan-
nels was studied in [26] and [29] for linear discrete-time sys-
tems in a stochastic framework with the objective to bound the
estimation error in probability. In these works, the inequality

C ≥ H (A) :=
∑

ζ∈σ(A)

max{0, nζ log |ζ|} (6)

for the channel capacity C was obtained as a necessary
and almost sufficient condition. Here A is the dynami-
cal matrix of the system and the summation is over its
eigenvalues ζ with multiplicities nζ. This result is also in
agreement with related data-rate theorem bounds established
earlier in the literature [31], [47], [53]. Some relevant studies
that have considered non-linear systems are the following.
The papers [22], [27], and [40] studied state estimation
for non-linear deterministic systems and noise-free channels.
Liberzon and Mitra [22] characterized the critical data rate
C0 for exponential state estimation with a given exponent
α ≥ 0 for a continuous-time system on a compact subset
K of its state space. As a measure for C0, they introduced
a quantity called estimation entropy hest(α, K ), which equals
the topological entropy on K in case α = 0, but for α > 0
is no longer a purely topological quantity. The paper [17]
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provided a lower bound on hest(α, K ) in terms of Lyapunov
exponents under the assumption that the system preserves a
smooth measure. Matveev and Pogromsky [27] studied three
estimation objectives of increasing strength for discrete-time
non-linear systems. For the weakest one, the smallest bit rate
was shown to be equal to the topological entropy. For the other
ones, general upper and lower bounds were obtained which
can be computed directly in terms of the linearized right-hand
side of the equation generating the system. A further related
paper is [44], which studies state estimation for a class of
non-linear systems over noise-free digital channels. Here also
connections with topological entropy are established.

In recent work [18], [19], we considered the state estimation
problem for non-linear systems driven by noise and established
negative bounds due to the presence of noise by viewing the
noisy system as an infinite-dimensional random dynamical
system subjected to the shift operation. In this paper, we relax
the presence of noise, and are able to obtain positive results
involving both the metric and the topological entropy.

A related problem is the control of non-linear systems
over communication channels. This problem has been stud-
ied in few publications, and mainly for deterministic sys-
tems and/or deterministic channels. Recently, [56] studied
stochastic stability properties for a more general class of sto-
chastic non-linear systems building on information-theoretic
bounds and Markov-chain-theoretic constructions, however
these bounds do not distinguish between the unstable and
stable components of the tangent space associated with a
dynamical non-linear system [18, Sec. 4], except for the
linear system case. Our paper here provides such a refinement,
but only for estimation problems and in the low-distortion
regime.

4) Contributions: In view of this literature review, we make
the following contributions. We establish that for (E1),
the topological entropy on the support of the measure π0
essentially provides upper and lower bounds, and for (E3) the
metric entropy essentially provides the relevant figure of merit
for both upper and lower bounds. For (E2), the lower bound
is provided by the metric entropy, whereas the upper bound
can be given by either the topological entropy or by the metric
entropy depending on the properties of the dynamical system.
Through the analysis, we provide further connections between
information theory and dynamical systems by identifying the
operational usage of entropy concepts for three different esti-
mation criteria. We obtain explicit bounds on the performance
of optimal zero-delay codes; and regarding the contributions in
networked control, we provide refined upper and lower bounds
when compared with the existing literature.

5) Organization of the Paper: In Section II, we introduce
notation and recall relevant entropy concepts and related
results from ergodic theory. Sections III, IV and V contain
our main results on lower and upper estimates of the channel
capacity for the estimation objectives (E1)–(E3). Section VI
provides a discussion of our results and relates them to similar
results in the literature. In Section VII, we formulate some
corollaries for systems in the differentiable category, relating
the critical channel capacities to Lyapunov exponents, and
we also present several examples. Finally, some fundamental

theorems in ergodic theory used in our proofs are collected in
the appendix, Section VII.

II. NOTATION AND REVIEW OF RELEVANT RESULTS

FROM DYNAMICAL SYSTEMS

Throughout the paper, all logarithms are taken to the base 2.
We define log ∞ := ∞. By |A| we denote the cardinality of
a set A. If (X, d) is a metric space and ∅ 
= A ⊂ X , we write
diamA := sup{d(x, y) : x, y ∈ A} for the diameter of A.
If (xt)t∈Z+ is a sequence, we write x[0,t ] = (x0, x1, . . . , xt )
for any t ≥ 0.

Let f : X → X be a uniformly continuous map on a metric
space (X, d). We define the iterates of f recursively by

f 0 := idX , f n+1 := f ◦ f n, ∀n ∈ N.

If f is invertible, we additionally put f −n := ( f −1)n for all
n ∈ N.

For n ∈ N and ε > 0, a subset F ⊂ X is said to (n, ε)-span
another subset K ⊂ X provided that for each x ∈ K there is
y ∈ F with d( f i (x), f i (y)) ≤ ε for 0 ≤ i < n. Alternatively,
we can describe this in terms of the metric

dn, f (x, y) := max
0≤i<n

d( f i (x), f i (y)),

which is topologically equivalent to d . Any dn, f -ball of radius
ε > 0 is called a Bowen-ball of order n and radius ε. In these
terms, a set F (n, ε)-spans K if the closed Bowen-balls of
order n and radius ε centered at the points in F form a cover
of K . If K is compact, we write rspan(n, ε; K ) to denote the
minimal cardinality of a set which (n, ε)-spans K , observing
that this number is finite. The topological entropy of f on K
is then defined by

htop( f ; K ) := lim
ε↓0

lim sup
n→∞

1

n
log rspan(n, ε; K ).

By the monotonicity properties of rspan(n, ε; K ), the limit for
ε ↓ 0 can be replaced by the supremum over ε > 0. An alter-
native definition can be given in terms of (n, ε)-separated sets.
A subset E ⊂ X is called (n, ε)-separated if for any x, y ∈ E
with x 
= y one has dn, f (x, y) > ε. Writing rsep(n, ε; K )
for the maximal cardinality of an (n, ε)-separated subset of a
compact set K , one finds that rspan(n, ε; K ) ≤ rsep(n, ε; K ) ≤
rspan(n, ε/2; K ), and hence

htop( f ; K ) = lim
ε↓0

lim sup
n→∞

1

n
log rsep(n, ε; K ).

If X is compact, we also write htop( f ) = htop( f ; X) and call
this number the topological entropy of f .

Now assume that X is compact and μ is an f -invariant
Borel probability measure on X , i.e., μ ◦ f −1 = μ. Let P be
a finite Borel partition of X and put

hμ( f ;P) := lim
n→∞

1

n
Hμ(Pn), Pn :=

n−1∨

i=0

f −iP, (7)

where Hμ(Pn) = − ∑
P∈Pn μ(P) log μ(P) denotes the

entropy of the partition Pn and ∨ is the usual join operation
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for partitions, i.e.,
∨n−1

i=0 f −iP is the partition of X whose
members are the sets

Pi0 ∩ f −1(Pi1 ) ∩ . . . ∩ f −n+1(Pin−1 ), Pi j ∈ P .

