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Introduction

1.1 Introduction

In a differential equations course, one studies quantitative and qualitative behaviours of solutions to differential equations.
For such equations, under mild regularity conditions, a given initial condition (in the absence of disturbances) leads to a
unique solution/output. One could generalize this to difference equations for discrete-time equations.

For such setups, we can view the solution as a map from a set of initial conditions to an appropriate set of solu-
tions/outcomes such as a set of paths; e.g. continuous functions for the former (continuous-time setup), and discrete-time
signals for the latter (discrete-time setup).

This solution map may be regarded as a system mapping the inputs to the outputs.

Such an approach has remarkable implications in engineering and applied mathematics. In many engineering or applied
mathematics areas, one may also need to consider the presence of noise/disturbance terms (which are typically exter-
nal/exogenous inputs) or one may also have the liberty to affect the solutions through introducing an external control term.
Accordingly, one should view the aforementioned map to be from some set of initial states, some set of disturbances and
some set of external inputs, to some output set.

Systems theory is concerned with rigorously studying, defining and analyzing, as well as shaping the input-output be-
haviour of such maps (which we will call systems). See Figure 1.1 for a generic depiction.

r y

System

Fig. 1.1: A (control-free) system

In this course, we will study systems theory and through our development, we will also present a detailed analysis on
signals spaces, representation of signals using signal bases, and their optimal approximations, and we will introduce some
aspects of optimization. There are many applications that we will study in our course, which will primarily concern signal
processing, communications, and control; but we will also find occasions to touch on many related applications involving
signal spaces and systems design.

In the context of systems which are linear (a rigorous definition is to be given later; these systems are essentially linear
functions from a linear space of inputs to a linear space of outputs), causal (where the output at any given time cannot
depend on inputs occurring at later time stages) and time-invariant (where a time-delay in the input leads to an equivalent
time delay in the output), we will see that the input-output relation admits efficient representational properties when the
signals are expressed in terms of complex harmonics. This will motivate the Fourier Transform, and its generalizations (the
Laplace Transform and the Z-transform), which will be studied in detail in our course.
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To rigorously study the Dirac Delta function, which will let us define the impulse response and the frequency response of
such systems, we will introduce distribution theory and the Schwartz space of signals.

1.2 Applications

1.2.1 Applications in Control Theory

In control systems, the goal is to shape the input-output behaviour by possibly utilizing feedback from system outputs
(Figure 1.3 and Figure 1.2) under various design criteria and constraints. Commonly considered criteria are system stability
(e.g. convergence to a point or a set with respect to initial state conditions, or boundedness of the output corresponding
to any bounded input), reference tracking, robustness to incorrect models (unspecified system dynamics) and presence
of disturbance (which may appear in the system itself or in the measurements available at the controller: that is, either a
system noise or a measurement noise), and optimal control. Figure 1.5 depicts some of these considerations. A common,
and one of the earliest modern examples, of control systems is the thermostat-based temperature control system depicted
in Figure 1.4.

y

Plant

Controller

u

r

Fig. 1.2: A feedback control diagram; here r is the input and the controller depends on the output y directly (and not just
through an error term as in Figure 1.3). The controller unit is designed to have the system output respond to r in a desirable
fashion under various criteria that will be studied further.

r y
-

Controller Plant/System+

Fig. 1.3: A system shaped by error feedback control. Here, the control uses the feedback only through the error between
an input signal, r, and the system output, y. This setup is a very common configuration.

Let us demonstrate some of the common design criteria, starting with a conceptually simple example. Consider

dx

dt
= ax(t) + u(t) + n(t)

where a ∈ R+ is a scalar, u(t) is the control input, that can be selected given the information {x(s), s < t} and n(t) is
some disturbance/noise acting on the system. The disturbance is external, that is, the controller has nothing to do with it.

If a > 0, then in the absence of control, the solution to the system is given with

x(t) = eatx(0) +

∫ t

0

ea(t−s)n(s)ds



1.2 Applications 3

Td Tr

House+

−

hi
Thermostat HouseFurnace

u

Plant

ho

Fig. 1.4: A thermostat heating system is a popular example of the configuration given in Figure 1.3. Here Td is a desired
temperature, Tr is the (actual) room temperature, hi is the heat from the furnace and ho represents the heat leaked outside
(or the cold air entering the house). Here, the thermostat is the controller which decides on whether the gas valve should
be turned on or off based on the desired temperature and the sensed actual room temperature; u is the control input
representing these turn-on or turn-off signals. The furnace is the actuator which maps the control input to the heat input,
hi, entering the system. House is the process or the system, whose output (the room temperature) is to be controlled. Often
one lumps the actuator and the system (house in this case) as a single unit and calls it a plant. Thus, one typically considers
a controller and a plant (to be controlled), in a control system together with the external inputs to the system (in this case:
the desired temperature and the heat leakage). One could also consider a setup where the room temperature is recorded (by
the sensor in the thermostat unit) with measurement error; in this case the measurement error/noise in the sensor should
also be considered as an external input.

r -

+

e u

d n

ũ y ỹ

Reference System Controller Plant/System

Fig. 1.5: A further control system flow diagram; here r is a reference and d and n are system/load and measurement
disturbances, and are the inputs to the system. The controller unit is designed to have the system output respond to these
inputs in a desirable fashion under various criteria that will be studied further in these notes.

In particular, if n(s) = K ̸= 0 for some constant K, then even when x(0) = 0, we have that limt→∞ |x(t)| = ∞.

On the other hand, if we use the control input (using the feedback from the state of the system) u(t) = −(a+ 1)x(t), we
obtain the equation

dx

dt
= −x(t) + n(t)

with the solution

x(t) = e−tx(0) +

∫ t

0

e−(t−s)n(s)ds,

which remains bounded if sups |n(s)| < ∞. Thus, with control utilizing feedback we have achieved some notion of
stability which will be termed as bounded-input-bounded-output stability. Such a setup can be represented by Figure 1.2,
where the input is n, the output is y = x and u(t) = −(a+ 1)x(t).

The setup depicted in Figure 1.4 can be considered as a reference-tracking example, where the desired temperature process
is the reference signal that the system output is designed to be tracking.

Control can also be used to steer the state of the system from some initial condition to some final condition. If the final
condition is an equilibrium point, often this task is called stabilization. If the goal is to steer the state to some arbitrary
point in the state space, the task is called reachability (from an initial state) or controllability (with respect to a final state).
A related concept is observability, which is a crucial concept in particular when the information available at the controller
with regard to the state is perturbed by some measurement noise.
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1.2.2 Applications in Signal Processing Theory

Applications in signal processing has enabled much of modern technology. Two primary applications are in filter design,
which allows for estimation and denoising, and sampling theories which allow for discrete-time processing of continuous-
time signals.

Consider a signal x which is perturbed by noise w. A filter is a system which takes the noisy signal y = x+w as input and
provides a cleaner signal x̂ as its output.

x

w

y
Filter

x̂

Filtered signal

Fig. 1.6: Filtering of noisy signals. Here w is a noise, x is a signal to be reconstructed and x̂ is the output of the reconstruc-
tion given the noisy input y.

Many systems in practice are continuous, but they need to be processed by computers, which inevitably have to work
with discrete-time/discrete-space signals (as the ultimate language of transistors/chips are binary in terms of 0s and 1s).
Therefore, one needs to first sample a continuous-time signal and work with such signals in discrete-time, before processing
them, and interpolating them back to continuous-time.

Continuous-time signal

Sampler
xc xd

Discrete-time system
yd yc

Discrete-time outputSampled (discrete-time) signal

Interpolator

Continuous-time output

Fig. 1.7: Discrete-time processing of continous-time systems.

1.2.3 Applications in Communications and Information Theory

Modern engineering systems are typically highly interconnected with their environment which necessitates the presence of
data-links between various components of a system. Typically such systems require finite representations of uncountable
or large state space valued signals (in addition to discrete-time representation/approximation of continuous-time signals).
These include, quantization, coding and decoding of signals over communication channels (with or without feedback).
Each of the individual components, such as encoders, channels and decoders, may separately be viewed as systems, though
typically by the term communication system, we will refer to the entire ensemble mapping the source symbol and stochastic
noise (in the channel), to the decoder output.

Many other systems, however, operate in continuous-time. An example is classical analog radio communications, where
signals are modulated to carrier signals with targeted frequency waves, transmitted over wireless or wired media, and
demodulated upon reception by a decoder.
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x x̂
Encoder

y z

Decoder
Noisy Channel

Fig. 1.8: Communication of a signal across a noisy channel.

1.3 Linearization

Even though the primary focus of these notes is on linear models, we will see that linearization of non-linear models, around
a point of interest leads to a design method where a design based on the linear model achieves satisfactory performance for
the non-linear system in a local sense to be studied later in the notes.

Let g : Rn → Rm be a differentiable function. Let g(x) =
[
g1(x) . . . gm(x)

]
and x ∈ Rn be written as x =

[
x1 . . . xn

]
.

The Jacobian matrix of f at x, Jx(g), is an m× n matrix function consisting of partial derivatives of g such that

Jx(g)(i, j) =
∂gi

∂xj
(x), i = 1, 2, · · · ,m; j = 1, 2, · · · , n

Now, let x ∈ Rm and u ∈ Rp and
dx

dt
= f(x, u)

be such that f(x̄, ū) = 0. In this case, we say that x is at equilibrium at x̄ with constant control input ū. Suppose that we
slightly perturb x and u around the equilibrium (x̄, ū). Let us write x(t) = x̄+ x̃(t) and u = ū+ ũ(t), where x̃ and ũ are
small. Then,

d(x̄+ x̃)

dt
= f(x̄+ x̃, ū+ ũ)

Notice that d(x̄+x̃)
dt = dx̃

dt . If f is continuously differentiable, it follows that

f(x̄+ x̃, ū+ ũ) ≈ f(x̄, ū) + Jf
x (x̄, ū)x̃+ Jf

u (x̄, ū)ũ,

where Jf
x (x̄, ū) is the Jacobian of f(·, ū) : Rm → Rm at fixed ū and Jf

u (x̄, ū) is the Jacobian of f(x̄, ·) : Rp → Rm at
fixed x̄. Let

Jf
x (x̄, ū) =: A, Jf

u (x̄, ū) =: B,

we obtain
dx̃

dt
= Ax̃+Bũ,

as an approximate linear description of the system at around the equilibrium point (x̄, ū). We will observe that such a
linearization is very useful in systems design.

Consider the following example involving an inverted (non-linear) pendulum over a cart system (see Figure 12.1), with
masses of the pendulum and cart given with m and M , respectively. The goal is to keep the inverted pendulum (locally)
stable around θ = 0 by the control acting horizontally on the cart with mass M .

The non-linear mechanical/rotational dynamics equations can be derived as:

u = M
d2y

dt2
+m

d2

dt2
(y + l sin(θ)) =M

d2y

dt2
+m

d2y

dt2
+ml cos(θ)

d2θ

dt2
−ml(

dθ

dt
)2 sin(θ)

ml2
d2θ

dt2
= mg sin(θ)l −m

d2y

dt2
cos(θ)l (1.1)

Around θ = 0, dθdt = 0, we apply the linear approximations sin(θ) ≈ θ and cos(θ) ≈ 1, and (dθdt )
2 ≈ 0 to arrive at
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θ

l

m

u

y

M

Fig. 1.9

M
d2y

dt2
= u− (m

d2y

dt2
+ml

d2θ

dt2
)

l
d2θ

dt2
= gθ − d2y

dt2
(1.2)

Finally, writing x1 = y, x2 = dy
dt , x3 = θ, x4 = dθ

dt , we arrive at the linear model in state space form

dx

dt
=


0 1 0 0
0 0 −mg

M 0
0 0 0 1

0 0 (M+m)g
Ml 0

x+


0
1
M
0
−1
Ml

u,

where x =


x1
x2
x3
x4

.

A remarkable implication is the following: Using some systems theoretic analysis, it can be shown that linearization will
let us construct a control function/policy/law that makes the idealized linear system stable, which in turn makes the original
non-linear system locally stable around the (open-loop unstable) equilibrium point.

1.4 Mathematics of Systems

Given the introductory discussion presented, in the following we will first develop a rigorous study of a class of signal
spaces which arise in systems theory and applications. We will then investigate signal expansions and approximations.
This will also serve as an introduction to Fourier theory.

We will then study systems and their various regularity, structural and stability properties. We will, in this course, particu-
larly focus on linear systems. A primary motivation, as we saw earlier in the previous section, is that many physical systems
are either linear or locally almost linear (in the sense that a design based on a linear approximation leads to satisfactory
performance).

Fourier theory occupies a dominant domain in linear systems theory: In the historical theory of systems (and control), one
often reads about classical design and modern design: classical design is with regard to methods based on frequency-domain
analysis of systems, and modern design (or state-space design) refers to methods based on time-domain analysis. In our
course, we will discuss both approaches extensively. Fourier theory (and its generalizations via Laplace and Z-transforms)
facilitate the frequency-domain analysis.
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We will then study several applications in further detail. The course will lay the foundations for further study on the
applications considered here, as well as those not studied here, in addition to many related areas in both engineering and
applied mathematics.
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Signal Spaces: Linear, Banach and Hilbert Spaces, and Basis Expansions

In this chapter, we present a general review of signal spaces.

2.1 Normed Linear (Vector) Spaces and Metric Spaces

Definition 2.1.1 A linear (vector) space X is a space which is closed under addition and scalar multiplication: In partic-
ular, we define an addition operation +, and a scalar multiplication operation · such that

+ : X× X → X

· : C× X → X

with the following properties (we note that we may take the scalars to be either real or complex numbers). The following
are satisfied for x, y ∈ X and α, β scalars:

(i) x+ y = y + x

(ii) (x+ y) + z = x+ (y + z).

(iii)α · (x+ y) = α · x+ α · y.

(iv)(α+ β) · x = α · x+ β · x.

(v) There is a null vector 0 such that x+ 0 = x.

(vi)α · (β · x) = (αβ) · x

(vii) 1 · x = x

(viii) For every x ∈ X, there exists an element, called the (additive) inverse of x and denoted with −x with the property
x+ (−x) = 0.

Example 2.1. (i) The space Rn with pointwise additional and scalar multiplication is a linear space. The null vector is
0 = (0, 0, · · · , 0) ∈ Rn.
(ii) Consider the interval [a, b]. The collection of real-valued continuous functions on [a, b], with pointwise addition and
scalar multiplication is a linear space. The null element 0 is the function which is identically 0. This space is called the
space of real-valued continuous functions on [a, b]
(iii) The set of all infinite sequences of real numbers having only a finite number of terms not equal to zero is a vector
space. If one adds two such sequences, the sum also belongs to this space. This space is called the space of finitely many
non-zero sequences.
(iv) The collection of all polynomial functions defined on an interval [a, b] with complex coefficients forms a complex
linear space. Note that the sum of polynomials is another polynomial.
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Definition 2.1.2 A non-empty subset M of a (real) linear vector space X is called a subspace of X if

αx+ βy ∈M, ∀x, y ∈M and α, β ∈ R.

In particular, the null element 0 is an element of every subspace. For M,N two subspaces of a vector space X, M ∩N is
also a subspace of X.