The existence of the limit in (7) follows from subadditivity.
The metric entropy of f w.r.t. μ is defined by

hμ( f ) := sup
P

hμ( f ;P),

the supremum taken over all finite Borel partitions P . If μ is
ergodic (w.r.t. f ), i.e.,

f −1(A) = A ⇒ μ(A) ∈ {0, 1},
there is an alternative characterization of hμ( f ) in terms of
(n, ε)-spanning sets, due to Katok [13]. For a fixed δ ∈ (0, 1)
put

rspan(n, ε, δ) := min
{|F | : F (n, ε)-spans a set of

μ-measure ≥ 1 − δ
}
.

Then the metric entropy of f satisfies

hμ( f ) = lim
ε↓0

lim sup
n→∞

1

n
log rspan(n, ε, δ),

and this limit is independent of δ, see [13, Th. 1.1].
Note that both hμ( f ) are htop( f ) are nonnegative quantities,

which can assume the value +∞. They are related by the
variational principle, i.e.,

htop( f ) = sup
μ

hμ( f ),

where the supremum is taken over all f -invariant Borel
probability measures (see [30] for a short proof).

In the rest of the paper, we will assume throughout that the
metric space (X, d) is compact.

III. EVENTUAL ALMOST SURE ESTIMATION

For the estimation objective (E1) we can characterize C0 as
follows.

Theorem 1: Assume that π0 is f -invariant and
htop( f ; suppπ0) < ∞. Then the smallest channel capacity
above which (E1) can be achieved for every ε > 0 satisfies

htop( f ; suppπ0) ≤ C0 ≤ log(1 + �2htop( f ;suppπ0)�).
Proof: To prove the lower bound, assume that for some

ε > 0 the objective is achieved under some coding and
estimation policies over a channel of capacity C = log |M|.
That is, there exists T = T (ε) such that the set

X̃ := {x0 ∈ X : d( f t (x0), x̂t (x0)) ≤ ε, ∀t ≥ T }
has measure one. For a fixed n ∈ N, let En ⊂ suppπ0
be a maximal set with the property that for all x, y ∈ En

with x 
= y we have d( f t (x), f t (y)) > 2ε for some
t ∈ {T, T + 1, . . . , T + n − 1}. Since X̃ is dense in suppπ0,
a slight perturbation of En leads to a subset of X̃ with the same
property and the same cardinality. Hence, we may assume that
En ⊂ X̃ . Furthermore, consider the set

ET +n := {
(x̂0, x̂1, . . . , x̂T +n−1) : x0 ∈ X

}

of all possible (T + n)-strings the estimator can generate in
the first time interval of length T +n. Define a map ζ : En →
ET +n by assigning to each x0 ∈ E the corresponding (T +n)-
string of estimates that is generated when the system starts
in x0. Assuming ζ(x) = ζ(y), we find that for all T ≤ t ≤
T + n − 1,

d( f t (x), f t (y)) ≤ d( f t (x), x̂t ) + d(x̂t , f t (y)) ≤ ε + ε = 2ε,

implying that x = y. Hence, ζ is injective and thus,
|En| ≤ |ET +n | ≤ |M|T+n . Now observe that the set f T (E) ⊂
suppπ0 is a maximal (n, 2ε)-separated set. This implies

C = log |M| ≥ 1

T + n
log rsep(n, 2ε; suppπ0).

Since n and ε were chosen arbitrarily, letting n tend to infinity
and ε to zero, the inequality C ≥ htop( f ; suppπ0) follows.

The upper bound follows by applying the coding and
estimation scheme described in [27, Th. 8] for the system
(suppπ0, f|suppπ0), using that suppπ0 is a compact f -invariant
set. This scheme works as follows. Assume that the channel
alphabet M satisfies

|M| ≥ 1 + �2htop( f ;suppπ0)�,
implying C > htop( f ; suppπ0). Let ε > 0 and fix k ∈ N such
that

1

k
log rspan(k, ε; suppπ0) > C, (8)

which is possible by the definition of htop. Let S be a set which
(k, ε)-spans suppπ0 with |S| = rspan(k, ε; suppπ0). The coder
at time t j := jk computes f k(x jk) and chooses an element
y ∈ S such that d( f t ( f k(x jk)), f t (y)) ≤ ε for 0 ≤ t < k
provided that f k(x jk) ∈ suppπ0. By (8), y can be encoded
and sent over the channel in the forthcoming time interval
of length k. In the case when f k(x jk) /∈ suppπ0, it is not
important what the coder sends. In the first case, at time t j+1,
the estimator has y available and can use f t (y) as an estimate
for x( j+1)k+t . In this way, the estimation objective is achieved
for all x0 ∈ suppπ0 and t ≥ k. Hence,

P(d(xt , x̂t ) ≤ ε) = π 0
({

x0 ∈ X : d( f t (x0), x̂t (x0)) ≤ ε
})

= π0(suppπ0) = 1

for all t ≥ k, which completes the proof.
The value +∞ for htop( f ; suppπ0), which is excluded in

the above theorem, refers to the case, when the estimation
objective cannot be achieved via a finite-capacity channel,
which becomes clear from the first part of the proof.

IV. ASYMPTOTIC ALMOST SURE ESTIMATION

In this section, we study the asymptotic estimation objec-
tive (E2). As it turns out, the associated C0 is always bounded
below by the metric entropy hπ0( f ) when π0 is f -invariant.
Since (E1) implies (E2), the topological entropy on suppπ0
still provides an upper bound on C0. Under an additional con-
dition for the measure-theoretic dynamical system (X, f, π0),
we are able to improve the upper bound by putting hπ0( f ) in
the place of htop( f ; suppπ0).
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Theorem 2: Assume that π0 is f -invariant. Then the small-
est channel capacity above which (E2) can be achieved for
every ε > 0 satisfies

C0 ≤ log(1 + �2htop( f ;suppπ0)�).
Proof: This follows immediately from Theorem 1,

since (E1) is stronger than (E2).
Theorem 3: Assume that π0 is an ergodic measure for f .

Furthermore, assume that there exists a finite Borel partition
P of X of arbitrarily small diameter such that hπ0( f ) = h :=
hπ0( f ;P) and

lim sup
n→∞

1

n
log π0

({
x : ∣

∣− 1

n
log π0(Pn(x)) − h

∣
∣ > δ

})
< 0

(9)

for all sufficiently small δ > 0, where Pn(x) denotes the
unique element of Pn containing x. Then the smallest channel
capacity C0 above which (E2) can be achieved for every ε > 0
satisfies

C0 ≤ log(1 + �2hπ0 ( f )�).
Proof: The proof is subdivided into two steps.

Step 1. Without loss of generality, we may assume that
hπ0( f ) < ∞, since otherwise the statement trivially holds.
Consider a channel with input alphabet M satisfying

|M| ≥ 1 + �2hπ0 ( f )�,
which implies C > hπ0( f ), and fix ε > 0. Choose a number
δ > 0 satisfying

C ≥ hπ0( f ) + δ. (10)

Using uniform continuity of f on the compact space X ,
we find ρ ∈ (0, ε) so that

d(x, y) < ρ ⇒ d( f (x), f (y)) < ε. (11)

Let P be a finite Borel partition of X satisfying the assump-
tion (9) whose elements have diameter smaller than ρ and
put

h := hπ0( f ;P) = lim
n→∞

1

n
Hπ0(Pn).

Recall that by ergodicity of π0, the Shannon-McMillan-
Breiman Theorem states that

− 1

n
log π0(Pn(x)) → h for a.e. x ∈ X,

implying that

π0
({

x : ∣
∣− 1

n
log π0(Pn(x)) − h

∣
∣ > δ

}) → 0

as n → ∞. The assumption (9) tells us that this convergence
is exponential.

Let P = {P1, . . . , Pr } and write i n(x) for the length-n
itinerary of x w.r.t. P , i.e., i n(x) ∈ {1, . . . , r}n with f j (x) ∈
Pin (x) j for 0 ≤ j < n. Consider the sets

�n,δ = {a ∈ {1, . . . , r}n : 2−n(h+δ) ≤ π0({x : i n(x) = a})
≤ 2−n(h−δ)}.

We define sampling times by

τ0 := 0, τ j+1 := τ j + j + 1, j ≥ 0

and put

ζ j := π0

({
x ∈ X : i j ( f τ j (x)) /∈ � j,δ

})

for all j ∈ Z+. We obtain

1 − ζ j = π0
({

x ∈ X : i j ( f τ j (x)) ∈ � j,δ
})

= π0
({

x ∈ X : 2− j (h+δ) ≤π0({y : i j (y)= i j ( f τ j (x))})
≤ 2− j (h−δ)

})

= π0
({

x ∈ X : ∣
∣− 1

j
log π0(P j ( f τ j (x))) − h

∣
∣ ≤ δ

})

= π0
({

x ∈ X : ∣
∣− 1

j
log π0(P j (x)) − h

∣
∣ ≤ δ

})
,

where we used f -invariance of π0 in the last equality. Then (9)
implies the existence of a constant α > 0 so that for all
sufficiently large j we have

ζ j = π0
({

x ∈ X : ∣∣− 1

j
log π0(P j (x)) − h

∣∣ > δ
}) ≤ e− jα.

Hence, for some j0 ≥ 0,

∞∑

j=0

ζ j ≤
j0∑

j=0

ζ j +
∞∑

j= j0+1

e− jα < ∞.

Consequently, the Borel-Cantelli lemma implies

π0({x ∈ X : ∃ j0 with i j ( f τ j (x))) ∈ � j,δ, ∀ j ≥ j0}) = 1.

(12)

Step 3. Using Corollary 17 in the appendix, h = hπ0( f )
and (10), we obtain

|� j,δ| ≤ 2 j (h+δ) ≤ 2 jC = |M| j . (13)

Hence, j channel uses are sufficient to transmit an encoded
element of � j,δ. Now we specify the coding and estimation
policies. In the time interval from τ j to τ j+1 − 1, which has
length τ j+1 − τ j = j + 1, the coder encodes the information
regarding the orbit in the time interval from τ j+1 to τ j+2 − 2,
i.e., the itinerary

i τ j+2−τ j+1−1( f τ j+1(x)) = i j+1( f τ j+1(x)).

For all x with i j+1( f τ j+1(x)) ∈ � j+1,δ this information can
be sent through the channel in the time interval of length
j + 1 by (13). At time τ j+1 + k, 0 ≤ k ≤ j , the estimator
output x̂τ j+1+k is an arbitrary element of the partition set Psk

with sk being the symbol at position k in the transmitted
string i j+1( f τ j+1(x)). At time τ j+1 + j + 1 = τ j+2 − 1,
the estimator output is x̂τ j+2−1 := f (x̂τ j+2−2). Provided that
i j+1( f τ j+1(x)) ∈ � j+1,δ, the estimation accuracy of ε will be
achieved, because

d(x̂τ j+1+k, f τ j+1+k(x)) ≤ diamPsk < ρ < ε, ∀0 ≤ k ≤ j

by the choice of the partition P and

d(x̂τ j+2−1, f τ j+2−1(x)) = d( f (x̂τ j+2−2), f ( f τ j+2−2(x))) < ε
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by (11). According to (12), for almost every x we have
i j ( f τ j (x)) ∈ � j,δ for all sufficiently large j so that the
estimation accuracy ε will eventually be achieved for those x ,
implying

π0({x ∈ X : lim sup
t→∞

d( f t (x), x̂t (x)) ≤ ε}) = 1,

which completes the proof.
Remark 4: The exponential convergence (9) is certainly a

strong assumption and we do not expect that it is satisfied by
a great variety of dynamical systems. The standard example,
where it can be verified, is a shift over a finite alphabet
equipped with a Gibbs measure, cf. [49]. Since such shifts
are often embedded in chaotic attractors of smooth systems,
we also find examples in this class of systems. A concrete
example will be given in Section VII. We also note that
the (geometric/exponential convergence) condition (9) can be
relaxed; what is essential is the summability of the probability
sequence

∑
j π0

({
x ∈ X : ∣

∣− 1
j log π0(P j (x)) − h

∣
∣ > δ

})

for every δ > 0 so that the Borel-Cantelli lemma can be
invoked. In particular, instead of a geometric convergence
rate, a sufficiently fast subgeometric convergence would be
sufficient.

To provide a lower bound on C0, we will use the following
lemma which can be found in [34] and [35, Proposition 1].
For completeness, we provide its proof in the appendix.

Lemma 5: Assume that π0 is f -invariant. Given X̃ ⊂ X
and δ > 0, let

h( f ; X̃ , δ) := lim sup
n→∞

1

n
log rsep(n, δ; X̃).

Then, for any partition P of X of the form P =
{P1, . . . , Ps , X\⋃

Pi } with compact sets P1, . . . , Ps (s ∈ N)
and for any ρ > 0, we can choose δ > 0, α ∈ (0, 1) and
N = N(ρ) ∈ N so that for any measurable set X̃ ⊂ X with
π0(X̃) ≥ 1 − α we have

1

N
hπ0( f N ;P) ≤ h( f ; X̃ , δ) + ρ.

Theorem 6: Assume that π0 is f -invariant. Then the small-
est channel capacity above which (E2) can be achieved for
every ε > 0 satisfies

C0 ≥ hπ0( f ). (14)

If π0 is not invariant, but there exists an invariant measure π∗
which is absolutely continuous w.r.t. π0, then

C0 ≥ hπ∗( f ). (15)

Here the cases hπ0( f ) = ∞ and hπ∗( f ) = ∞, respectively,
are included. They correspond to the situation, when the
estimation objective cannot be achieved over a finite-capacity
channel.

Proof: Consider a channel of capacity C over which the
objective (E2) can be achieved for every ε > 0. Fix coding and
estimation policies achieving the objective for a fixed ε > 0.
Pick δ > ε and define for x ∈ X ,

T (x, δ) := min
{
k ∈ N : d( f t (x), x̂t (x)) ≤ δ for all t ≥ k

}
.

For every K ∈ N put B K (δ) := {x ∈ X : T (x, δ) ≤ K }.
Since x �→ d( f t (x), x̂t(x)) is a measurable map, B K (δ) is a
measurable set. From (4) it follows that

lim
K→∞ π0(B K (δ)) = π0

( ⋃

K∈N

B K (δ)
)

= 1. (16)

Now, for a given α ∈ (0, 1), pick K ∈ N such that

π0(B K (δ)) ≥ 1 − α.