Definition 2.1.3 A normed linear space X is a linear vector space on which a map from X to R+, called its norm, is defined
such that:

• ||x|| ≥ 0 ∀x ∈ X, ||x|| = 0 if and only if x is the null element (under addition and multiplication) of X.

• ||x+ y|| ≤ ||x||+ ||y||

• ||αx|| = |α|||x||, ∀α ∈ R, ∀x ∈ X

Definition 2.1.4 In a normed linear space X, an infinite sequence of elements {xn} converges to an element x if the
sequence {||xn − x||} converges to zero.

Example 2.2. a) The space C([a, b];R) of continuous functions from [a, b] to R with the norm ||x|| = max{a≤t≤b} |x(t)|
is a normed linear space.

b) lp(Z+;R) := {x ∈ Γ (Z+;R) : ||x||p =

(∑
i∈Z+

|x(i)|p
) 1

p

< ∞} is a normed linear space for all 1 ≤ p < ∞. c)

Recall that if S is a set of real numbers bounded above, then there is a smallest real number y such that x ≤ y for all x ∈ S.
The number y is called the least upper bound or supremum of S. If S is not bounded from above, then the supremum is ∞.
In view of this, for p = ∞, we define

l∞(Z+;R) := {x ∈ Γ (Z+;R) : ||x||∞ = sup
i∈Z+

|x(i)| <∞}

d) Lp([a, b];R) = {{x ∈ Γ ([a, b];R) : ||x||p =

(∫ b

a
|x(i)|p

) 1
p

< ∞} is a normed linear space. For p = ∞, we typically

write: L∞([a, b];R) := {x ∈ Γ ([a, b];R) : ||x||∞ = supt∈[a,b] |x(t)| < ∞}. However, for 1 ≤ p < ∞, to satisfy the
condition that ||x||p = 0 implies that x(t) = 0, we need to assume that functions which are equal to zero almost everywhere
are equivalent; for p = ∞ the definition is often revised with essential supremum instead of supremum so that

||x||∞ = inf
y:y(t)=x(t)a.e.

sup
t∈[a,b]

|y(t)|

This subtle difference needs to be made explicit in some applications.

To show that lp defined above is a normed linear space, we need to show that ||x+ y||p ≤ ||x||p + ||y||p.

Theorem 2.1.1 (Minkowski’s Inequality) For 1 ≤ p ≤ ∞

||x+ y||p ≤ ||x||p + ||y||p

See Exercise 2.4.2, which also studies a proof of Hölder’s Inequality, that is critically used in the proof of Minkowski’s
inequality:

Theorem 2.1.2 (Hölder’s Inequality) ∑
x(k)y(k) ≤ ||x||p||y||q,

with 1/p+ 1/q = 1 and 1 ≤ p, q ≤ ∞.
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Definition 2.1.5 A metric defined on a set X , is a function d : X ×X → R such that:

• d(x, y) ≥ 0, ∀x, y ∈ X and d(x, y) = 0 if and only if x = y.

• d(x, y) = d(y, x), ∀x, y ∈ X .

• d(x, y) ≤ d(x, z) + d(z, y), ∀x, y, z ∈ X .

Definition 2.1.6 A metric space (X, d) is a set equipped with a metric d.

A normed linear space is also a metric space, with metric

d(x, y) = ||x− y||.

Definition 2.1.7 Let X and Y be two normed linear spaces, and let B ⊂ X be a subset of X. A law (rule, relation) T which
relates with every element of B an element in Y, is called a transformation from X to Y with domain B. The relation is often
expressed as x 7→ y = T (x).

If for every y ∈ Y there is an x such that y = T (x), the transformation is said to be onto (or surjective). If for every
element of Y , there is at most one x such that y = T (x), the transformation is said to be one-to-one (or injective). If these
two properties hold simultaneously, the transformation is said to be bijective.

Definition 2.1.8 A transformation T : X → Y (or T ∈ Γ (X;Y )) is linear if for every x1, x2 ∈ X and α1, α2 ∈ R, we
have T (α1x1 + α2x2) = α1T (x1) + α2T (x2).

Definition 2.1.9 A transformation T : X → Y for normed linear spaces X,Y is continuous at x0 ∈ X , if for every
ϵ > 0,∃δ > 0 such that ||x− x0|| ≤ δ implies that ||T (x)− T (x0)|| ≤ ϵ (Here the norms depend on the vector spaces X
and Y). T is said to be continuous, if it is continuous at every x0 ∈ X .

Definition 2.1.10 A transformation T : X → Y is sequentially continuous at x0 ∈ X , if xn → x implies that T (xn) →
T (y).

Theorem 2.1.3 Sequential continuity and continuity are equivalent for normed linear spaces.

Theorem 2.1.4 If the transformation T is a linear one, then continuity is equivalent to being continuous at the null element.

For some applications, sequential continuity may be more convenient to work with as one may not need to quantify ϵ, δ
pairs to verify continuity.

An important class of normed spaces that is widely used in optimization and engineering problems are Banach spaces:

Definition 2.1.11 A sequence {xn} in a normed space X is Cauchy if for every ϵ > 0, there exists an N such that
||xn − xm|| ≤ ϵ, for all n,m ≥ N .

An important observation on Cauchy sequences is that every converging sequence is Cauchy, however, not all Cauchy
sequences are convergent: This is because the limit might not live in the original space where the sequence elements take
values in. This motivates the property of completeness:

Definition 2.1.12 A normed linear space X is complete, if every Cauchy sequence in X has a limit in X. A complete normed
linear space is called Banach.
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Banach spaces are important for many reasons including the following one: In many mathematical applications (such as
existence of and numerical methods for solutions to differential equations), machine learning problems (such as iterative
updates of data driven dynamics), stochastic analysis, or optimization problems (for which a sequence of approximating
solutions may be obtained), sometimes we would like to see if a given sequence converges, without knowing what the limit
of the sequence may be. Banach spaces allow us to use Cauchy sequence arguments to claim the existence of limits and
some of their properties.

An example is the following: consider the solutions to the equation Ax = b for A a square matrix and b a vector. One
can identify conditions on an iteration of the form xk+1 = (I − A)xk + b to form a Cauchy sequence and converge to a
solution through the contraction principle. As noted above, existence of solutions to ordinary differential equations also
follow from Cauchy sequence arguments.

In applications, we will also discuss completeness of a subset. A subset of a Banach space X is complete if and only if it is
closed. If it is not closed, one can provide a counterexample sequence which does not converge. If the set is closed, every
Cauchy sequence in this set has a limit in X and this limit should be a member of this set, hence the set is complete.

The real space R is a complete space.

Theorem 2.1.5 lp(Z+;R) := {x ∈ Γ (Z+;R) : ∥x∥p =

(∑
i∈N+

|x(i)|p
) 1

p

<∞} is a Banach space for all 1 ≤ p ≤ ∞.

Proof. (i) Let {xn} be Cauchy. This implies that for every ϵ > 0, ∃N such that for all n,m ≥ N ∥xn − xm∥p ≤ ϵ. This
also implies that for all n > N , ∥xn∥p ≤ ∥xN∥p + ϵ. Now let us denote xn by the vector {xn1 , xn2 , xn3 . . . , }. It follows
that for every k the sequence {xnk} is also Cauchy. Since xnk ∈ R, and R is complete, xnk → xk for some xk. Thus, the
sequence xn pointwise converges to some vector x∗.

(ii) Is x∗ ∈ lp(Z+;R)? Define
xn,K = {xn1 , xn2 , . . . , xnK−1, x

n
K , 0, 0, . . . },

that is, the vector which truncates after the Kth coordinate. Now, it follows that

∥xn,K∥p ≤ ∥xN∥p + ϵ,

for every n ≥ N and K and

lim
n→∞

∥xn,K∥pp = lim
n→∞

K∑
i=1

|xni |p =

K∑
i=1

|xi|p,

since there are only finitely many elements in the summation. We have

∥xn,K∥p ≤ ∥xN∥p + ϵ,

and thus
lim
n→∞

∥xn,K∥p = ∥x∗,K∥p ≤ ∥xN∥p + ϵ,

Let us take another limit, by the monotone convergence theorem (recall that this theorem states that a monotonically
increasing sequence which is bounded has a limit).

lim
K→∞

∥x∗,K∥pp = lim
K→∞

K∑
i=1

|xi|p = ∥x∗∥pp ≤ (∥xN∥p + ϵ)p.

(iii) The final question is: Does ∥xn − x∗∥p → 0? Since the sequence is Cauchy, it follows that for n,m ≥ N

∥xn − xm∥p ≤ ϵ

Thus, for every K ∈ N, ∥xn,K − xm,K∥p ≤ ϵ, and since K is finite
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lim
m→∞

∥xn,K − xm,K∥p = ∥xn,K − x∗,K∥p ≤ ϵ

Now, we take another limit
lim

K→∞
∥xn,K − x∗,K∥p ≤ ϵ

By the monotone convergence theorem again,

lim
K→∞

∥xn,K − x∗,K∥p = ∥xn − x∥p ≤ ϵ

Hence, ∥xn − x∥p → 0. ⊓⊔

The above spaces are also denoted lp(Z+), when the range space is clear from context.

Theorem 2.1.6 The space of bounded functions {x : [0, 1] → R, supt∈[0,1] |x(t)| <∞} is a Banach space.

The above space is often denoted by L∞([0, 1];R) or L∞([0, 1]).

Remark 2.3. A brief remark on notations: When the range space is R, the notation lp(Ω) denotes lp(Ω;R) for a discrete-
time index set Ω and likewise for a continuous-time index set Ω, Lp(Ω) denotes Lp(Ω;R).

2.2 Hilbert Spaces

We first define pre-Hilbert spaces.

Definition 2.2.1 A pre-Hilbert space X is a linear vector space where an inner product is defined onX×X . Corresponding
to each pair x, y ∈ X the inner product ⟨x, y⟩ is a scalar (that is real-valued or complex-valued). The inner product satisfies
the following axioms:

1. ⟨x, y⟩ = ⟨y, x⟩∗ (the superscript denotes the complex conjugate) (we will also use ⟨y, x⟩ to denote the complex
conjugate)

2. ⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩

3. ⟨αx, y⟩ = α⟨x, y⟩

4. ⟨x, x⟩ ≥ 0, equals 0 iff x is the null element.

The following is a crucial result in such a space, known as the Cauchy-Schwarz inequality.

Theorem 2.2.1 For x, y ∈ X ,
⟨x, y⟩ ≤

√
⟨x, x⟩

√
⟨y, y⟩,

where equality occurs if and only if x = αy for some scalar α.

Exercise 2.2.1 In a pre-Hilbert space ⟨x, x⟩ defines a norm: ||x|| =
√
⟨x, x⟩

The proof for the result requires one to show that
√
⟨x, x⟩ satisfies the triangle inequality, that is

||x+ y|| ≤ ||x||+ ||y||,

which can be proven by an application of the Cauchy-Schwarz inequality.
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Not all spaces admit an inner product. In particular, however, l2(N+;R) admits an inner product with ⟨x, y⟩ =
∑

t∈N+
x(n)y(n)

for x, y ∈ l2(N+;R). Furthermore, ||x|| =
√
⟨x, x⟩ defines a norm in l2(N+;R).

The inner product, in the special case of RN , is the usual inner vector product; hence RN is a pre-Hilbert space with the
usual inner-product.

Definition 2.2.2 A complete pre-Hilbert space, is called a Hilbert space.

Hence, a Hilbert space is a Banach space, endowed with an inner product, which induces its norm.

Proposition 2.2.1 The inner product is continuous: if xn → x, and yn → y, then ⟨xn, yn⟩ → ⟨x, y⟩ for xn, yn in a Hilbert
space.

2.2.1 Why are we interested in Hilbert Spaces?

Hilbert spaces allow us to do the following:

1. We can state a Projection Theorem, and hence a notion of optimality by providing a definition for orthogonality. The
geometric insights presented carry over to more general optimization problems.

2. If a Hilbert space is separable (to be defined shortly), there exists a countably (or sometimes only finitely) many
sequence of orthonormal vectors which can be used as basis to represent all the members in this space.

3. A Hilbert space formulation allows us to develop approximations of signals using a finite number of basis signals. This
is used in many practical expansions, such as the Fourier expansion among others.

Proposition 2.2.2 In a Hilbert space X , two vectors x, y ∈ X are orthogonal if ⟨x, y⟩ = 0. A vector x is orthogonal to a
set S ⊂ X if ⟨x, y⟩ = 0 ∀y ∈ S.

A set X is closed if it contains every limit of any converging sequence taking values in X.

Theorem 2.2.2 (Projection Theorem) Let H be a Hilbert space and B a subspace of H. Consider the problem:

inf
m∈B

∥x−m∥ (2.1)

(i) A necessary and sufficient condition for m∗ ∈ B to be the minimizing element in B so that

inf
m∈B

∥x−m∥ = ∥x−m∗∥ (2.2)

is that, x−m∗ be orthogonal B; that is

∥x−m∗∥ ≤ ∥x− y∥, ∀y ∈ B.

If exists, such an m∗ is unique.

(ii) Let H be a Hilbert space and B a closed subspace of H. For any vector x ∈ H , there is a unique vector m∗ ∈ B
satisfying (2.2).

Proof. For (i), suppose that m0 ∈ B is such that ∃m ∈ B with ⟨x −m0,m⟩ > 0. Without any loss, take ∥m∥ = 1 and
⟨x −m0,m⟩ = δ. We can show that with m1 = m0 + δm, we will have ∥x −m1∥2 = ∥x −m0∥2 − δ2 < ∥x −m0∥2,
and thus m0 cannot be a minimizer of (2.1).
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On the other hand, if ⟨x − m∗,M⟩ = 0, we have that for any m ∈ B ∥x − m∥2 = ∥x − m∗ + (m∗ − m)∥2 =
∥x − m∗∥2 + ∥m − m∗∥2 ≥ ∥x − m∗∥2, and thus m∗ is indeed the minimizer over all m ∈ B. Uniqueness of such a
minimizer also follows from this argument since if there were another minimizer m̄ ̸= m∗, we would have

∥x− m̄∥2 = ∥x−m∗∥2 + ∥m̄−m∗∥2 > ∥x−m∗∥2,

a contradiction.