We consider the set X̃ := f K (B K (δ)). Observe that x ∈ X̃ ,
x = f K (y), implies

d( f t (x), x̂t+K (y)) ≤ δ for all t ≥ 0.

Now consider a maximal (n, 2δ)-separated set En ⊂ X̃ for
some n ∈ N. Recall that x̂t = γt (q0, q1, . . . , qt ). For arbitrary
integers m ≥ m0, write

Êm0,m := {(γm0(q[0,m0]), γm0+1(q[0,m0+1]), . . . , γm(q[0,m]))
: q[0,m] ∈ Mm+1}.

Define a map ζ : En → ÊK ,K+n by assigning to each x ∈ En

the unique element of ÊK ,K+n that is generated by the coding
and estimation policy when the system starts in the initial state
x0 = f −K (x) ∈ B K (δ). We claim that ζ is injective. Indeed,
assume that ζ(x1) = ζ(x2) for some x1, x2 ∈ En . Then, for
0 ≤ j ≤ n,

d( f j (x1), f j (x2)) ≤ d( f j (x1), x̂K+ j ) + d(x̂K+ j , f j (x2))

≤ δ + δ = 2δ,

implying x1 = x2, because En is (n, 2δ)-separated. Hence,

log |En| ≤ log |ÊK ,K+n| ≤ log |M|K+n = (K + n)C.

We thus obtain

C ≥ lim sup
n→∞

1

K + n
log |En|

= lim sup
n→∞

1

n
log |En| = h( f ; X̃ , 2δ),

where π0(X̃) ≥ 1 − α and X̃ depends on the choice of δ > ε.
By Lemma 5, for a partition P = {P1, . . . , Ps , X\⋃

Pi }
and ρ > 0, we can choose ε > 0, δ > ε, α > 0 and N = N(ρ)
such that the above construction yields the inequality

1

N
hπ0( f N ;P) ≤ h( f ; X̃ , 2δ) + ρ ≤ C + ρ.

Taking the supremum over all partitions P as in the lemma
and using the power rule hπ0( f N ) = Nhπ0 ( f ) yields

hπ0( f ) ≤ C + ρ.

Since ρ > 0 can be chosen arbitrarily, the inequality (14)
follows.

Now assume that π∗ is an f -invariant probability measure
which is absolutely continuous w.r.t. π0. Then for every α > 0
there is β > 0 such that π0(B) < β implies π∗(B) < α.
Looking at the complements of the sets B K (δ), we see that
the measure π0 can be replaced by π∗ in (16), which implies
the inequality (15).
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V. ASYMPTOTIC ESTIMATION IN EXPECTATION

Finally, we consider the estimation objective (E3). As we
will see, under mild assumptions on the admissible coding
and estimation policies, C0 is characterized by the metric
entropy hπ0( f ).

Theorem 7: Assume that π0 is an ergodic measure for f .
Then the smallest channel capacity above which (E3) can be
achieved for every ε > 0 satisfies

C0 ≤ log(1 + �2hπ0 ( f )�).
Proof: Without loss of generality, we may assume that

hπ0( f ) < ∞, since otherwise the statement trivially holds.
Consider a channel with input alphabet M satisfying

|M| ≥ 1 + �2hπ0 ( f )�,
which implies C > hπ0( f ), and fix ε > 0. Choose a number
δ > 0 satisfying

C ≥ hπ0( f ) + δ. (17)

Let P = {P1, . . . , Pr } be a finite Borel partition of X whose
elements have diameter smaller than (ε/2)1/p and put

h := hπ0( f ;P) = lim
n→∞

1

n
Hπ0(Pn).

Using the assumption that π0 is ergodic, the Shannon-
McMillan-Breiman Theorem states that

− 1

n
log π0(Pn(x)) → h for a.e. x ∈ X, (18)

where Pn(x) is the element of Pn containing x . Write i n(x)
for the length n itinerary of x w.r.t. P (see the appendix), and
consider the sets

�n,δ = {a ∈ {1, . . . , r}n : 2−n(h+δ) ≤ π0({x : i n(x) = a})
≤ 2−n(h−δ)}.

By Corollary 17 in the appendix, we have

π0({x ∈ X : ∃m ∈ N with i n(x) ∈ �n,δ, ∀n ≥ m}) = 1 (19)

and |�n,δ| ≤ 2n(h+δ). By (19), we can fix k large enough so
that

π0({x ∈ X : i k(x) ∈ �k,δ}) ≥ 1 − ε

2(diamX)p
. (20)

Using that h ≤ hπ0( f ), we also obtain

|�k,δ| ≤ 2k(h+δ) ≤ 2kC = |M|k . (21)

Thus, k channel uses are sufficient to transmit an encoded
element of �k,δ . Now we specify the coding and estimation
policy. For any j ∈ Z+, in the time interval from jk to
( j + 1)k − 1, the coder encodes the information regarding the
orbit in the time interval from ( j +1)k to ( j +2)k −1, i.e., the
itinerary i k( f ( j+1)k(x)). For all x with i k( f ( j+1)k(x)) ∈
�k,δ this information can be sent through the channel in a
time interval of length k by (21). At time ( j + 1)k + i ,
0 ≤ i < k, the estimator output x̂( j+1)k+i is an arbitrary
element of the partition set Psi with si being the symbol at

position i in the transmitted string i k( f ( j+1)k(x)). Provided
that i k( f ( j+1)k(x)) ∈ �k,δ , the estimation error satisfies

d(x̂( j+1)k+i , f ( j+1)k+i(x)) ≤ diamPsi <
(ε

2

)1/p

for 0 ≤ i < k, by the choice of the partition P . Putting
X1 := {x : i k( f ( j+1)k(x)) ∈ �k,δ} and X2 := X\X1, and
using (20) together with invariance of π0 under f , we obtain

E[d(x( j+1)k+i, x̂( j+1)k+i )
p]

=
∫

X1

π0(dx)d( f ( j+1)k+i(x), x̂( j+1)k+i(x))p

+
∫

X2

π0(dx)d( f ( j+1)k+i(x), x̂( j+1)k+i(x))p

≤ π0(X1)
ε

2
+ π0(X2)(diamX)p ≤ ε

2
+ ε

2
= ε.

Hence, for all t ≥ k, we have E[d(xt , x̂t )
p] ≤ ε, implying

that the estimation objective is achieved.
A stationary source can be expressed as a mixture of

ergodic components; if these can be transmitted separately,
the proof would also hold without the condition of ergodic-
ity [7, Th. 11.3.1]. If the process is not ergodic, but stationary,
and if there only exist finitely many ergodic invariant measures
in the support of π0, then the proof above can be trivially
modified such that the encoder sends a special message to
inform the estimator which ergodic subsource is transmitted,
and the coding scheme for the ergodic subsource could be
applied.

To obtain the analogous lower bound, we need to introduce
some notation. Let μ be an ergodic f -invariant Borel proba-
bility measure on X . For x ∈ X , n ∈ N, ε > 0 and r ∈ (0, 1)
define the sets

B(x, n, ε, r) :=
{

y ∈ X : 1

n

∣
∣{0 ≤ k < n : d( f k(x), f k(y))

≤ ε
}∣∣ > 1 − r

}
.

A set F ⊂ X is called (n, ε, r, δ)-spanning for δ ∈ (0, 1) if

μ
(⋃

x∈F

B(x, n, ε, r)
)

≥ 1 − δ.

We write rspan(n, ε, r, δ) for the minimal cardinality of such a
set and define

hr ( f, μ, ε, δ) := lim sup
n→∞

1

n
log rspan(n, ε, r, δ).

According to [41, Th. A], for every ρ ∈ (0, 1) we have

lim
r↓0

lim
ε↓0

hr ( f, μ, ε, ρ) = hμ( f ).

Since hr ( f, μ, ε, ρ) is increasing as r ↓ 0 and as ε ↓ 0, we can
write this as

hμ( f ) = sup
r>0

sup
ε>0

hr ( f, μ, ε, ρ) = sup
(r,ε)∈R

2
>0

hr ( f, μ, ε, ρ).

In particular, this implies

hμ( f ) = lim
ε↓0

hϕ1(ε)( f, μ, ϕ2(ε), ρ) (22)

for any functions ϕ1, ϕ2 with limε↓0 ϕi (ε) = 0, i = 1, 2.
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In the following theorem, we will restrict ourselves
to periodic coding and estimation schemes using finite
memory.

Theorem 8: Assume that π0 is an ergodic measure for f .
Additionally, assume that there exists τ > 0 so that the coder
map δt is of the form

qt = δt (x[t−τ+1,t ])

and δt+τ ≡ δt . Further assume that the estimator map is of
the form

x̂t = γt (q[t−τ+1,t ])

and also γt+τ ≡ γt . Then the smallest channel capacity above
which (E3) can be achieved for every ε > 0 satisfies

C0 ≥ hπ0( f ).

Before presenting the proof, we note the following.
Remark 9: For optimal zero-delay codes, the structural

results available for finite horizon problems (see [25], [48],
[50], [51], [55]) and infinite horizon problems [2], [23], [52]
establish that an optimal encoder only uses the most recent
state and some information variable (available at both the
encoder and the decoder, such as the past transmitted
symbols or a conditional measure on the state given the
information at the decoder). In particular, [52] established
the optimality of stationary and deterministic policies under
such a structure. On the other hand, [52, Th. 4] shows
that for finitely valued Markov sources which are aperiodic,
irreducible, and stationary, periodic coding policies (as that
considered in Theorem 8) indeed perform arbitrarily well for
the zero-delay setup also (with a rate of convergence of the
order 1

T with T being the period); that this holds for the
non-causal setup is well known in the information theory
literature through asymptotic optimality of block codes [7]:
In particular, for stationary and memoryless sources, a rate
of convergence for such a result was shown to be of the
type O

( log T
T

)
[39], [57]. See also [20] for a detailed literature

review and further finite block length performance bounds.
Thus, the use of finite memory policies in Theorem 8 is a
practical construction, and it is our goal to investigate the
optimal encoding in the absence of such an a priori assumption
in the future.

Proof: The proof is subdivided into three steps.
Step 1. Fix ε > 0 and consider a coding and estimation

policy that achieves (5) for ε/2. Then we find T ∈ N

so that

E[d(xt , x̂t )
p] ≤ ε for all t ≥ T . (23)

For each t ≥ T we decompose X into the two sets

Xt
1 := {

z ∈ X : d(z, x̂t ( f −t (z)))p <
√

ε
}
,

Xt
2 := {

z ∈ X : d(z, x̂t ( f −t (z)))p ≥ √
ε
}
.

Now assume to the contrary that for some t ≥ T ,

π0(Xt
2) >

√
ε. (24)

In contradiction to (23), this implies

E[d(xt , x̂t )
p] =

∫

X
π0(dx)d( f t (x), x̂t(x))p

=
∫

X
( f −t∗ π0)(dx)d( f t (x), x̂t (x))p

=
∫

X
π0(dz)d(z, x̂t( f −t (z)))p

≥
∫

Xt
2

π0(dz)d(z, x̂t( f −t (z)))p

≥ π0(Xt
2)

√
ε

(24)
>

√
ε

2 = ε,

where we used that π0 is f -invariant. Hence, we obtain

π0(Xt
2) ≤ √

ε. (25)

Step 2. By Birkhoff’s Ergodic Theorem, the measure of a
set determines how frequently this set is visited over time.
We want to know the frequency of how often the sets Xt

2 are
visited by the trajectories of f . More precisely, we want to
achieve that

lim sup
n→∞

1

n

n−1∑

i=0

χX T +i
2

( f T +i (x)) ≤ √
ε (26)

for π0-almost all x ∈ X , say for all x ∈ X̃ ⊂ X with
π0(X̃) = 1. We can prove (26) under the assumption about
the coding and estimation policies. Using the notation αt (z) :=
d(z, x̂t( f −t (z)))2, the set Xt

2 can be written as

Xt
2 := α−1

t ([√ε,∞)).

By our assumptions,

x̂t = γt ([δs(x[s−τ+1,s])]s∈[t−τ+1,t ])
= γt ([δs( f s−τ+1(x0), . . . , f s(x0))]s∈[t−τ+1,t ]).

Hence,

x̂t+τ (x0)

= γt+τ ([δs( f s−τ+1(x0), . . . , f s(x0))]s∈[t+1,t+τ ])
= γt ([δs( f s+1(x0), . . . , f s+τ (x0))]s∈[t−τ+1,t ])
= γt ([δs( f s−τ+1( f τ (x0)), . . . , f s( f τ (x0)))]s∈[t−τ+1,t ])
= x̂t ( f τ (x0)),

implying x̂t+τ = x̂t ◦ f τ for all t ∈ Z+, and thus

αt+τ (z) = d(z, x̂t+τ ( f −(t+τ )(z)))2 = d(z, x̂t ( f −t (z)))2

= αt (z).

Hence, we have the same periodicity for the sets Xt
2, i.e.,

Xt+τ
2 ≡ Xt

2, ∀t ∈ Z+.

Writing each n ∈ N as n = knτ + rn with kn ∈ Z+ and
0 ≤ rn < τ , we find that

1

n

n−1∑

i=0

χX T +i
2

( f T +i (x))

≤ 1

τ

τ−1∑

j=0

1

kn

kn−1∑

i=0

χ
X T + j

2
( f T +iτ+ j (x)) + τ

n
.
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Hence, Birkhoff’s ergodic Theorem applied to f τ implies

lim
n→∞

1

n

n−1∑

i=0

χX T +i
2

( f T +i (x)) ≤ 1

τ

τ−1∑

j=0

π0(X T + j
2 ) ≤ √

ε

(27)

for all x from a full measure set X̃ ⊂ X . Now, we can write
X̃ as the union of the sets

X̃m :=
{

x ∈ X : 1

n

n−1∑

i=0

χX T +i
2

( f T +i (x)) ≤ 2
√

ε, ∀n ≥ m

}

.