For (ii), let

δ = inf
m∈M

∥x−m∥ (2.3)

Let {mk, k ∈ N} be so that {∥x−mk∥} → δ. Observe that

⟨x−mk + x−mn, x−mk + x−mn⟩+ ⟨x−mk − (x−mn), x−mk − (x−mn)⟩
= 2⟨x−mk, x−mk⟩+ 2⟨x−mn, x−mn⟩ (2.4)

Write

⟨x−mk + x−mn, x−mk + x−mn⟩ = ⟨2(x− mk +mn

2
, 2(x− mk +mn

2
)⟩

= 4⟨x− mk +mn

2
, x− mk +mn

2
⟩ (2.5)

Since mk+mn

2 ∈ B, by (2.3),
⟨x−mk + x−mn, x−mk + x−mn⟩ ≥ δ,

we have that
∥mk −mn∥2 ≤ 2∥x−mn∥2 + 2∥x−mk∥2 − 4δ2

As a result, as |x −mn∥2 → δ2, we have that mk is Cauchy. Since M is closed, it has a limit; call the limit m̃. We claim
that the limit is optimal and hence is m∗: Consider the difference:

⟨x−mn, x−mn⟩ − ⟨x− m̃, x− m̃⟩

We claim that the difference goes to zero. Indeed,

|⟨x−mn, x−mn⟩ − ⟨x− m̃, x− m̃⟩|
= |⟨x−mn, x−mn⟩ − ⟨x−mn, x− m̃⟩

+ ⟨x−mn, x− m̃⟩ − ⟨x− m̃, x− m̃|⟩
≤ |⟨x−mn, x−mn⟩ − ⟨x−mn, x− m̃⟩|

+ |⟨x−mn, x− m̃⟩ − ⟨x− m̃, x− m̃|⟩
= |⟨x−mn,mn − m̃⟩|

+ |⟨mn − m̃, x− m̃|⟩
≤ ∥x−mn∥∥mn − m̃∥+ ∥mn − m̃∥∥x− m̃∥ (2.6)

where the final inequality is due to Cauchy-Schwarz. Now, since ∥x − mn∥ → δ, we have that ∥x − mn∥ is bounded.
Finally, as ∥mn − m̃∥ → 0, both terms in the final line (2.6) go to zero and we conclude that

δ = lim
n→∞

∥x−mn∥ = ∥x− m̃∥

And therefore m̃ is a minimizing vector. By part (i), this has to be the only minimizing vector in B.

⊓⊔
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We will see applications of the projection theorem during the semester while studying optimal filter design and signal
representation.

2.3 Approximations and Signal Expansions

2.3.1 Orthogonality

Definition 2.3.1 A set of vectors in a Hilbert space S is orthogonal if all elements of this set are orthogonal to each other.
The set is orthonormal if each vector in this set has norm equal to one.

The Gram-Schmidt orthogonalization procedure can be invoked to generate a set of orthonormal sequences. This procedure
states that given a sequence {xi} is linearly independent vectors, there exists an orthonormal sequence of vectors {ei} such
that for every xk, αk, 1 ≤ k ≤ n, there exists βk, 1 ≤ k ≤ n with

n∑
k=1

αkxk =

n∑
k=1

βkek,

that is the linear span of {xk, 1 ≤ k ≤ n} is equal to the linear span of {ek, 1 ≤ k ≤ n} for every n ∈ N.

Recall that a set of vectors {ei} is linearly dependent if there exists a complex-valued vector c = {c1, c2, . . . , cN} such
that

∑N
i ciei = 0 with at least one coefficient ci ̸= 0. The following is a simple exercise.

Proposition 2.3.1 A sequence of orthonormal vectors is a linearly independent collection.

We say that a sequence
∑n

i=1 ϵiei converges to x, if for every ϵ > 0 there exists N ∈ N such that ||x −
∑n

i=1 ϵiei|| < ϵ,
for all n ≥ N .

One of the important results while studying Hilbert spaces is the following:

Theorem 2.3.1 Let {ei} be a sequence of orthonormal vectors in a Hilbert spaceH . Let {xn =
∑n

i=1 ϵiei} be a sequence
of vectors in H . The sequence converges to a vector x if and only if

∞∑
i=1

|ϵi|2 <∞.

In this case ⟨x, ei⟩ = ϵi.

2.3.2 Separable Hilbert Spaces and Countable Expansions

Definition 2.3.2 Given a normed linear space X , a subset D ⊂ X is dense in X , if for every x ∈ X , and each ϵ > 0,
there exists a member d ∈ D such that ||x− d|| ≤ ϵ.

Definition 2.3.3 A set is countable if every element of the set can be associated with an integer via an ordered mapping.

Examples of countable spaces are finite sets and the set Q of rational numbers. An example of uncountable sets is the set
R of real numbers.

The following was proven in class:

Theorem 2.3.2 (a) A countable union of countable sets is countable.
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(b) A finite Cartesian product of countable sets is countable.

(c) Infinite Cartesian products of countable sets may not be countable. The same holds if each of the sets is even finite.

(d) [0, 1] is not countable.

Cantor’s diagonal argument and the triangular enumeration are important steps in proving the theorem above.

Definition 2.3.4 A space X is separable, if it contains a countable dense set.

Separability states that it suffices to work with a countable set, when a set is uncountable, for computational purposes.
Examples of separable sets are R, and the set of continuous and bounded functions on a compact set metrized with the
maximum distance between the functions.

Theorem 2.3.3 Let H be a separable Hilbert space. Then, every orthonormal system of vectors in H has a finite or
countably infinite number of elements.

Proof. Let D = {x1, x2, · · · , } be a countable set dense in H . Let {eα} be a set of orthonormal vectors. Observe that, for
α ̸= β, ∥eα − eβ∥2 = ∥eα∥2 + ∥eβ∥2 = 2 and hence ∥eα − eβ∥ =

√
2.

By denseness of D, for every eα, there exists an element xkα
such that ∥eα − xkα

∥ < 1√
2

. This implies that, for any other
eβ , we have, by the relation, ∥x∥ − ∥y∥ ≤ ∥x− y∥,

∥eβ − eα∥ − ∥(eα − xkα∥ ≤ ∥eβ − eα −
(
(eα − xkα

)
∥ = ∥eβ − xkα∥,

and thus √
2− 1√

2
≤ ∥eβ − xkα

∥

Therefore, for every eα there is one and only one xαk
which is strictly inside a distance of 1√

2
. Thus, we can associate with

every element in {eα} and unique element in the countable set D. Thus, {eα} is countable. ⊓⊔

Definition 2.3.5 An orthonormal sequence in a Hilbert space H is complete if the only vector in H which is orthogonal to
each of the vectors in the sequence is the null vector.

Theorem 2.3.4 A Hilbert space H contains a complete orthonormal sequence (that is, a countable collection of such
vectors) if and only if it is separable.

Proof. (i) Let H be separable. Then, there exists a countable dense subset D = {x1, x2, · · · , }. Apply the Gram-Schmidt
procedure to obtain {e1, e2, · · · , }, an orthonormal collection. We claim that this set is a complete orthonormal sequence.
Suppose not; that is, let h ∈ H be so that ∥h∥ ≠ 0 and yet ⟨h, ek⟩ = 0 for every k ∈ N. Now, for every ϵ > 0, there exists
xm ∈ D with ∥h − xm∥ ≤ ϵ and observe that xm =

∑m
k=1 αiei since the span of the vectors {e1, e2, · · · , em} contains

xm. Then,

∥h∥2 = ⟨h, h⟩ = ⟨h−
m∑

k=1

αiei, h⟩ = ⟨h− xm, h⟩ ≤ ∥h− xm∥∥h∥ ≤ ϵ∥h∥,

which implies that ∥h∥ ≤ ϵ. Since ϵ > 0 is arbitrary; this completes the proof that ∥h∥ = 0 and h is the null element.

(ii) Now, let H have a complete orthonormal sequence {e1, e2, · · · }. We will show that

D =
⋃
n∈N

{x ∈ H : x =

n∑
k=1

αiei, αi ∈ Q},
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is a countable dense subset in H , and this H is separable. That D is separable follows from the fact that for every n, the
set {x ∈ H : x =

∑n
k=1 αiei, αi ∈ Q} is countable as a Cartesian product of finitely many countable sets, and thus the

countable union over n ∈ N leads to a countable set. We now show that this set is dense in H .

Consider the vector
∑∞

i=1⟨x, ei⟩ei. Let h = x−
∑∞

i=1⟨x, ei⟩ei. We claim that ∥h∥ = 0. For any m ∈ N,

⟨h, em⟩ = ⟨x−
∞∑
i=1

⟨x, ei⟩ei, em⟩

= ⟨x, em⟩ − ⟨ lim
n→∞

n∑
i=1

⟨x, ei⟩ei, em⟩

= ⟨x, em⟩ − lim
n→∞

⟨
n∑

i=1

⟨x, ei⟩ei, em⟩

= ⟨x, em⟩ − ⟨x, em⟩ = 0. (2.7)

But since {e1, e2, · · · } is a complete orthonormal sequence, it must be that ∥h∥ = 0. Hence, x =
∑∞

i=1⟨x, ei⟩ei. Now
approximate this vector, by first truncating the sum so that for any ϵ > 0,

∥x−
N∑
i=1

⟨x, ei⟩ei∥ ≤ ϵ/2,

and then approximating the coefficients by rational numbers so that ∥
∑N

i=1⟨x, ei⟩ei −
∑N

i=1 αiei∥ ≤ ϵ/2 with αi ∈ Q.
This implies that

∥x−
N∑
i=1

αiei∥

≤ ∥x−
N∑
i=1

⟨x, ei⟩ei∥+ ∥
N∑
i=1

⟨x, ei⟩ei −
N∑
i=1

αiei∥

≤ ϵ (2.8)

Since for every ϵ such an approximation can be made by some element in D, this completes the proof. ⊓⊔

The proof above also showed that in a Hilbert space H , a complete orthonormal sequence en defines a basis so that for any
x ∈ H , we have

x = lim
N→∞

N∑
i=1

⟨x, ei⟩ei

2.3.3 Separability of l2 and L2 spaces

In view of Theorem 2.3.4, the following result builds on the fact that the sequence of orthonormal vectors{
en, n ∈ N : en : Z+ → R, en(m) = 1{m=n}, m ∈ Z+

}
is a countable complete orthonormal set in l2(Z+;R): Note that for any h = {h(1), h(2), · · · , } ∈ l2(Z+;R), ⟨h, en⟩ =
h(n) and hence for any vector v ∈ l2(Z+;R)

⟨v, en⟩ = 0 ∀n ∈ Z+ =⇒ ∥v∥ = 0.
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Theorem 2.3.5 The Hilbert space l2(Z+;R) with inner product

⟨h1, h2⟩ =
∑
n∈Z+

h1(n)h2(n),

is separable.

Next, we will show that L2([a, b];R) is separable for a, b ∈ R. To establish this result, we will review some useful facts. In
the following, we will need to use some basic properties of Lebesgue integration; the reader may find Appendix A useful.
The analysis regarding the proof of this result is optional for our course.

Theorem 2.3.6 (Bernstein-Weierstrass’ Theorem) Any function in C([0, 1];R) can be approximated arbitrarily well by
a polynomial under the supremum norm.

Proof. This can be proven by construction. Define for some f ∈ C([0, 1]) and n ∈ N the Bernstein polynomial of order n
as:

Bn,f (t) =

n∑
k=0

f(
k

n
)

(
n

k

)
tk(1− t)n−k.

It can be proven that
lim
n→∞

sup
t∈[0,1]

|f(t)−Bn,f (t)| = 0.

See Exercise 2.4.14 for a probability theoretic proof, by noting that if Xk is a collection of {0, 1} valued independent and
identically distributed random variables with P (Xk = 1) = t, we have that

E[f(
1

N

N∑
k=1

Xk)] → f(t),

where this holds uniformly over t ∈ [0, 1]. This expectation operation defines a polynomial on [0, 1]. See Exercise 2.4.14
for further details. ⋄

Theorem 2.3.7 The set C([0, 1];R), of continuous functions, is dense in L2([0, 1];R).

Proof Sketch. First let us consider f ∈ L2([0, 1];R) that is bounded. Such a function can be approximated by a simple
function with an arbitrarily small error under the supremum norm, by the construction of the Lebesgue integration (see
Appendix A). By a result known as Urysohn’s Lemma, for any Borel E, we can approximate any indicator function
1{x∈E} with a continuous function g so that

∫K

−K
|1{x∈E} − g(x)|dx ≤ ϵ for any ϵ > 0: This follows first by noting that

for any measurable E, for any ϵ > 0 there exist F closed and G open with F ⊂ E ⊂ G and λ(G \ F ) < ϵ where λ is
the Lebesgue measure, and then noting that one can construct a continuous function which takes the value 1 on F and the
value 0 outside G (e.g., g(x) = 1− d(x,F )

max(d(x,F ),d(x,[0,1]\G)) ). Thus, given a finite number of indicator functions, their sum
can be approximated by so many continuous functions with an arbitrarily small error. If the function f is not bounded, it
can be first represented as a sum of positive and negative parts, and each (say the positive part) can be approximated with
a bounded function, since for a non-negative valued function f :

lim
N→∞

∫
t∈[0,1]

|f(t)−min(N, f(t))|2dt = 0.

This argument follows from the fact that |f(t)−min(N, f(t))|2 ≤ f2(t), and the dominated convergence theorem due to
the fact that f2(t) is integrable. Thus, for any ϵ, a bounded function can be used to approximate f . For such a function, the
method presented above can be used to establish the denseness of continuous functions. ⋄

Theorem 2.3.8 The space L2([0, 1];R) is separable.
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Proof. Given Theorem 2.3.7, we can show that polynomials {tk, k ∈ Z} defined on [0, 1] can be used to construct a
complete orthogonal sequence. In view of Theorem 2.3.4, this will imply separability.

To see this, let ⟨h, tk⟩ = 0 for all k ∈ Z+ but ∥h∥ ≠ 0. Then for any finite n and α1, α2, · · · , αn ∈ R:

⟨h, h⟩ = ⟨h−
n∑

i=1

αit
i, h⟩ ≤ ∥h−

n∑
i=1

αit
i∥∥h∥ (2.9)

The expression ∥h −
∑n

i=1 αit
i∥ can be made arbitrarily small by first approximating h with a continuous function with

a given approximation error (by Theorem 2.3.7) and then approximating that fixed continuous function with a polynomial
of some finite degree with another arbitrarily small approximation error (by Theorem 2.3.6). Thus ∥h∥ must be less than
any positive real number. Therefore, there exists a complete sequence. This sequence can be made orthonormal by the
Gram-Schmidt procedure. ⋄

Thus, Bernstein polynomials are dense in C([0, 1]), but these are not orthogonal in L2([0, 1];R); and if we apply the Gram-
Schmidt procedure to {1, t, t2, · · · }, we can obtain an orthonormal collection of polynomials that is a complete sequence
in L2([0, 1];R) as we saw in the proof of Theorem 2.3.8. These orthonormal polynomials are called Legendre polynomials.
For L2([0, 1];R), there exist further complete orthonormal sequences, to be discussed shortly.

We now discuss the separability of L2(R;R).

Theorem 2.3.9 L2(R+;R) is separable.

Proof Sketch. Consider the set of functions: FK = {g : g(x) = f(x)1{|x|≤K}, f ∈ L2(R+;R)}. Each FK is separable
under the L2 norm and there exists a countable dense subset in FK , call them NK . Furthermore, for every f ∈ L2(R+;R)
and every ϵ > 0, there exists some K and some g ∈ FK such that ∥f − g∥ ≤ ϵ (this follows from the dominated
convergence theorem, or the monotone convergence theorem depending on how one may use either). Now, let K range
over positive integers, and observe that ∪K∈NNK is countable, as a countable union of countable sets. Hence, this set is a
countable dense subset in L2(R+;R).

We will study the applications of these results in Fourier transformations, filter design and estimation.

Two further results are presented in the following.

Theorem 2.3.10 The set L2([1,∞);R) is dense in L1([1,∞);R).

Proof: Let g ∈ L1([1,∞);R). Let gK(t) = g(t)1{|t|≤K}, t ∈ R. It follows that gK ∈ L2([1,∞);R) and ||g − gK ||1 ≤ ϵ.
⋄

Theorem 2.3.11 Let Cc denote the space of continuous functions with compact support. Cc is dense in L1(R;R).

Proof Sketch. Recall first that the support or a function f is defined as the closure of the collection of points on which f is
non-zero. First let us assume that the bounded domain [−K,K], for some finiteK, contains the support of f . In this domain,
we can approximate any f ∈ L1(R;R) with a simple function with an arbitrarily small L1-error, by the construction of the
Lebesgue integration (see Appendix A). Again by Urysohn’s Lemma, we can approximate any indicator function 1{x∈E}

with a continuous function g with compact support so that
∫K

−K
|1{x∈E} − g(x)| ≤ ϵ. Thus, given a finite number of

indicator functions, their sum can be approximated by so many continuous functions with an arbitrarily small error. If
the function f has unbounded support, then we can truncate it first to obtain a function with a finite support, with some
(arbitrarily small) approximation error. ⋄

The above is also important in that, it shows that in Lp(R+), 1 ≤ p < ∞, the mass of a function cannot escape to
infinity. We will revisit this important characteristic occasionally in particular while discussing Fourier transforms.
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2.3.4 Signal expansions in L2([a, b];R) or L2([a, b];C): Fourier, Haar and Polynomial Bases

Fourier Signals as Basis Vectors and Fourier Series

Fourier series is a very important class of orthonormal sequences which are used to represent both discrete-time and
continuous-time signals. These will be studied later on in much detail. In particular, we will soon see that in L2([0, P ];C)
the family of complex exponentials

{ek : ek(t) =
1√
P
ei2π

k
P t, k ∈ Z},

provides a complete orthonormal sequence.

Accordingly, for any x ∈ L2([0, P ];C), we can write

x =
∑
k∈Z

⟨x, ek⟩ek

or by expanding the inner-product, we have

x(t) =
∑
k∈Z

(∫
R
x(s)

1√
P
e−i2π k

P sds

)
1√
P
ei2π

k
P t

where the convergence of the infinite sum is in the L2 sense.

This expansion is precisely the Fourier series expansion of the function x in L2([0, P ];C). The inner-product ⟨x, ek⟩
defines the Fourier transform.

Legendre Polynomials as Basis Vectors

We have seen, in the context of Theorems 2.3.6 and 2.3.7 (see the proof of 2.3.8), the functions {tk, k ∈ Z+} can be
used to constructor an orthonormal collection of signals which is complete in L2([a, b];R). These complete orthonormal
polynomials are called Legendre polynomials.

Haar Functions as Basis Vectors

One further practically very important basis is the class of Haar functions (known as wavelets). Define

Ψ0,0(x) =

{
1, if 0 ≤ x ≤ 1

0 else
(2.10)

and for n ∈ Z+, k ∈ {0, 1, 2, . . . , 2n − 1},

Φn,k(x) =


2n/2, if k2−n ≤ x < (k + 1/2)2−n

−2n/2, if (k + 1/2)2−n ≤ x ≤ (k + 1)2−n

0 else
(2.11)

Theorem 2.3.12 The (Haar) set of vectors

{Ψ0,0, Φn,k, n ∈ Z+, k ∈ {0, 1, 2, . . . , 2n − 1}}

is a complete orthonormal sequence in L2([0, 1];R).



22 2 Signal Spaces: Linear, Banach and Hilbert Spaces, and Basis Expansions

The important observation to note here is that, different expansions might be suited for different engineering applications:
for instance Haar series are occasionally used in image processing with certain edge behaviours, whereas Fourier expansion
is extensively used in speech processing and communications theoretic applications.

2.3.5 Approximations

Approximations allow us to represent data using finitely many vectors. The basis expansions studied above can be used to
obtain the best approximation of a signal up to finitely many terms to be used in an approximation: This can be posed as a
projection problem, and we have seen that the best approximation is one in which the approximation error is orthogonal to
all the vectors used in the approximation (defining an approximation subspace).

2.4 Exercises

Exercise 2.4.1 a) The set C∞(R), which is the set of all functions from R to R that are infinitely differentiable, together
with the operations of addition and scalar multiplication defined as follows, is a vector space: For any f1, f2 ∈ C∞(R)

(f1 + f2)(x) = f1(x) + f2(x), x ∈ R

and for any α ∈ R and f ∈ C∞(R)
(α · f)(x) = αf(x), x ∈ R

i) Now, consider P(R) to be the set of all (polynomial) functions that maps R to R such that any f ∈ P(R) can be written
as f(x) =

∑n
i=0 aix

i for some n ∈ N with a0, a1, · · · , an ∈ R. Suppose that we define the same addition and scalar
multiplication operations as defined above. Is P(R) a subspace in C∞(R)?

ii) Show that the space of all functions inC∞(R) which map R to R which satisfy f(10) = 0 is a vector space with addition
and multiplication defined as above.

b) Consider the set Rn. On Rn, define an addition operation and a scalar multiplication operation as follows:

(x1, x2, · · · , xn) + (y1, y2, · · · , yn) = (x1 + y1, x2 + y2, · · · , xn + yn)

α · (x1, x2, · · · , xn) = (αx1, αx2, · · · , αxn)

Show that, with these operations, Rn is a vector space.

c) Consider the set
W = {(x, y) : x ∈ R, x ∈ R, x > 0, y > 0}

On this set, define an addition operation and a scalar multiplication operation as follows:

(x1, y1) + (x2, y2) = (x1y1, x2y2)

α · (x, y) = (xα, yα)

Show that, with these operations, W is a vector space. Hint: Consider a bijection between W and the space R2 with
W ∋ (x, y) 7→ (log(x), log(y)) ∈ R2.

Exercise 2.4.2 (Hölder’s inequality) Let 1 ≤ p, q ≤ ∞ with 1/p+ 1/q = 1. Let x ∈ lp(Z+) and y ∈ lq(Z+). Then,

∞∑
i=0

|xiyi| ≤ ||x||p||y||q
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This is known as Hölder’s inequality. Equality holds if and only if

(
xi

||x||p
)(1/q) = (

yi
||y||q

)(1/p),

for each i ∈ Z+.

To prove this, perform the following: a) Show that for a ≥ 0, b ≥ 0, c ∈ (0, 1): acb1−c ≤ ca + (1 − c)b with equality if
and only if a = b. To show this, you may consider the function f(t) = tc − ct+ c− 1 and see how it behaves for t ≥ 0 and
let t = a/b.

b) Apply the inequality acb1−c ≤ ca+ (1− c)b to the numbers:

a = (
|xi|
||x||p

)p, b = (
|yi|
||y||q

)q, c = 1/p

Hölder’s inequality is useful to prove Minkowski’s inequality which states that for 1 < p <∞,

∥x+ y∥p ≤ ∥x∥p + ∥y∥p

This proceeds as follows:

n∑
i=1

|xi + yi|p ≤
n∑

i=1

|xi + yi|p−1|xi + yi| ≤
n∑

i=1

|xi + yi|p−1|xi|+
n∑

i=1

|xi + yi|p−1|yi|

=

( n∑
i=1

|xi + yi|(p−1)q

)1/q( n∑
i=1

|xi|p
)1/p

+

( n∑
i=1

|xi + yi|(p−1)q

)1/q( n∑
i=1

|yi|p
)1/p

=

( n∑
i=1

|xi + yi|p
)1/q(( n∑

i=1

|xi|p
)1/p

+

( n∑
i=1

|yi|p
)1/p)

(2.12)

Thus, using that 1− 1/q = 1/p,( n∑
i=1

|xi + yi|p
)1/p

≤
( n∑

i=1

|xi|p
)1/p

+

( n∑
i=1

|yi|p
)1/p

,

Now, the above holds for every n. Taking the limit n→ ∞ (first on the right and then on the left), it follows that

∥x+ y∥p ≤ ∥x∥p + ∥y∥p

which is the desired inequality.

Exercise 2.4.3 a) Let C([0, 1];R) be the space of continuous functions in Γ ([0, 1];R) with the norm

||f || = sup
t∈[0,1]

|f(t)|.

Is this space a complete normed linear space?

b) In class we will show that under the norm ||f || =
∫ 1

0
|f(t)|dt, the space of continuous functions C([0, 1];R) is not

complete. Let us revisit this property.

Consider the sequence
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xn(t) =


1, if 0 ≤ t ≤ 1/2

−2n(t− 1/2) + 1 if 1/2 < t < (1/2) + (1/2)n

0, if (1/2) + (1/2)n ≤ t ≤ 1

(2.13)

Is this sequence Cauchy under the described norm? Does the sequence have a limit which is continuous?

Exercise 2.4.4 Given a normed linear space (X, ||.||), introduce a map n : X ×X → R:

n(x, y) =
||x− y||

1 + ||x− y||

Show that n(x, y) is a metric: That is, it satisfies the triangle inequality:

n(x, y) ≤ n(x, z) + n(z, y), ∀x, y, z ∈ X,

and that n(x, y) = 0 iff x = y, and finally n(x, y) = n(y, x).

Exercise 2.4.5 Let {en, n ∈ N} be a complete orthonormal sequence in a real Hilbert space H . Let M be a subspace of
H , spanned by {ek, k ∈ S}, for some finite set S ⊂ N. That is,

M = {v ∈ H : ∃αk ∈ R, k ∈ S, v =
∑
k∈S

αkek}

Let x ∈ H be given. Find x∗ ∈ M which is the solution to the following:

min
x0∈M

||x− x0||,

in terms of x, and {en, n ∈ N}.

Hint: Any vector in H can be written as x =
∑

n∈N⟨x, en⟩en.

Exercise 2.4.6 Let T : L2(R+;R) → R be a mapping given by:

T (f) =

∫ ∞

1

f(t)
1 + t2

t4
dt

Is T continuous at any given f0 ∈ L2(R+;R)?

Provide precise arguments. What does it mean to be continuous at f0?

Exercise 2.4.7 Consider an inner-product defined by:

⟨x, y⟩ = lim
T→∞

1

T

∫ T

t=0

x(t)y(t)

Is the resulting inner-product (pre-Hilbert) space separable?

Exercise 2.4.8 Let x, y ∈ f(Z;R); that is, x, y map Z to R, such that x = {. . . , x−2, x−1, x0, x1, x2, . . . } and y =
{. . . , y−2, y−1, y0, y1, y2, . . . } and xk, yk ∈ R, for all k ∈ Z.

For a)-c) below, state if the following are true or false with justifications in a few sentences:

a) ⟨x, y⟩ =
∑

i∈Z i
2xiyi is an inner-product.
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b) ⟨x, y⟩ =
∑

i∈Z xiyi is an inner-product.
c) {x : ||x||22 <∞} contains a complete orthonormal sequence, where ||x||2 =

√∑
i∈Z |x(i)|2.

Exercise 2.4.9 Let X be a Hilbert space and x, y ∈ X. Prove the following:

a)
||x+ y||2 + ||x− y||2 = 2||x||2 + 2||y||2.

b)
|⟨x, y⟩| ≤ (||x||)(||y||).

c) [10 Points]
2|⟨x, y⟩| ≤ ||x||2 + ||y||2.

Exercise 2.4.10 Let H be a finite dimensional Hilbert space and {v1, v2} be two linearly independent vectors in H .

Let b1, b2 ∈ R. Show that, among all vectors x ∈ H , which satisfies

⟨x, v1⟩ = b1,

⟨x, v2⟩ = b2,

the vector x∗ ∈ H has the minimum norm if x∗ satisfies:

x∗ = α1v1 + α2v2,

with
⟨v1, v1⟩α1 + ⟨v2, v1⟩α2 = b1,

⟨v1, v2⟩α1 + ⟨v2, v2⟩α2 = b2.

Exercise 2.4.11 Let H be a Hilbert space and C ⊂ H be a dense subset of H . Suppose that any element hC in C is such
that for every ϵ > 0, there exist n ∈ N and βi ∈ R, i ∈ N so that

∥
n∑

i=0

βiei − hC∥ ≤ ϵ

where {eα, α ∈ N} is a countable sequence of orthonormal vectors in H .

Is it the case that H is separable?

Exercise 2.4.12 Let x be in the real Hilbert space L2([0, 1];R) with the inner product

⟨x, y⟩ =
∫ 1

0

x(t)y(t)dt.

We would like to express x in terms of the following two signals (which belong to the Haar signal space)

u1(t) = 1{t∈[0,1/2)} − 1{t∈[1/2,1]}, t ∈ [0, 1]

u2(t) = 1{t∈[0,1]}, t ∈ [0, 1]

such that ∫ 1

0

|x(t)−
2∑

i=1

αiui(t)|2dt
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is minimized, for {α1, α2 ∈ R}.

a) Using the Gram-Schmidt procedure, obtain two orthonormal vectors {e1(t), e2(t)} such that these vectors linearly span
the same space spanned by {u1(t), u2(t)}.

b) State the problem as a projection theorem problem by clearly identifying the Hilbert space and the projected subspace.

c) Let x(t) = 1{t∈[1/2,1]}. Find the minimizing α1, α2 values.

Exercise 2.4.13 Alice and Bob are approached by a generous company and asked to solve the following problem: The
company wishes to store any signal f inL2(R+;R) in a computer with a given error of ϵ > 0, that is for every f ∈ L2(R+),
there exists some signal h ∈ H such that ||f − h||2 ≤ ϵ (thus the error is uniform over all possible signals), where H is
the stored family of signals (in the computer’s memory).

To achieve this, they encourage Alice or Bob to use a finite or a countable expansion to represent the signal and later store
this signal in an arbitrarily large memory. Hence, they allow Alice or Bob to purchase as much memory as they would like
for a given error value of ϵ.

Alice turns down the offer and says it is impossible to do that for any ϵ with a finite memory and argues then she needs
infinite memory, which is impossible.

Bob accepts the offer and says he may need a very large, but finite, memory for any given ϵ > 0; thus, the task is possible.

Which one is the accurate assessment?

a) If you think Alice is right, which further conditions can she impose to make this possible? Why is she right?

b) If you think Bob is right, can you suggest a method? Why is he right?

Exercise 2.4.14 Prove Theorem 2.3.6 using a probability theoretic method. Proceed as follows: The number

Bn,f (t) =

n∑
k=0

f(
k

n
)

(
n

k

)
tk(1− t)n−k.

can be expressed as the expectation E[ft(
Sn

n )], where Sn = X1 + X2 + · · · + Xn, where Xi is an i.i.d. collection of
Bernoulli random variables where Xi = 1 with probability t and Xi = 0 with probability 1 − t. Here, observe that the
sum Sn has a binomial distribution. Thus,

sup
t∈[0,1]

|f(t)−Bn,f (t)| = sup
t∈[0,1]

|Et[f(
Sn

n
)]− f(t)|,

where Et, for each t, denotes the expectation with respect to the i.i.d. Bernoulli random variables Xi each with
P (Xi = 1) = t. Let Pt denote the probability measure induced by these t-parametrized i.i.d. sequence of Bernoulli
random variables.