Since X̃m ⊂ X̃m+1 for all m, by (27) we find m0 with
π0(X̃m0) ≥ 1−ρ, where ρ is a given number in (0, 1). Hence,
we have

1

n

n−1∑

i=0

χX T +i
2

( f T +i (x)) ≤ 2
√

ε for all n ≥ m0, x ∈ X̃m0 .

Then for n ≥ m0, the number of i ’s in {0, 1, . . . , n − 1} such
that f T +i (x) ∈ X T +i

2 is ≤ 2n
√

ε.
Step 3. For every n ≥ m0 consider the set

En := {
(x̂T (x), x̂T+1(x), . . . , x̂T +n−1(x)) ∈ Xn : x ∈ X̃m0

}
.

The cardinality of En is dominated by the largest possible
number of coding symbols the estimator has available at time
T + n − 1, i.e.,

|En| ≤ |M|T+n .

Define for each n ∈ N a set Fn ⊂ X with |Fn | = |En| by
choosing for each element

(x̂T (x), x̂T +1(x), . . . , x̂T +n−1(x)) ∈ En

a unique representative x ∈ X̃m0 and letting Fn be the set of
all these representatives.

Now pick an arbitrary y ∈ X̃m0 and consider
(x̂T (y), . . . , x̂T +n−1(y)) ∈ En . Let x ∈ Fn be the unique
representative of this string, implying x̂T +i (y) = x̂T +i (x) for
0 ≤ i < n. Then

d( f T +i (y), f T +i (x)) ≤ d( f T +i (y), x̂T+i (y))

+ d(x̂T+i (x), f T +i (x)) (28)

holds for 0 ≤ i < n. From Step 2 we know that f T +i (y) ∈
X T +i

1 for ≥ n(1 − 2
√

ε) i ’s and the same holds for x in
place of y. Hence, the number if i ’s, where both holds, is ≥
n(1 − 4

√
ε). In this case, (28) implies

d( f T +i (y), f T +i (x)) ≤ 2 2p
√

ε.

Hence,

f T (y) ∈ B( f T (x), n, 2 2p
√

ε, 4
√

ε).

Since π0( f T (X̃m0)) = π0(X̃m0) ≥ 1 − ρ, we thus obtain

π0

( ⋃

x∈Fn

B( f T (x), n, 2 2p
√

ε, 4
√

ε)
)

≥ 1 − ρ,

showing that the set f T (Fn) is (n, 2 2p
√

ε, 4
√

ε, ρ)-spanning.
Consequently,

h4
√

ε( f, π0, 2 2p
√

ε, ρ) ≤ lim sup
n→∞

1

n
log |M|T +n = C.

Since ε > 0 was chosen arbitrarily, by (22) this implies

C ≥ lim
ε↓0

h4
√

ε( f, π0, 2 2p
√

ε, ρ) = hπ0( f ),

completing the proof.

VI. DISCUSSION

A. Hierarchy of Estimation Criteria

Our results together with the results in the paper by Matveev
and Pogromsky [27] yield a hierarchy of estimation criteria for
a deterministic nonlinear dynamical system

xt+1 = f (xt )

with a continuous map (or a homeomorphism) f : X → X
on a compact metric space (X, d). These estimation criteria,
ordered by increasing strength, are the following.

(1) Asymptotic estimation in expectation (criterion (E3)):

lim sup
t→∞

∫

X
π0(dx0)d( f t (x0), x̂t (x0))

p ≤ ε, p > 0

with a Borel probability measure π0 on X .
(2) Asymptotic almost sure estimation (criterion (E2)):

π0({x0 ∈ X : lim sup
t→∞

d( f t (x0), x̂t (x0)) ≤ ε}) = 1

with a Borel probability measure π0 on X .
(3) Eventual almost sure estimation (criterion (E1)):

π0({x0 ∈ X : d( f t (x0), x̂t (x0)) ≤ ε}) = 1 ∀t ≥ T (ε)

with a Borel probability measure π0 on X .
(4) Deterministic estimation (called observability in [27]):

d(xt , x̂t ) ≤ ε for all t ≥ T (ε).

Finally, two even stronger estimation criteria are considered
in [27], which do not fit exactly into the above hierarchy, since
they are based on an initial error d(x0, x̂0) ≤ δ, which is
known to both coder and estimator, and can be much smaller
than the desired accuracy ε. In terms of this maximal initial
error δ, the criteria can be formulated as follows:

(5) There are δ∗ > 0 and G ≥ 1 such that for all δ ∈ (0, δ∗),

d(xt , x̂t ) ≤ Gδ for all t ≥ 0.

This is called regular observability in [27].
(6) There are δ∗ > 0, G ≥ 1 and g ∈ (0, 1) such that for

all δ ∈ (0, δ∗),

d(xt , x̂t ) ≤ Gδgt for all t ≥ 0.

This is called fine observability in [27].

Let us denote by C(i)
0 , 1 ≤ i ≤ 6, the smallest channel capacity

for the above criteria. Then, modulo specific assumptions
such as invertibility of f , ergodicity of π0 and finiteness of
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entropies, our results together with those in [27] essentially
yield the following chain of inequalities:

hπ0( f )
(a)≤ C(1)

0

(b)≤ hπ0( f )

(c)≤ C(2)
0

(d)≤ htop( f ; suppπ0)

(e)≤ C(3)
0

(f)≤ htop( f ; suppπ0)

(g)≤ htop( f )
(h)≤ C(4)

0

(i)≤ htop( f )

(j)≤ C(5)
0

(k)= C(6)
0 .

For (h)–(k), see [27, Th. 8 and Lemma 14], and note that (d)
can be replaced by C(2)

0 ≤ hπ0( f ) under the assumptions
of Theorem 3. Recently, in [28] the notion of restoration
entropy was proposed as an intrinsic quantity of a system
which characterizes C(5)

0 = C(6)
0 . The results in [27] and [28]

show that this quantity can be strictly larger than htop( f ).
Except for compactness of X , continuity of f and

f -invariance of π0, only the following inequalities rely on
additional assumptions:
(a): Invertibility of f , ergodicity of π0 and periodic coding

and estimation schemes using finite memory (see
Theorem 8).

(b): Ergodicity of π0 (see Theorem 7).
(c): Invertibility of f (see Theorem 6).
(e): Invertibility of f (see [18, Th. 3.3]).

B. Relations to Ergodic Theory

The results presented in this paper can be seen in analogy to
certain fundamental results of ergodic theory about modeling
a dynamical system by a symbolic system, i.e., a subshift of
a full shift on n symbols. For instance, Krieger’s generator
theorem roughly says that an ergodic system can be modeled
as a subshift over an alphabet of l > 2h symbols, where h
is the entropy of the system. In our context, the modeling of
the system is accomplished by the coder which generates an
infinite sequence of symbols (q0, q1, q2, . . .) over the alphabet
M for any initial state x0. However, one should be careful
with this analogy, because we are allowing that the coder
is defined by a time-varying function, which not necessarily
results in a commutative diagram relating the action of f
(or some iterate of f ) and the action of a shift operator.
For topological dynamical systems, the theory of entropy
structures and symbolic extensions answers the question to
which extent a system can be modeled by a symbolic system
(under preservation of the topological structure), cf. [4] for an
excellent overview of this theory.