Since f is continuous and [0, 1] is compact, f is uniformly continuous. Thus, for every ϵ > 0, there exists δ > 0 such that
|x− y| < δ implies that |f(x)− f(y)| ≤ ϵ. Thus,

|Et[f(
Sn

n
)]− f(t)|

=

∫
ω:|Sn

n −t|≤δ

|f(Sn

n
)]− f(t)|P (dω) +

∫
ω:|Sn

n −t|>δ

|f(Sn

n
)]− f(t)|P (dω)

≤ ϵ+ 2 sup
y∈[0,1]

|f(y)|Pt(|
Sn

n
− t| > δ) (2.14)

The last term converges to ϵ as n→ ∞ by the law of large numbers. The above holds for every ϵ > 0.
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Now, one needs to show that this convergence is uniform in t: For this show that for all t ∈ [0, 1], via Markov’s inequality
and the independence of Xi

Pt(|
Sn

n
− t| > δ) = Pt(|

Sn

n
− t|2 > δ2) ≤ 1

4nδ2
,

establishing uniform convergence (over t ∈ [0, 1]), and thus complete the proof.

Exercise 2.4.15 (A useful result on countability properties) Let F : R → R be a monotonically increasing function
(that is, x1 ≤ x2 implies that F (x1) ≤ F (x2)). Show that F can have at most countably many points of discontinuity.

Hint. If a point is such that F is discontinuous, then there exists n ∈ N with F (x+) := lim infxn↓x F (x), F (x
−) :=

lim supxn↑x F (x), F (x
+)−F (x−) > 1

n . Express R = ∪m∈Z(m,m+1]. LetBm
n := {x ∈ (m,m+1] : F (x+)−F (x−) >

1
n}. It must be that Bm

n is finite for otherwise the jump would be unbounded in the interval (m,m+1]. Then, the countable
union ∪nB

m
n will be countable. Finally ∪mB

m
n is also countable.

Exercise 2.4.16 Prove Theorem 2.3.12.





3

Dual Spaces, the Schwartz Space and Distribution Theory, and the Dirac Delta
Function

A complete understanding of Fourier transforms is possible through an investigation building on distributions: A distribu-
tion is a continuous, linear function on a space of test functions. The space of test functions we will consider will prove to
be very useful.

To gain some intuition, consider the function sin(nt). This function does not have a pointwise limit as n → ∞. How-
ever, with f an arbitrary continuous function, the integral

∫
sin(nt)f(t)dt has a well-defined limit, which is zero. In this

sense, sin(nt) admits a limit which is equivalent to the constant function with value 0. This will motivate us to introduce
distribution theory.

There will be some additional useful properties: Every distribution is differentiable, and the differentiation is continuous.
Most importantly, a function whose Fourier transform is not defined as a function might have a transform in a distributional
sense.

Perhaps, it will not be immediately evident that the study of such a theory is needed in engineering practice. However, the
patient student will realize the importance of this topic, and versatility in introduces, both this semester, in the context of
Fourier transformations, as well as next year, or afterwards, while studying topics in optimization, control, and probability.

In our course, one important application which arises while studying linear systems as well as Laplace and Fourier trans-
forms is with regard to the use of the impulse (or Dirac delta) function. Such functions do not live in the set of R-valued
functions, and hence many operations such as integration, become ill-stated. However, the Dirac delta function is such an
important and crucial object that one has to know how to work with it even in the most elementary applications in sig-
nal processing, circuit analysis, control, and communications, in addition to many other areas of engineering and applied
mathematics. We will see that the appropriate way to study the impulse function is to always work under an integral. We
will make this discussion more precise in the following.

3.1 Dual Space of a Normed Linear Space

Let f be a linear functional on a normed linear space X . We say f is bounded (in the operator norm) if there is a constant
M such that |f(x)| ≤M∥x∥ for all x ∈ X . The smallest such M is called the norm of f and is denoted by ∥f∥, also given
by:

∥f∥ := sup
x:∥x∦=0

|f(x)|
∥x∥

. (3.1)

The space of all bounded, linear functionals on X is called the (topological) dual space of X . This is equivalent to the
space of all continuous and linear functions, as continuity and boundedness imply each other:

Exercise 3.1.1 Show that a linear functional on a normed linear space is bounded if and only if it is continuous.
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LetX be a normed space of signals and let us define the dual space ofX as the set of linear and bounded functions onX to
R or C, and let us denote this space by X∗. This space is a linear space, under pointwise addition and scalar multiplication
of functions in it.

Furthermore, the space of continuous and linear functions is itself a normed space with the norm given above in (3.1).

Exercise 3.1.2 Show that (X∗, ∥ · ∥) is a Banach space.

Remark 3.1. We note that the above holds even if X itself is not Banach.

A key result for identifying the dual spaces for lp(Z+;R) or Lp(R+;R) spaces is Hölder’s inequality (see Theorem 2.1.2):
Let 1 ≤ p, q <∞ or possibly ∞. Then, ∑

i∈Z+

xiyi ≤ ∥x∥p∥y∥q,

where 1
p + 1

q = 1.

Theorem 3.1.1 (Riesz Representation Theorem for lp(Z+;R) and Lp(R+;R) spaces) Every linear bounded function
on lp(Z+;R), 1 ≤ p <∞, is representable uniquely in the form

f(x) =

∞∑
i=0

ηixi,

where η = {ηi} is in lq . Furthermore, every element in lq defines a member of lp(Z+;R)∗, and

∥f∥ = ∥η∥q, (3.2)

This also applies to Lp(R+;R) spaces.

Riesz Representation Theorem tells us that while studying spaces such as Lp(R+;R) or lp(N;R), we can use an inner-
product like (but not really an inner-product in the way we defined Hilbert spaces) expression to represent the set of all
linear functions on X by:

⟨·, y⟩ : x 7→ ⟨x, y⟩ =
∫
R
x(t)y(t)dt

where ⟨x, y⟩ is a continuous linear function on X , but this is equivalent to a function y ∈ X∗ having an inner-product like
function with x ∈ X . Likewise, for a discrete-time signal:

⟨·, y⟩ : x 7→ ⟨x, y⟩ =
∞∑
i=1

x(i)y(i)dt,

is a linear function on X .

For example if X = Lp(R+;R) for 1 ≤ p < ∞, we can show that the dual space of X is representable by elements in
Lq(R+;R) where 1

p + 1
q = 1.

In the special case of p = 2 we have the space L2(R+;R), which has its dual space as itself.

The following is a general result for Hilbert spaces.

Theorem 3.1.2 (Riesz Representation Theorem for Hilbert Spaces) Every linear bounded function on a Hilbert space
Hadmits a representation of the form:

f(x) = ⟨x, y⟩

for some y ∈ H .
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We say that x ∈ X and x∗ ∈ X∗ are aligned if

⟨x, x∗⟩ = ∥x∥∥x∗∥.

Remark 3.2. Some observations beyond the scope of our course follow.

(i) The dual space of l∞(Z+;R) or L∞(R+;R) is more complicated (due to the fact that such functions do not converge
to zero as the index goes unbounded), and will not be considered in this course. On the other hand, let c0 ∈ Γ (Z+;R)
be the set of signals which decay to zero. The dual of this space is (associated with, in the sense of the representation
result presented earlier) l1(Z;R).

(ii) The dual of C([a, b];R) can be associated with the space of signed measures with bounded total variation. Likewise,
let C0(R;R) denote the space of continuous functions f which satisfy lim|x|→∞ f(x) = 0. The dual of this space is
(associated with) the space of finite signed measures with bounded total variation.

(iii)Those of you who will take further courses on probability will study the concept of weak convergence of probability
measures. A sequence of probability measures µn converges to some probability measure µ weakly if for every f in
Cb(R;R) (that is the set of continuous and bounded functions on R)∫

µn(dx)f(x) →
∫
µ(dx)f(x).

If we had replaced Cb(R;R) with C0(R;R) here, note that this would coincide with the weak*-convergence of µn → µ
(to be studied in the following). Nonetheless, in probability theory the convergence stated above is so important that
this is simply called weak convergence.

3.1.1 Weak and Weak* Convergence

Earlier, we discussed that in a normed space X , a sequence of vectors {xn} converges to a vector x if

∥xn − x∥ → 0.

The above is also called strong convergence.

Definition 3.1.1 A sequence {xn} in X is said to converge weakly to x if

f(xn) → f(x)

for all f ∈ X∗.

Exercise 3.1.3 Let x ∈ l2(N;R). Show that if
x→ x∗,

then
⟨x, f⟩ → ⟨x∗, f⟩ ∀f ∈ l2(N;R)

We note however that, weak convergence does not imply strong convergence.

A related convergence notion, one that we will adopt while studying distributions, is that of weak* convergence, defined
next.

Definition 3.1.2 A sequence {fn} in X∗ is said to converge in the weak∗ sense to f if

fn(x) → f(x)
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for all x ∈ X .

We note that such a convergence notion is useful in the study of solutions to differential equations (ordinary and partial),
optimal control theory, and probability theory as well, even though we will not be able to discuss these in our course.

3.2 Distribution Theory

A distribution is a linear and continuous R−valued function (that is, a functional) on a space of test functions. Thus, a
distribution can be viewed to be an element of the dual space of a linear space test functions (even though we will see that
the linear space of test functions does not need to form a normed linear space).

Studying distributions and sets of test functions present many benefits for our course. For example, the delta function has
a natural representation as a distribution. Furthermore, Fourier analysis will be observed to be a bijective mapping from a
space of test functions to another one, and this space of test functions is rich enough to approximate many functions that
we encounter in applications sufficiently well. Furthermore, we will define the Fourier transform first on a space of test
functions and extend it from this space to larger spaces, such as L2(R;C).

3.2.1 Space D and S of Test Functions

Let D denote a set of test functions from R to R, which are smooth (infinitely differentiable) and which have bounded
support sets. Such functions exist, for example

f(t) = 1{|t|≤1}e
1

t2−1 ,

is one such function.

We say a sequence of signals {xi} in D converges to the null element 0 if a) For every i ∈ N, there exists a compact,
continuous-time domain T ⊂ R such that the support set of xi is contained T (we define the support for a function f to be
the closure of the set of points {t : f(t) > 0}).

b) For every ϵ > 0, and k there exists an Nk ∈ Z+ such that for all n ≥ Nk, pk(x) ≤ ϵ, where pk = supt∈R | d
k

dtk
x(t)| (that

is, all the derivatives of x converge to zero uniformly on R).

In applications we usually encounter signals with unbounded support. Hence, a theory based on the above test functions
might not be sufficient. Furthermore, the Fourier transform of a function in D is not in the same space (a topic to be
discussed further). As such, we will find it convenient to slightly extend the space of test signals.

Definition 3.2.1 (Schwartz Signal Space S) An infinitely differentiable signal ϕ : R → R is in the Schwartz Signal space,
denoted with S, if for each k ∈ Z+ and for each l ∈ Z+

sup
t∈R

|tlϕ(k)(t)| <∞,

where ϕ(k)(t) = dk

dtk
ϕ(t).

For example the function ϕ(t) = e−t2 is a Schwartz signal.

One can equip S with the topology generated by a countable number of semi-norms:

pα,β(ϕ) := sup
t

|tα d
β

dβ
ϕ(t)|,

for α, β ∈ N. That is, we say, a sequence of functions ϕn in S converges to another one ϕ if
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lim
n→∞

pα,β(ϕn − ϕ) = 0, (α, β) ∈ Z+ × Z+.

With the above, we could define a metric by working with the above seminorms: for x, y ∈ S , let us define a metric
between the two vectors as:

d(x, y) =
∑
n

1

2n
pn(x)

1 + pn(x)
, (3.3)

where n is a countable enumeration of the pairs (α, β) ∈ Z+ × Z+.

The Schwartz space of signals equipped with such a metric will be a complete space. Furthermore, differentiation operator
becomes a continuous operation in S, under this metric; a topic which we will discuss further.

As had been discussed before (slightly generalizing Theorem 2.1.3), a functional T from S → C is continuous if and only
if for every convergent sequence in S , ϕn → ϕ, we have T (ϕn) → T (ϕ). We note that checking sequential continuity
is typically easier than continuity, since in the space S, it is not convenient to compute the distance between two vectors
given the quite involved construction of the metric in (3.3).

Definition 3.2.2 A distribution is a linear, continuous functional on the space of test functions S.

Thus, a distribution is an element of the dual space of S (that is, S∗), even though S is not defined as a normed space, but
as a metric space which is nonetheless a linear space.

General Distributions and Singular Distributions

Distributions can be regular and singular. Regular distributions can be expressed as an integral of a test function and a
locally integrable function (that is a function which has a finite absolute integral on any compact domain on which it is
defined). For example if γ(t) is a real-valued integrable function on R, and ϕ ∈ S the distribution given by

γ̄(ϕ) :=

∫
R
γ(t)ϕ(t)dt (3.4)

is a regular distribution on S, represented by a regular, integrable, function γ(t).

Definition 3.2.3 A tempered signal, x(t) is one which satisfies small growth, that is, for some β, γ ∈ R, N ∈ Z+:

|x(t)| ≤ β|t|N + γ, ∀t ∈ R

Any tempered signal can represent a regular distribution.

Singular distributions do not admit such a representation. For example the Dirac delta distribution δ̄, defined for all ϕ ∈ S:

δ̄(ϕ) = ϕ(0),

does not admit a representation in the form
∫
g(t)ϕ(t) = ϕ(0). Even when there is no function which can be used to

represent a singular distribution, one occasionally represents a singular distribution as if such a signal exists and call
the representing function a singular or a generalized function. The informal expression

∫
δ(t)ϕ(t) = ϕ(0) is a common

example for this, where δ is the generalized impulse function which takes the value ∞ at 0, and zero elsewhere.

Proposition 3.2.1 The map δ̄(ϕ) = ϕ(0) defines a distribution on S. This distribution is called the Dirac delta distribution.

Proof: We need to show that the δ̄(ϕ) is linear and continuous. Linearity is immediate. To show continuity, let ϕn → ϕ.
This implies that supt |ϕn(t)− ϕ(t)| = 0, by the definition of convergence. Hence
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δ̄(ϕn) = ϕn(0) → ϕ(0) = δ̄(ϕ)

⋄

Exercise 3.2.1 Show that the relation

f̄(ϕ) =

∫ ∞

0

t2ϕ(t)dt, ϕ ∈ S

defines a distribution f̄ ∈ S∗.

While performing operations on distributions, we first study regular distributions and try to check if the operation is con-
sistent with such distributions.

Equivalence and Convergence of Distributions

Two distributions γ̄ and ζ̄ are equal if
γ̄(f) = ζ̄(f), ∀f ∈ S

Definition 3.2.4 A sequence of distributions {γ̄n} converges to a distribution γ̄ if

γ̄n(f) → γ̄(f), ∀f ∈ S

Observe that the above notion is identical to the weak∗ convergence notion discussed earlier.

Exercise 3.2.2 Let for j ∈ Z+, j > 0

fj(t) =

{
j, if 0 ≤ t ≤ 1

j

0 else
(3.5)

a) For any real-valued function g ∈ S, define

f̄j(g) :=

∫ ∞

0

fj(t)g(t)dt.

Show that f̄j(.) is a distribution on S for every j ∈ N.

b) Show that

lim
j→∞

∫ ∞

0

fj(t)g(t)dt = δ̄(g) = g(0).

Conclude that, the sequence of regular distributions f̄j(.), represented by a real-valued, integrable function fj(t), converges
to the Dirac delta distribution δ̄(.) on the space of test signals in S.

In fact, we can find many other signals which can define regular distributions whose limit is the delta distribution. This
motivates the following section.

3.3 Approximate Identity Sequences

Definition 3.3.1 Let ψn : R → R be a sequence such that
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• ψn(t) ≥ 0, t ∈ R, n ∈ N.

•
∫
ψn(t)dt = 1, n ∈ N.

• limn→∞
∫
δ≤|t| ψn(t)dt = 0, ∀δ > 0.

Such ψn sequences are called approximate identity sequences.

We have seen one example in (3.5). The result discussed generalizes to any approximate identity sequence:

Theorem 3.3.1 Distributions represented by approximate identity sequences converge to the Dirac delta distribution as
n→ ∞.

Proof. Let ϕ ∈ S. Then,

=

∫
ψn(t)ϕ(t)dt− ϕ(0)

=

∫
ψn(t)ϕ(t)dt−

∫
ψn(t)ϕ(0)dt

=

∫
ψn(t)(ϕ(t)− ϕ(0))dt

Since ϕ is continuous, for every ϵ > 0, there exists a δϵ > 0 such that |ϕ(t)− ϕ(0)| ≤ ϵ. Accordingly,

lim sup
n→∞

|
∫
ψn(t)ϕ(t)dt− ϕ(0)|

= lim sup
n→∞

|
∫
ψn(t)(ϕ(t)− ϕ(0))dt|

≤ lim sup
n→∞

|
∫
t:|t|>δϵ

ψn(t)(ϕ(t)− ϕ(0))dt|

+ lim sup
n→∞

|
∫
t:|t|≤δϵ

ψn(t)(ϕ(t)− ϕ(0))dt|

≤ lim sup
n→∞

∫
t:|t|>δϵ

ψn(t)|(ϕ(t)− ϕ(0))|dt

+ lim sup
n→∞

∫
t:|t|≤δϵ

ψn(t)|ϕ(t)− ϕ(0)|dt

≤ (2 sup
t∈R

|ϕ(t)|) lim sup
n→∞

∫
t:|t|>δϵ

ψn(t)dt

+ lim sup
n→∞

∫
t:|t|≤δϵ

ψn(t)ϵdt

≤ ϵ, (3.6)

where we use the properties of the approximate identity sequences above. Since ϵ > 0 is arbitrary; the result follows so
that the limit above exists and is zero. Thus, we conclude that∫

ψn(t)ϕ(t)dt→ δ̄(ϕ) = ϕ(0).

⊓⊔

One example for such fn functions is the following Gaussian sequence given by.
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fn(t) =
1√
2π 1

n

e
−1
2

−t2

1
n (3.7)

Observe that such an fn sequence lives in S.

We state a further example below.

Exercise 3.3.1 Consider the sequence

ψn(x) = cn(1 + cos(x))n1{|x|≤π}

where cn is so that make
∫
ψn(x)dx = 1. Show that

lim
n→∞

∫
|x|≥δ

ψn(x)dx = 0 ∀δ > 0.

One useful sequence, which does not satisfy the non-negativity property above, but that satisfies the convergence property
(to δ̄) is the following sequence:

ψn(x) =
sin(nx)

πx

Theorem 3.3.2 For any ϕ ∈ S

lim
n→∞

∫
ψn(dx)ϕ(x) = ϕ(0) (3.8)

Proof. We use the following supporting results:

(i)

lim
R→∞

∫ R

−R

sin(x)

x
dx = π

(ii) Riemann-Lebesgue Lemma (see Theorem 5.3.3): For any integrable function g, lim|f |→∞
∫
g(x)eifxdx = 0.

(iii)We have lim|x|→0
ϕ(x)−ϕ(0)

x = h(x) for some smooth h.

Let us express the integration as ∫
|x|≥1

ψn(x)ϕ(x) +

∫
|x|≤1

ψn(dx)ϕ(x)

The first expression goes to zero, by the Riemann-Lebesgue Lemma. For the second term, we write∫
|x|≤1

ψn(x)ϕ(x) =

∫
|x|≤1

ϕ(0)ψn(x)dx+

∫
|x|≤1

ϕ(x)− ϕ(0)

πx
sin(nx)dx.

The second term in this expression goes to zero, by the Riemann-Lebesgue Lemma through the relation lim|x|→0
ϕ(x)−ϕ(0)

x =
h(x) for some smooth h and splitting the integral to an arbitrarily small interval (−δ, δ) and its complement [−1, 1]\(−δ, δ)
and studying these separately, noting the convergence of the smaller interval integration to that involving the smooth func-
tion h. The first term

∫
|x|≥1

ϕ(0)ψn(x)dx converges to ϕ(0): By writing u = nx, we obtain∫
|x|≤1

sin(nx)

πx
dx =

∫
|u|≤n

sin(u)

πu
du

and using the fact that limn→∞
∫ n

−n
sin(x)
πx dx = 1, the result follows. ⊓⊔
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3.3.1 Convolution and its use in approximations

The convolution of two functions (whenever this integration is well-defined) is defined as:

(ψ ∗ ϕ)(t) =
∫
ψ(τ)ϕ(t− τ)dτ =

∫
ϕ(τ)ψ(t− τ)dτ

The convolution can be defined for any pair of functions which are in L2(R;R). The convolution of two functions in S is
also in S.

A very useful result is the following.

Theorem 3.3.3 If ψn is an approximate identity sequence, Then,

(ψn ∗ f)(t) → f(t),

for every continuous and bounded function f : R → R, uniformly on compact sets [a, b] ⊂ R.

Proof. Write

(ψn ∗ f)(t)− f(t)

=

∫
ψn(τ)f(t− τ)dτ − f(t)

=

∫
ψn(τ)f(t− τ)dτ −

∫
ψn(τ)f(t)dτ

=

∫
ψn(τ)

(
f(t− τ)− f(t)

)
dτ

Since f is continuous, for every ϵ > 0, there exists a δϵ > 0 such that |f(t)− f(t− δϵ)| ≤ ϵ. Accordingly,

lim sup
n→∞

|(ψn ∗ f)(t)− f(t)|

= lim sup
n→∞

|
∫
ψn(τ)

(
f(t− τ)− f(t)

)
dτ |

≤ lim sup
n→∞

|
∫
τ :|τ |>δϵ

ψn(τ)

(
f(t− τ)− f(t)

)
dτ |

+ lim sup
n→∞

|
∫
τ :|τ |≤δϵ

ψn(τ)

(
f(t− τ)− f(t)

)
dτ |

≤ lim sup
n→∞

∫
τ :|τ |>δϵ

ψn(τ)|f(t− τ)− f(t)|dτ

+ lim sup
n→∞

∫
τ :|τ |≤δϵ

ψn(τ)|f(t− τ)− f(t)|dτ

≤ (2 sup
t∈R

|f(t)|) lim sup
n→∞

∫
τ :|τ |>δϵ

ψn(τ)dτ

+ lim sup
n→∞

∫
τ :|τ |≤δϵ

ψn(τ)ϵdτ

≤ ϵ (3.9)

Since ϵ > 0 is arbitrary; the result follows so that the limit above exists and is zero. Note that the for compact K, the δ, ϵ
pair can be taken to be uniform for all t ∈ K, that is, for every ϵ > 0, there exists a δϵ,K > 0 such that |f(t)−f(t−δϵ)| ≤ ϵ
for all t ∈ K. Therefore, the convergence is uniform over compact sets, in the sense that
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lim
n→∞

sup
t∈K

|(ψn ∗ f)(t)− f(t)| = 0.

⊓⊔

Note that with ψn defined as in (3.7), (ψn ⋆ ϕ) is always infinitely differentiable, and one may conclude the following:

Corollary 3.3.1 The space of smooth signals are dense in the space of continuous functions with a compact support under
the supremum norm.

3.3.2 Complenetess of complex exponentials in L2([−π, π];C)

Using Theorem 3.3.3, with
ψn(t) = cn(1 + cos(t))n,

(which is an approximate identity sequence as shown in Exercise 3.3.1, when cn is picked so that
∫
ψn(t)dt = 1), we can

prove the following:

Theorem 3.3.4 The family of complex exponentials in L2([−π, π];C):

{en(t)} = { 1√
2π
eint, n ∈ Z}

forms an orthonormal sequence which is complete.

Proof. The proof follows from Theorem 3.3.3, by writing

(ψn ∗ f)(t) =
∫
ψn(t− τ)f(τ) =

∫
cn(1 + cos(t− τ))nf(τ)dτ

Now,

(1 + cos(t− τ))n =

n∑
k=0

(
n

k

)
(cos(t− τ))k

=
n∑

k=0

(
n

k

)
(
ei(t−τ) + e−i(t−τ)

2
)k

=

n∑
k=−n

(
n

k

)
bn,ke

ik(t−τ) (3.10)

for some collection of coefficients bn,k, k = −n,−n+ 1, · · · , n. Thus,

(ψn ∗ f)(t) =
∫ n∑

k=−n

(
n

k

)
bn,ke

ik(t−τ)f(τ)dτ =

n∑
k=−n

eiktan,k

where
an,k := bn,k

∫
e−ikτf(τ)dτ, k = −n,−n+ 1, · · · , n

That is, we have that, as n→ ∞,
n∑

k=−n

eiktan,k → f(t)

uniformly over t ∈ [−π, π]. Accordingly, via the arguments as in (2.9), it follows that the only vector in L2([−π, π];C)
which is orthogonal to {eikt, t ∈ [−π, π]} for k ∈ Z is the null vector and thus, the collection
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{en(t)} = { 1√
2π
eint, n ∈ Z},

forms a complete orthonormal sequence in L2([−π, π];C). ⊓⊔

This sequence is used for the Fourier expansion of functions in L2([0, 2π];C); see Section 2.3.4.

3.4 Some Operations on Distributions [Optional]

While studying several properties of distributions, one typically first starts with a generalized distribution and tries to extend
the properties to singular distributions.

One important property of distributions is that, every distribution has a derivative. Furthermore, we will also be taking the
Fourier transform of distributions, but the derivative, once again, will have a meaning as a distribution; that is it will only
have a meaning when it is applied to a class of test functions.

Definition 3.4.1 The derivative of a distribution γ̄ ∈ S∗ is defined as:

(Dγ̄)(ϕ) = −γ̄(dϕ
dt

), ϕ ∈ S.

We can check if this definition is consistent with a distribution represented by a regular function. Consider (3.4) and note
that through, integration by parts ∫

d

dt
γ(t)ϕ(t)dt = −

∫
γ(t)

d

dt
ϕ(t) = −γ̄(dϕ

dt
).

We can now verify that the Dirac delta distribution is the derivative of the step distribution, ū : S → R, defined as

ū(f) =

∫ ∞

0

f(t)dt, ∀f ∈ S,

which is an important relationship in engineering applications: e.g., the step function often models a turn-on event for a
switch in circuit theory.

Let T̄ be a distribution given by F̄ (ϕ) =
∫
F (t)ϕ(t)dt.

The convolution of F with ϕ ∈ S would be: ∫
F (τ)ϕ(t− τ)dτ

We can interpret this as a distribution in the following sense. Let Tt(ϕ)(τ) = ϕ(τ − t) be the shifting operator and
Rg(x) = g(−x) be the inversing operator: Then,∫

F (τ)ϕ(t− τ)dτ =

∫
F (τ)(RTtϕ)(τ) = F̄ ((RTtϕ))

This then motivates the following: The convolution of a function ϕ in S and a distribution f̄ is defined by:

(ϕ ∗ f̄)(t) =
∫
f(τ)ϕ(t− τ)dτ = f̄(RTtϕ),

where, as before, Rg(x) = g(−x) is the inversing operator and Tt(ϕ)(τ) = ϕ(τ − t) is the shifting operator.

Theorem 3.4.1 For any distribution f̄ and ϕ in S , ϕ∗ f̄ is an infinitely differentiable function and can be used to represent
a regular distribution.
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Let f̄ , ḡ be two regular distributions represented by f, g, respectively. The convolution of f̄ ⋆ ḡ is given by the relation,
whenever this is well-defined: (

f̄ ⋆ ḡ

)
(ϕ) = f̄(hg(ϕ)), ∀ϕ ∈ D,

with

hg(ϕ) =

∫ ∞

−∞
g(τ − t)ϕ(τ)dτ

It should be observed that, with the above definition:(
f̄ ⋆ δ̄

)
(ϕ) = f̄(ϕ), ∀ϕ ∈ D,

that is the delta distribution is the identity element in distributions under the operation of convolution.

We state the following very useful result, without a formal proof.

Theorem 3.4.2 For any singular distribution, there exists a sequence of regular distributions represented by a signal in S
which converges to the singular distribution.

Sketch of Proof. Let fn be the approximate identity sequence given by (3.7), so that fn ∈ S. Then, it can be shown that
for any singular ḡ, fn ∗ ḡ is a smooth function, and can be used to represent a regular distribution such that (fn ∗ ḡ)(ϕ) =
ḡ(
∫
fn(t − τ)ϕ(t)dt) → ḡ(ϕ) for any ϕ ∈ S . Furthermore, for any ϵ > 0, (fn ∗ ḡ)(t)e−ϵt2 is in S and as n → ∞ and

ϵ→ 0,
(fn ∗ ḡe−ϵt2)(ϕ) → ḡ(ϕ).

⋄

3.5 Fourier Transform of Schwartz signals

We will continue the discussion of Schwartz signals in the context of Fourier transforms. One appealing aspect of Schwartz
signals is that, the Fourier transform of a Schwartz signal lives in the space of Schwartz signals. In fact, the Fourier
transform on the space of Schwartz signals is both onto and one to one (hence a bijection). This will be proven later.
Since the space of continuous functions is dense in the space of square integrable functions, and S is dense in the space
of continuous functions under the supremum norm by Theorem 3.3.3, we will use the bijection property of the Fourier
transform on S to define the Fourier transform of square integrable functions.

3.6 Appendix

3.6.1 Optional: Application to Optimization Problems and the Generalization of the Projection Theorem [11]

The duality results above and Hölder’s inequality are important in applications to optimization problems. The geometric
ideas we reviewed in the context of the projection theorem apply very similarly to such spaces, where the inner-product is
replaced by the duality pairings. Let us make this more explicit: Let for a subspace M ,

M⊥ := {x∗ : ⟨m,x∗⟩ = 0,∀m ∈M}.

Theorem 3.6.1
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(i) Let x be an element in a real normed space X and let d denote its distance from a subspace M . Then,

d = inf
m∈M

∥x−m∥ = max
{∥x∗∥≤1,x∗∈M⊥}

⟨x, x∗⟩

If the infimum is achieved, then the maximum on the right is achieved for some x∗0 such that x−m0 is aligned with x∗0.

(ii) In particular, if m0 satisfies
∥x−m0∥ ≤ ∥x−m∥,∀m ∈M,

there must be a non-zero vector x∗ ∈ X∗ such that ⟨m,x∗0⟩ = 0 for all m and x∗ is aligned with x−m0.

We note that by alignment of x∗ and x, it is meant that x∗(x) = ∥x∗∥∥x∥.

Proof.