C. Open Questions

Since in most of our results we had to use conditions
more specific than f -invariance of π0, the question remains
to which extent those results also hold without these specific
assumptions. Particularly strong assumptions have been used
in Theorem 3 and in Theorem 8. We have not been able
to find examples where these assumptions are violated and

the results do not hold, so this is definitely a topic for
future research. Finally, we remark that the assumption of
invertibility of f was only used to obtain lower bounds for
each of the objectives (E1)–(E3), while we did not use this
assumption to estimate C0 from above. Hence, another open
question is whether the lower bounds also hold when f is not
invertible.

VII. COROLLARIES AND EXAMPLES

For differentiable maps, smooth ergodic theory provides
a relation between the metric entropy and the Lyapunov
exponents of a map, whose existence follows from Oseledec’s
Theorem (see Theorem 18 in the appendix). In particular,
we have the following corollary of our main theorems.

Corollary 10: Assume that f is a C1-diffeomorphism on
a compact Riemannian manifold preserving an ergodic mea-
sure π0. Then, in the setting of Theorem 3 or Theorem 7,

C0 ≤ log(1 + �2
∫

π0(dx)ζ+(x)�),
where ζ+(x) is a shortcut for the sum of the positive Lyapunov
exponents at x . If f is a C2-diffeomorphism and π0 an
SRB measure (not necessarily ergodic), then, in the setting
of Theorem 6 or Theorem 8,

C0 ≥
∫

π0(dx)ζ+(x).

Proof: The first statement follows from the
Margulis-Ruelle Inequality for the metric entropy of
a C1-diffeomorphism (Theorem 19 in the appendix).
The second statement follows from the characterization of
SRB measures for C2-diffeomorphisms in terms of metric
entropy (Theorem 20 in the appendix).

In the following, we demonstrate the contents of our results
by applying them to some well-studied dynamical systems
with chaotic behavior (and thus positive entropy).

Example 11: Consider the map

f (θ, x, y) = (2θ, x/4 + cos(2πθ)/2, y/4 + sin(2πθ)/2),

regarded as a map on X := S1×D2, where S1 is the unit circle
and D2 the unit disk, respectively. It is known that f has an
Axiom A attractor �, which is called the solenoid attractor.
In this case, there exists a unique SRB measure π0 supported
on �. It is known that f is topologically transitive on �,
implying that π0 is ergodic (cf. [42, Sec. 7.7]). The metric
entropy hπ0( f ) is known to be log 2, cf. [5, Ex. 6.3]. Hence,
in this case

C0 = log 2 = 1,

i.e., the channel must support a transmission of at least one
bit at each time instant in order to make the state estimation
objectives (E2) and (E3) achievable.

Example 12: We consider the map

f (x, y) = (5 − 0.3y − x2, x), f : R
2 → R

2.

The nonwandering set of f , i.e., the set of all points (x, y) so
that for every neighborhood U of (x, y) there is n ≥ 1 with
f n(U)∩U 
= ∅, can be shown to be uniformly hyperbolic, but
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it is not an attractor. Hence, there exists no SRB measure on
this set. However, we can take π0 to be the unique equilibrium
state of the potential ϕ(x) := − log |D f (x)|Eu

x
| (Eu

x being the
unstable subspace at x), i.e., the unique probability measure
π0 satisfying

Ptop( f ; ϕ) = hπ0( f ) +
∫

ϕdπ0,

where Ptop(·) is the topological pressure.
The restriction of f to its nonwandering set is an Axiom A

system. A numerical approximation of the metric entropy
hπ0( f ) is given in [5, Ex. 6.4], namely

hπ0( f ) ≈ 0.655.

Example 13: Consider a volume-preserving C2-Anosov
diffeomorphism f : T

n → T
n of the n-dimensional torus.

It is known that the volume measure m is ergodic for such f .
In this case,

hm( f ) =
∫

log J u f dm, htop( f ) = htop( f ; supp m)

= lim
n→∞

1

n
log

∫
J u f ndm,

where J u f stands for the unstable determinant of D f ,
i.e., J u f (x) = | det D f (x)|Eu

x
| with Eu

x being the unstable
subspace at x . Observe that, in general, hm( f ) 
= htop( f ).
In fact, by [15, Corollary 20.4.5], in the case n = 2 the equality
hm( f ) = htop( f ) implies that f is C1-conjugate to a linear
automorphism g : T

2 → T
2. Since C1-conjugacy implies

that the eigenvalues of the corresponding linearizations along
any periodic orbits coincide, the existence of a C1-conjugacy
is a very strict condition. Hence, most area-preserving
Anosov diffeomorphisms on T

2 satisfy the strict inequality
hm( f ) < htop( f ).

Example 14: An example for an area-preserving Anosov
diffeomorphism on T

2 = R
2/Z

2 is Arnold’s Cat Map, which
is the group automorphism induced by the linear map on R

2

associated with the integer matrix

A =
[

2 1
1 1

]
.

The fact that this matrix has determinant 1 implies that the
induced map fA : T

2 → T
2, x + Z

2 �→ Ax + Z
2, is area-

preserving and invertible. The Anosov property follows from
the fact that A has two distinct real eigenvalues ζ1 and ζ2
with |ζ1| > 1 and |ζ2| < 1, namely

ζ1 = −3

2
− 1

2

√
5 and ζ2 = −3

2
+ 1

2

√
5.

At each point in T
2, the Lyapunov exponents of fA exist and

their values are log |ζ1| and log |ζ2|. Pesin’s entropy formula
(see Theorem 19 in the appendix) thus implies

hm( fA) = log |ζ1| = log

∣
∣
∣∣
3

2
+ 1

2

√
5

∣
∣
∣∣.

The formula for the topological entropy given in the preceding
example shows that htop( fA) = hm( fA).

Finally, we present an example taken from [49] in which
the assumptions of Theorem 3 are satisfied.

Example 15: Let f : S1 → S1 be an expanding circle map
of degree ≥ 3. (Observe that we did not use invertibility
of f in Theorem 3.) Write S1 = [0, 1]/ ∼, where the
equivalence relation ∼ identifies the extremal points of the
interval. Assume that there exists an open interval I ⊂ (0, 1)
so that f|I is injective and f (I ) = (0, 1). Then the set

� :=
⋂

n≥0

f −n(S1\I )

is an f -invariant Cantor set and f|� is expanding.
By [49, Ex. 5.2], we find ergodic measures μ of f|� and
partitions P of � (of arbitrarily small diameter) such that there
exists δ∗ > 0 with

lim sup
n→∞

1

n
log μ

({
x ∈ � : ∣∣− 1

n
log μ(Pn(x)) − h

∣∣ ≥ δ
})

< 0

for all δ ∈ (0, δ∗), where h = hμ( f|�) = hμ( f|�;P). For
those measures, Theorem 3 yields

C0 ≤ log(1 + �2hμ( f|�)�),
where C0 is the smallest channel capacity above which (E2)
can be achieved for every ε > 0. The measures that satisfy
the above are obtained from so-called Gibbs measures of the
one-sided full shift on two symbols, which is topologically
conjugate to f|�.

APPENDIX

In this appendix, we review some classial results of ergodic
theory that are used in the paper. We start with the Shannon-
McMillan-Breiman Theorem, cf. [7].