(i) For any ϵ > 0, let mϵ ∈M be such that ∥x−mϵ∥ ≤ d+ ϵ. For any x∗ ∈M⊥ with ∥x∗∥ ≤ 1, we have

⟨x, x∗⟩ = ⟨x−mϵ, x
∗⟩ ≤ ∥x∗∥∥x−mϵ∥ ≤ d+ ϵ.

Since ϵ > 0 is arbitrary, it follows that ⟨x, x∗⟩ ≤ d.

It remains to be shown if we could find an x∗0 for which ⟨x, x∗0⟩ = d.

LetN be the subspace spanned by the vectors in the collection x+M ; every vector inN can be written as n = αx+m
for some m ∈M and α ∈ R. One can define a linear function on N by the equation

f(n) = αd,

and note that this basically assigns the value zero for those vectors in N that are strictly in M .

We have:

∥f∥ = sup
n∈N

|f(n)|
∥n∥

= sup
|α|d

∥αx+m∥
= sup

|α|d
|α|∥x+ m

α ∥
= 1,

since inf ∥x + m
α ∥ = d. Now, define an extension of f from N to all of X (this is possible due to an extension

theorem known as Hahn-Banach Extension theorem). Call this extension x∗0 and such an extension can be made so that
∥x∗0∥ = ∥f∥ = 1 and x∗0(n) = f(n) for n ∈ N . Since f(m) = 0 for m ∈ M , we have that x∗(m) = 0 as well for
m ∈M (so x∗0 ∈M⊥). Thus, ⟨x, x∗0⟩ = d (since x = x+ 0 with the view that 0 ∈M ).

(ii) Now let m0 exist so that ∥x −m0∥ = d and let x∗0 be any element so that x∗0 ∈ M⊥, ∥x∗0∥ = 1 and ⟨x, x∗0⟩ = d (the
construction above is an example). Then,

⟨x−m0, x
∗
0⟩ = ⟨x, x∗0⟩ = d = ∥x∗0∥∥x−m0∥,

where the last equality holds since ∥x∗0∥ = 1 and ∥x−m0∥ = d. Thus, x∗0 is aligned with x−m0.

⋄

Theorem 3.6.2 Let M be a subspace in a real normed space X . Let x∗ ∈ X∗ be at a distance d from M⊥. (i)

d = min
m∗∈M⊥

∥x∗ −m∗∥ = sup
x∈M,∥x∥≤1

⟨x, x∗⟩,

where the minimum on the left is achieved for m∗
0 ∈ M⊥. (ii) If the supremum on the right is achieved for some x0 ∈ M ,

then x∗ −m∗
0 is aligned with x0.

Proof. (i) For any m∗ ∈M⊥, we have

∥x∗ −m∗∥ = sup
∥x∥≤1

⟨x, x∗ −m∗⟩ ≥ sup
∥x∥≤1,x∈M

⟨x, x∗ −m∗⟩ = sup
∥x∥≤1,x∈M

⟨x, x∗⟩ =: ∥x∗∥M .
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Thus, ∥x∗ −m∗∥ ≥ ∥x∗∥M . We now seek for m∗
0 ∈ M⊥ giving an equality. Consider x∗ restricted to M . Let y∗ be the

(Hahn-Banach) extension of the restriction of x∗ to M , to the whole X . Thus, ∥y∗∥M = ∥x∗∥M and (x∗ − y∗)(m) = 0
for m ∈M . Define m∗

0 = x∗ − y∗. Then, m∗
0 ∈M⊥ and ∥x∗ −m∗

0∥ = ∥y∗∥ = ∥x∗∥M .

(ii) If the supremum on the right-hand side is achieved for some x0 ∈ M , then with ∥x0∥ = 1, ∥x∗ −m∗
0∥ = ⟨x0, x∗⟩ =

⟨x0, x∗ −m∗
0⟩. Thus, x∗ −m∗

0 is aligned with x0. ⋄

An Application: Constrained Dual Optimization Problems.

Consider the following constrained optimization problem:

d = min
x∗:⟨yi,x∗⟩=ci,1≤i≤n

∥x∗∥

Observe that if x̄∗ is any vector satisfying the constraints, then

d = min
x∗:⟨yi,x∗⟩=ci,1≤i≤n

∥x∗∥ = min
m∗∈M⊥

∥x̄∗ −m∗∥,

where M denotes the space spanned by {y1, y2, · · · , yn} and x̄∗ is some vector satisfying the constraints.

From Theorem 3.6.2, we have that

d = min
m∗∈M⊥

∥x̄∗ −m∗∥ = sup
x∈M,∥x∥≤1

⟨x, x̄∗⟩,

Now, any vector in M is of the form m = Y a where Y = [y1 y2 · · · yn] is a matrix and a is a column vector. Thus,

d = min
x∗:⟨yi,x∗⟩=ci,1≤i≤n

∥x∗| = sup
∥Y a∥≤1

⟨Y a, x̄∗⟩ = sup
∥Y a∥≤1

cTa,

where the last equality follows because x̄∗ satisfies the constraints and that

⟨Y a, x̄∗⟩ = ⟨a, Y T x̄∗⟩ = cTa

Thus, the optimal solution to the constrained problem can be written as

sup
∥Y a∥≤1

cTa,

where the optimal x∗ is aligned with the optimal Y a.

3.7 Exercises

Exercise 3.7.1 Does there exist a sequence of functions {fj} in L2(R+;R) such that a sequence of distributions f̄j repre-
sented by fj on the set of Schwartz signals S converges to zero in a distributional sense, but fj does not converge to zero
(that is, in the L2 norm). That is, does there exist a sequence of functions {fj} in L2(R+;R) such that

lim
j→∞

(∫ ∞

0

|fj(t)|2dt
)

is not zero, but

lim
j→∞

(∫ ∞

0

fj(t)ϕ(t)dt

)
= 0, ∀ϕ ∈ S.

If there exists one, give an example. If there does not exist one, explain why.
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Exercise 3.7.2 a) Let T be a mapping from L2(R+;R) to R (extended to possibly include −∞,∞) given by:

T (f) =

∫
R+

f(t)
t

1 + t2
dt

Let f0 ∈ L2(R+;R) be given by:

f0(t) =
1

t2 + 1
, ∀t ∈ R+.

Is T continuous on L2(R+;R) at f0?

b) Let S be the space of Schwartz signals. Let T : S → R be a mapping given by:

T (ϕ) = ϕ′(0), ϕ ∈ S,

where
ϕ′(t) =

d

dt
ϕ(t) ∀t.

Is T a distribution on S? That is, is T continuous and linear on S?

Exercise 3.7.3 Let T : S → [−∞,∞] be a mapping defined by:

T (ϕ) = lim sup
A→∞

∫ A

−A

ϕ(t)et
2

dt

Is T continuous on S? Prove your argument.

Hint: The function g(t) = e−at2 is in S, for any a > 0.

Exercise 3.7.4 Let for j ∈ N,

fj(t) =

{
j, if 0 ≤ t ≤ 1

j

0 else

For g ∈ S, define

f̄j(g) :=

∫ ∞

0

fj(t)g(t)dt.

Show that f̄j(.) is a distribution on S . Show that

lim
j→∞

∫ ∞

0

fj(t)g(t)dt = δ̄(g) = g(0).

Conclude that, the sequence of regular distributions f̄j(.), represented by a real-valued, integrable function fj(t), converges
to the delta distribution δ̄(.) on the space of test signals S.

Exercise 3.7.5 Let S be the space of Schwartz signals. Let T : S → R be a mapping given by:

T (ϕ) = ϕ′(0), ϕ ∈ S,

where
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ϕ′(t) =
d

dt
ϕ(t) ∀t.

Is T a distribution on S? That is, is T continuous and linear on S?
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Systems

An input-output system is defined by an input signal set U , an output set Y and a subset R ⊂ U × Y , called the rule
(relation) of the system. Hence, R consists of the input-output pairs in the system. We often find it convenient to associate
with R a transformation or map T so that y = T (u) and thus R = {(u, T (u)), u ∈ U}.

Accordingly, we have that if (u, y1) ∈ R and (u, y2) ∈ R then y1 = y2.

Let T1, T2 be time-index sets; and U, Y be signal range spaces such that U = UT1 ,Y = Y T2 , that is:

U = {f : T1 → U},

Y = {f : T2 → Y }.

If U and Y consist of signals with discrete-time indices, then the system is said to be a discrete-time (DT) system. Of the
indices are both continuous, then the system is a continuous-time (CT) system. If one of them is discrete and the other
continuous, the system is said to be hybrid. Often, we have T = T1 = T2, which will be assumed in the following.

4.1 System Properties

Memorylessness. Let U be a input signal range, Y an output signal range, and a time index T . If any input output pair
(u, T (u)) can be written component-wise as

yt = Ψ(t, ut), t ∈ T

for some fixed function Ψ : T × U → Y , then the system is memoryless.

Causality/Non-anticipativeness. If the output at any time t is not dependent on the input signal values at time s > t,
then the system is non-anticipative (causal). That is, let u1 = {u1t , t ∈ T} and u2 = {u2t , t ∈ T}. Let (u1, y1) ∈ R and
(u2, y2) ∈ R. If it is that u1s = u2s for s ≤ t, then, for a causal system, it must be that y1t = y2t .

Example 4.1. Let a relation be given by yt = axt+1 + xt + bxt−1. Such a system is causal if a = 0; it is memoryless if
a = 0, b = 0.

Time-Invariance. A system is time-invariant if for every input-output pair ((u, y) ∈ R): and time-shift in the input leads
to the same time-shift in the output:

(σθu, σθy) ∈ R,

where we define a time-shift as follows: With T = Z or R, let θ ∈ T . We define σθ : U → U with(
σθ(u)

)
t

= ut+θ, ∀t ∈ T
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You are encouraged to visualize the time shift above: σθ pushes a signal to the left by θ.

4.2 Linear Systems

4.2.1 Representation of Discrete-Time Signals in terms of Unit Pulses

Let x ∈ Γ ({0, 1, . . . , N − 1};R) . Then, one can represent x pointwise as

x(n) =

N−1∑
i=0

x(i)δ(n− i)

or

x(n) =

N−1∑
i=0

x(i)δi(n)

where δi is the shifted unit pulse given by:
δi(n) = 1{n=i}, n ∈ Z,

with 1{.} denoting the indicator function.

4.2.2 Linear Systems

Linear systems have important engineering practice. Many physical systems are locally linear, as we have seen earlier. An
input-output system is linear if U ,Y,R are all linear vector spaces.

In this course, we will say that a discrete-time (DT) system is linear if the input output relation can be written as:

y(n) =

∞∑
m=−∞

k(n,m)u(m). (4.1)

In the above, k(n,m) is called the kernel of the system. The value k(n,m) reveals to effect of an input at time m to
the output at time n. If in addition to linearity, one imposes time-invariance, the resulting system becomes a convolution
system, as we will shortly observe.

We say a continuous-time (CT) system is linear if the input output relation can be expressed as

y(t) =

∫ ∞

τ=−∞
h(t, τ)u(τ)dτ

We note here that a precise characterization for linearity (for a system as in (4.1)) would require the interpretation of a
system as a (bounded) linear operator from one space to another space. One can obtain a Riesz representation theorem type
characterization leading to (4.1), provided that U and Y satisfy certain properties, and the system is continuous and linear.
The following exercise is an example.

Exercise 4.2. Let T be a linear system mapping l1(Z;R) to l1(Z;R). Show that if this system is linear and continuous, it
can be written so that y = T (u);

y(n) =
∑
m∈Z

h(n,m)u(m), n ∈ Z

for some h : Z× Z → R.

Since u ∈ l1(Z;R), we can write u = limN→∞ uN (that is, ∥u− uN∥1 → 0 as n→ ∞), where uN =
∑N

i=−N uiδi with
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δi(n) = 1{n=i}

Since T is linear,

T (u) = T ( lim
N→∞

uN ) = lim
N→∞

T (uN ) = lim
N→∞

N∑
i=−N

uiT (δi).

By continuity, we have that the limit exists and is

y(n) = lim
N→∞

N∑
i=−N

uiT (δi)(n).

Writing h(n,m) = T (δm)(n), the result follows. Observe that h(n,m) = T (δm)(n) is the output of the system at time n
when the input to the system is a unit pulse applied at time m.

4.3 Linear and Time-Invariant (Convolution) Systems

If, in addition to linearity, we wish to have time-invariance, then one can show that

y(n) =

∞∑
k=−∞

k(n,m)u(m),

will have to be such that k(n,m) should be dependent only on n −m. This follows from the fact that a shift in the input
would have to lead to the same shift in the output, implying that k(n,m) = k(n+ θ,m+ θ) for any θ ∈ Z.

Let us discuss this further. Suppose a linear system described by

y(n) =
∑
m

k(n,m)u(m), (4.2)

is time-invariant. Let, for some θ ∈ Z,
v = σ−θ(u)

v(m) = u(m− θ). Let the signal g be the output of the system when the input is the discrete-time signal v. It follows that

g(n) =
∑
m∈Z

k(n,m)v(m)

=
∑
m∈Z

k(n,m)u(m− θ)

=
∑
m′∈Z

k(n,m′ + θ)u(m′)

By time-invariance, it must be that g = σ−θ(y). That is, g(n) = y(n− θ) or g(n+ θ) = y(n). Thus,

g(n+ θ) =
∑
m′∈Z

k(n+ θ,m′ + θ)u(m′) = y(n) (4.3)

Since the equivalence in (4.2)-(4.3) above has to hold for every input signal, it must be that k(n+ θ,m+ θ) = k(n,m) for
all n,m values, and for all θ values. Therefore k(n,m) should only be a function of the difference n−m. Hence, a linear
system is time-invariant if and only if the input-output relation can be written as:

y(n) =

∞∑
m=−∞

h(n−m)u(m)
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for some function h : Z → R. This function is called the impulse-response of the system since, if u = δ0, then

y(n) =

∞∑
m=−∞

h(n−m)δ0(m) = h(n)

Due to this representation, linear time-invariant systems are also called convolution systems.

One can show that a convolution system is non-anticipative if h(n) = 0 for n < 0.

Similar discussions apply to continuous-time systems by replacing the summation with integrals:

y(t) =

∫ ∞

τ=−∞
h(t− τ)u(τ)dτ

The function h is the output of the system when the input is an impulse function. This is why h is called the impulse
response of a convolution system.

Exercise 4.3.1 Let x(t) ∈ RN and t ≥ 0 and real-valued. Recall that the solution to the following differential equation:

x′(t) = Ax(t) +Bu(t),

y(t) = Cx(t),

with the initial condition x(t0) = x0 is given by

x(t) = eA(t−t0)xt0 +

∫ t

τ=t0

eA(t−τ)Bu(τ)dτ, t ≥ 0

(a) Suppose that x(t0) = 0 and all eigenvalues of A have their real parts as negative and ∥u∥∞ < ∞. Let t0 → −∞.
Show that if one is to represent x(t) = (h ∗ u)(t), we have

h(t) = CeAtB1{t≥0}.

(b) Alternatively, we could skip the condition that the eigenvalues of A have their real parts as negative, but require that
x(0) = 0 and u(t) = 0 for t < 0. Express the solution as a convolution

x(t) = (h ∗ u)(t),

and find h(t).

(c) Let y(t) = Cx(t) +Du(t). Repeat the above.