Theorem 16: Let (X,F , μ, f ) be an ergodic measure-
preserving dynamical system, i.e., (X,F , μ) is a probability
space and μ is ergodic w.r.t. the map f : X → X. Let P
be a finite measurable partition of X. Then, for almost every
x ∈ X, as n → ∞,

− 1

n
log μ(Pn(x)) → hμ( f ;P),

where Pn(x) is the element of Pn containing x.
If P = {P1, . . . , Pr }, for n ∈ N and x ∈ X , let

i n(x) = (i n
0 (x), . . . , i n

n−1(x)) be the element of {1, . . . , r}n

with f j (x) ∈ Pin
j (x) for 0 ≤ j < n. We call i n(x) the length-

n itinerary of x w.r.t. P . Putting h := hμ( f ;P), we also define
for each ε > 0 and n ∈ N the set

�n,ε := {
a ∈ {1, . . . , r}n : 2−n(h+ε) ≤

μ({x : i n(x) = a}) ≤ 2−n(h−ε)
}
.

As an immediate corollary of the Shannon-McMillan-
Breiman Theorem we obtain the following.

Corollary 17: Under the assumptions of Theorem 16,
it holds that

μ({x ∈ X : ∃m ∈ N with in(x) ∈ �n,ε, ∀n ≥ m}) = 1 (29)

and

|�n,ε| ≤ 2n(h+ε). (30)
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Proof: The identity (29) follows from the observation that
μ(Pn(x)) = μ({y ∈ X : i n(y) = i n(x)}). From the estimates

1 ≥ μ({x : i n(x) ∈ �n,ε})
=

∑

a∈�n,ε

μ({x : i n(x) = a}) ≥ |�n,ε| · 2−n(h+ε)

the inequality (30) immediately follows.
In the ergodic theory of smooth dynamical systems, the most

fundamental result is Oseledec’s Theorem, also known as the
Multiplicative Ergodic Theorem, see [1].

Theorem 18: Let (�,F , μ) be a probability space and
θ : � → � a measurable map, preserving μ. Let T : � →
R

d×d be a measurable map such that max{0, log �T (·)�} ∈
L1(�,μ) and write

T n
x := T (θn−1(x)) · · · T (θ(x))T (x).

Then there is �̃ ⊂ � with μ(�̃) = 1 so that for all x ∈ �̃ the
following holds:

lim
n→∞

[
(T n

x )∗(T n
x )

]1/(2n) =: �x

exists and, moreover, if exp ζ
(1)
x < · · · < exp ζ

s(x)
x denote

the eigenvalues of �x and U (1)
x , . . . , Us(x)

x the associated
eigenspaces, then

lim
n→∞

1

n
log �T n

x v� = ζ(r)
x if v ∈ V (r)

x \V (r−1)
x ,

where V (r)
x = U (1)

x + · · · + U (r)
x and r = 1, . . . , s(x).

The numbers ζ
(i)
x are called (μ-)Lyapunov exponents.

We apply the theorem to the situation, when θ is a diffeomor-
phism on a compact Riemannian manifold and T (x) is the
derivative of θ at x . In this situation, the Lyapunov exponents
measure the rates at which nearby orbits diverge (or converge).
Despite the fact that this is a purely geometric concept,
the Lyapunov exponents are closely related to the metric
entropy. Fundamental results here are the Margulis-Ruelle
inequality [43] and Pesin’s entropy formula [38], which we
summarize in the following theorem.

Theorem 19: Let M be a compact Riemannian manifold
and f : M → M a C1-diffeomorphism preserving a Borel
probability measure μ. Then

hμ( f ) ≤
∫

μ(dx)
∑

i

max{0, dim U (i)
x · ζ(i)

x }

with summation over all Lyapunov exponents at x . If f is
a C2-diffeomorphism and μ is absolutely continuous w.r.t.
Riemannian volume, then equality holds. If μ is ergodic, then
the Lyapunov exponents are constant almost everywhere, and
hence the integration can be omitted.

If a diffeomorphism does not preserve a measure absolutely
continuous with respect to volume, it might still preserve a
measure that is well-behaved with respect to volume in the
sense that the measure determines the behavior of all trajec-
tories with initial values in a set of positive volume. This is
made precise in the definition of an SRB (Sinai-Ruelle-Bowen)
measure. We will not give the technical definition here, but just
mention the following result of Ledrappier and Young [21],

which can in fact be regarded as one possible definition of an
SRB measure.

Theorem 20: Let f : M → M be a C2-diffeomorphism of a
compact Riemannian manifold, preserving a Borel probability
measure μ. Then Pesin’s entropy formula for hμ( f ) holds if
and only if μ is an SRB measure.

Finally, we present the proof of Lemma 5.
Proof: Throughout the proof, we use the notation R|X̃ =

{R ∩ X̃ : R ∈ R} for any partition R of X . Given the
partition P , choose δ so that

0 < δ <
1

2
min

1≤i< j≤s
min

(x,y)∈Pi×Pj
d(x, y).

Given ρ > 0, choose α ∈ (0, 1) satisfying

α <
ρ

2 log |P | = ρ

2 log(s + 1)
.

Now let X̃ ⊂ X be an arbitrary measurable set with π0(X̃) ≥
1 − α and consider the partition Q := {X̃ , X\X̃ }. Fix
N ∈ N with (log 2)/N < ρ/2. Let E ⊂ X̃ be a maxi-
mal (k, δ/2)-separated subset for the map f N . Maximality
guarantees that for each z ∈ X̃ there is ϕ(z) ∈ E such
that d( f j N (z), f j N (ϕ(z))) ≤ δ/2 for 0 ≤ j < k. Using
elementary properties of conditional entropy, we obtain

Hπ0

(k−1∨

i=0

f −i NP
)

≤ Hπ0(Q) + Hπ0

(k−1∨

i=0

f −i NP |Q
)

≤ log 2 + π0(X̃)
∑

P∈∨k−1
i=0 f −iN P

−π0(P ∩ X̃)

π0(X̃)
log

π0(P ∩ X̃)

π0(X̃)

+ π0(X\X̃ )(k log |P |)

≤ log 2 + log
∣
∣
∣
k−1∨

i=0

f −i NP |X̃
∣
∣
∣ + ρ

2
k.

For each P ∈ ∨k−1
i=0 f −i NP |X̃ let x P ∈ P and consider

ϕ(xP) ∈ E . Since each ball Bδ(z) intersects at most two
elements of P , we have |ϕ−1(z)| ≤ 2k , implying

log
∣∣
k−1∨

i=0

f −i NP |X̃ ∣∣ ≤ k log 2 + log |E |

≤ k log 2 + log rsep(k N, δ/2; X̃ , f ),

using that E is a (k N, δ/2)-separated (though not necessarily
maximal) subset of X̃ for the map f . This yields

Hπ0

(k−1∨

i=0

f −i NP
)

≤ log 2 + k log 2

+ log rsep(k N, δ/2; X̃ , f ) + ρ

2
k.

Dividing by k N and letting k → ∞ leads to (1/N)
hπ0( f N ;P) ≤ h( f ; X̃ , δ/2) + ρ, completing the proof.
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