Exercise 4.3.2 Let x(n) ∈ RN and n ∈ Z. Consider a linear system given by

x(n+ 1) = Ax(n) +Bu(n)

y(n) = Cx(n), n ≥ 0

with the initial condition x(n0) = 0 for some n0. a) Suppose all the eigenvalues of A are strictly inside the unit disk in the
complex plane and ∥u∥∞ <∞. Let n0 → −∞. Express the solution y(n) as a convolution

y(n) = (h ∗ u)(n),

and find that
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h(n) = CAn−1B1{n≥1}.

b) Alternatively, we could skip the condition that the eigenvalues of A are strictly inside the unit disk in the complex plane,
but require that n0 = 0 so that x(0) = 0 and also u(n) = 0 for n < 0. Express the solution as a convolution

x(n) = (h ∗ u)(n),

and find h(n).

(c) Let y(n) = Cx(n) +Du(n). Repeat the above.

4.4 Bounded-Input-Bounded-Output (BIBO) Stability of Convolution Systems

A DT system is BIBO stable if ||u||∞ := supm∈Z |u(m)| <∞ implies that ||y||∞ := supm∈Z |y(m)| <∞.

A CT system is BIBO stable if ||u||∞ := supt∈R |u(m)| <∞ implies that ||y||∞ := supt∈R |y(t)| <∞.

Theorem 4.4.1 A convolution system is BIBO stable if and only if

||h||1 <∞

4.5 The Frequency Response (or Transfer) Function of Linear Time-Invariant Systems

A very important property of convolution systems is that, if the input is a harmonic function, so is the output:

Let u ∈ L∞(R;R). If
u(t) = ei2πft,

then

y(t) =

(∫ ∞

−∞
h(s)e−i2πfsds

)
ei2πft

We define:

ĥ(f) :=

(∫ ∞

−∞
h(s)e−i2πfsds

)
,

and call this value the frequency response of the system for frequency f , whenever it exists. We often call this function the
transfer function of the system.

A similar discussion applies for a discrete-time system.

Let h ∈ l1(Z;R). If u(n) = ei2πfn, then

y(n) =

( ∞∑
m=−∞

h(m)e−i2πfm

)
ei2πfm

with the frequency response function

ĥ(f) :=

( ∞∑
m=−∞

h(m)e−i2πfm

)
Convolution systems are used as filters through the characteristics of the frequency response. In class, examples will be
presented involving the resistor-capacitor circuits and resistor-capacitor-inductor circuits.
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4.6 Steady-State vs. Transient Solutions

Let x(t) ∈ RN . Consider a system defined with the relation:

x′(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), t ≥ t0,

for some fixed t0. Consider an input u(t) = est, t ≥ t0 for some s ∈ C (for the time being, assume that s = i2πf for some
f ∈ R). Suppose that s is not an eigenvalue of A. Using the relation

x(t) = eA(t−t0)x(t0) + eAt

∫ t

t0

e−AτBesτdτ = eA(t−t0)x(t0) + eAt

∫ t

t0

esτe−AτBdτ

we obtain

x(t) =

(
eA(t−t0)x(t0)− eA(t−t0)eAt0(sI −A)−1e−At0est0B

)
+

(
eAt(sI −A)−1e−AtestB

)
Using the property that for any t

eAt(sI −A)−1e−At = (sI −A)−1,

we obtain

y(t) = CeA(t−t0)

(
x(t0)− (sI −A)−1est0B

)
+

(
C(sI −A)−1B +D

)
est, t ∈ R+

The first term is called the transient response of the system and the second term is called the steady-state response.

If A is a stable matrix, with all its eigenvalues inside the unit circle, the first term decays to zero as t increases (or with
fixed t, as t0 → −∞). Alternatively, if we set t0 = 0 and write

x(0) = (sI −A)−1B,

the output becomes

y(t) =

(
C(sI −A)−1B +D

)
est, t ≥ t0

The map C(sI −A)−1B+D is called the transfer function of the system. When s = i2πf , this is the frequency response.

Bu direct computation in the integration formula, we can show that if s were an eigenvalue of A, then the steady-state
output would be ps(t)eAt for some polynomial ps.

The case with s = i2πft is crucial for stable systems. Later on we will investigate the more general case with s ∈ C.

4.7 Bode Plots for Studying System Response to Harmonic Inputs

If we apply u(t) = ei2πft or eiωt, we observed in the above that the output would be ĥ(f)ei2πft.

Bode plots allow us to efficiently visualize ĥ(f) by depicting the magnitude and phase, in a logarithmic scale; in the
pre-digital era under the absence of computers such plots were effective means to represent transfer functions with the
logarithmic scale in mid-20th century.

Observe that since ĥ(f) = ĥ(−f), it suffices to consider only f ≥ 0. Let ω = 2πf . Let i = 1, 2, · · · , 5 and si = rie
iθi

where ri = |si| and θi is the phase of si.

h(iω) =
s1s2
s3s4s5

= (
r1r2
r3r4r5

)ei(θ1+θ2−θ3−θ4−θ5)
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Thus,
|h(iω)| = r1r2

r3r4r5

and
log(|h(iω)|) = log(r1) + log(r2)− log(r3)− log(r4)− log(r5)

Note also that
log(ei(θ1+θ2−θ3−θ4−θ5)) = i(θ1 + θ2 − θ3 − θ4 − θ5)

so that
∠h(iω) = θ1 + θ2 − θ3 − θ4 − θ5

Thus, the logarithms allow us to consider the contributions of each complex number in an additive fashion both for the
magnitude and the phase.

Now, consider

h(iω) = K(iω)n
1 + i ω

ω0

(i ω
ωn

)2 + 2ζi iωωn
+ 1

We can thus consider the contributions of K(iω)n, 1 + i ω
ω0

, and (i ω
ωn

)2 + 2ζi iωωn
+ 1 separately.

For K(iω)n, we note that

log |K(iω)n| = log(|K|) + n log(ω)

and
∠K(iω)n = ∠K + n

π

2

For 1 + i ω
ω0

, we use the following approximations: for ω ≈ 0, 1 + i ω
ω0

≈ 1. For ω = ω0, 1 + i ω
ω0

= 1 + i. For ω ≫ ω0,

|1 + i ω
ω0

| ≈ |ω|
ω0

Likewise, for the angle: for ω ≈ 0:
∠1 + i

ω

ω0
≈ 0

For ω ≫ ω0,
∠1 + i

ω

ω0
≈ π

2

At ω = ω0, ∠1 + i ω
ω0

= π
4 .

Finally, for
((i

ω

ωn
)2 + 2iζ

ω

ωn
+ 1)−1

For ω ≈ 0, the magnitude is approximately 1, with its logarithm approximately 0. For ω = ωn, the magnitude is 1
2ζ . For

ω ≫ ωn, the magnitude decays as −2 log(|ω|).

For the phase: for ω ≈ 0, the phase is approximately 0. For ω = ωn, the phase is −π
2 . For ω ≫ ωn, the phase is close to π.

Bode plots approximate these expressions in a log-log plot (for the magnitude).

4.8 Interconnections of Systems and Feedback Control Systems

We will discuss serial connections, parallel connections, output and error feedback connections.
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Control systems are those who input-output behaviour is shaped by control laws (typically through using system outputs
to generate the control inputs –termed, output feedback–) so that desired system properties such as stability, robustness to
incorrect models, robustness (to system or measurement noise) -also called, disturbance rejection-, tracking a given refer-
ence signal, and ultimately, optimal performance are attained. These will be made precise as control theoretic applications
are investigated further.

4.9 State-Space Description of Linear Systems

We will study state-space realizations of linear time-invariant systems in further detail in Chapter 9. We provide a brief
discussion in the following.

4.9.1 Principle of superposition

For a linear time invariant system, if (u, y) is an input-output pair, then σθu, σθy is also an input-output pair and thus,
a1u+ b1σθu, a1y + b1σθy is also such a pair.

4.9.2 State-space description of input-output systems

The notion of a state. Suppose that we wish to compute the output of a system at t ≥ t0 for some t0. In a general (causal)
system, we need to use all the past applied input terms u(s), s ≤ t0 and all the past output values y(s), s < t0 to compute
the output at t0. The state of a system summarizes all the past relevant data that is sufficient to compute the future paths.
Some systems admit a finite-dimensional state representation, some do not. In the following, we consider continuous-time
and discrete-time systems where a finite-dimensional state representation can be made.

Consider a continuous-time system given by:

N∑
k=0

ak
dk

dtk
y(t) =

N−1∑
m=0

bm
dm

dtm
u(t),

with aN = 1. Such a system can be written in the form:

d

dt
x(t) = Ax(t) +Bu(t), y(t) = Cx(t)

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

... · · · · · · 0
−a0 −a1 −a2 · · · −aN−1



B =


0
0
...
0
1


C =

[
bN bN−1 · · · b1

]
Likewise, consider a discrete-time system of the form:
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N∑
k=0

aky(n− k) =

N∑
m=1

bmu(n−m)

with a0 = 1, can be written in the form

x(n+ 1) = Ax(n) +Bu(n), y(n) = Cx(n)

where
xN (n) = y(n), xN−1(n) = y(n− 1), · · · , x1(n) = y(n− (N − 1))

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

... · · · · · · 1
−aN −aN−1 −aN−2 · · · −a1



B =


0
0
...
0
1


C =

[
bN bN−1 · · · b1

]
4.9.3 Stability of linear systems described by state equations

Theorem 4.9.1 For a linear differential equation

x′ = Ax+ u,

the system is BIBO stable if and only if
max
λi

{Re{λi}} < 0,

where Re{.} denotes the real part of a complex number, and λi denotes the eigenvalues of A.

Theorem 4.9.2 For a linear differential equation

x(n+ 1) = Ax(n) + u(n),

the system is BIBO stable if and only if
max
λi

{|λi|} < 1,

where λi denotes the eigenvalues of A.

4.10 Exercises

Exercise 4.10.1 Consider a linear system described by the relation:

y(n) =
∑
m∈Z

h(n,m)u(m), n ∈ Z

for some h : Z× Z → C.

a) When is such a system causal?
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b) Show that such a system is time-invariant if and only if it is a convolution system.

Exercise 4.10.2 Let x(t) ∈ RN and t ≥ 0 and real-valued. Recall that the solution to the following differential equation:

x′(t) = Ax(t) +Bu(t)

with the initial condition x(0) = x0 is given by

x(t) = eA(t)x0 +

∫ t

τ=0

eA(t−τ)Bu(τ)dτ, t ≥ t0

Suppose x(0) = 0 and u(t) = 0 for t < 0. Express the solution as a convolution

x(t) = (h ∗ u)(t),

and find h(t).

Note: With the assumption that the system is stable, we can avoid the condition that u(t) = 0 for t < 0. In this case, we
are able to write

x(t) = eAt−t0x(t0) +

∫ t

τ=t0

eA(t−τ)Bu(τ)dτ,

and take the limit as t0 → −∞, leading to h(t) = eAtB1{t≥0}.

Exercise 4.10.3 Let x(n) ∈ RN and n ∈ Z. Consider a linear system given by

x(n+ 1) = Ax(n) +Bu(n), n ≥ 0

with the initial condition x(0) = 0. Suppose x(0) = 0 and u(n) = 0 for n < 0. Express the solution x(n) as a convolution

x(n) = (h ∗ u)(n),

and find h(n).

Note: With the assumption that the system is stable, we can avoid the condition that u(n) = 0 for n < 0.In this case, we
can write

x(n) = An−n0x(n0) +

n−1∑
m=n0

An−m−1Bu(m),

and take the limit as n0 → −∞ leading to h(n) = An−1B1{n≥1}.

Exercise 4.10.4 Consider a continuous-time system described by the equation:

dy(t)

dt
= ay(t) + u(t), t ∈ R,

where a < 0.

a) Find the impulse response of the system. Is the system bounded-input-bounded-output (BIBO) stable?

b) Suppose that the input to this system is given by cos(2πf0t). Let yf0 be the output of the system. Find yf0(t).

c) If exists, find
lim

f0→∞
yf0(t),

for all t ∈ R+.

Exercise 4.10.5 Consider a discrete-time system described by the equation:
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y(n+ 1) = a1y(n) + a2y(n− 1) + u(n), n ∈ Z,

a) Is this system linear? Time-invariant?

b) For what values of a1, a2 is the system BIBO (bounded-input-bounded-output) stable?

Exercise 4.10.6 (Stability of Linear Time-Varying Systems) Let T be a linear system mapping with the representation;

y(n) =
∑
m∈Z

h(n,m)u(m), n ∈ Z

for some h : Z× Z → R. Show that this system is BIBO stable if

sup
n

∑
m

|h(n,m)| <∞.

Let us define a system to be regularly BIBO stable if for ϵ > 0, ∃δ > 0 such that ∥u∥∞ ≤ δ implies that ∥y∥infty ≤ ϵ.
Show that the system above is regularly BIBO stable if and only if

sup
n

∑
m

|h(n,m)| <∞.

Exercise 4.10.7 Let T be a linear system mapping l1(Z;R) to l1(Z;R). Show that this system is linear and continuous
only if the system can be written so that with y = T (u);

y(n) =
∑
m∈Z

h(n,m)u(m), n ∈ Z

for some h : Z× Z → R.
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The Fourier Transformation

We have seen in Chapters 2 and 3 that complex exponentials can be used to approximate any square integrable signal
arbitrarily well. We saw in Chapter 4 that complex exponentials possess the eigenfunction property for linear time-invariant
systems.

The above motivate the use of the representation of signals in terms of complex exponentials and the spectral properties of
transfer functions. This study is achieved by Fourier transforms.

Accordingly, Fourier transforms play a significant role in systems theory and applied mathematics at large. There are four
types of Fourier transformations. Discrete-to-Discrete (DDFT), Continuous-to-Discrete (CDFT), Discrete-to-Continuous
(DCFT), Continuous-to-Continuous (CCFT).

We will start with the first two. Before we proceed, recall that a bijective transformation T is a map from a signal set X to
another one X̂ , such that T is onto and one-to-one; the Fourier transform will constitute examples of such transformations
with further very useful structural and regularity properties to be studied in this chapter and beyond.

5.1 Discrete-to-Discrete (DDFT) and Continuous-to-Discrete (CDFT) Fourier transforms

5.1.1 Fourier Series Expansions

Discrete Time

The N -dimensional complex vector space l2({0, 1, 2 . . . , N − 1};C) is a Hilbert space with the inner product:

⟨h1, h2⟩ =
N−1∑
n=0

h1(n)h2(n),

where the bar notation (.) denotes the complex conjugate of its argument.

The set of complex harmonic signals:

1√
N
ei2πkn, k ∈ {0, 1

N
, . . . ,

N − 1

N
},

provides a complete orthonormal sequence, hence, provides a basis for l2({0, 1, 2 . . . , N − 1};C). The Fourier series
expansion is given by:

x(n) =
1√
N

N−1∑
k=0

x̂(
k

N
)ei2π

k
N n, n ∈ {0, 1, . . . , N − 1}
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where

x̂(
k

N
) =

1√
N

N−1∑
n=0

x(n)e−i2π k
N n, k ∈ {0, 1, . . . , N − 1} (5.1)

Continuous Time

The complex vector space L2([0, P ];C) is a Hilbert space with the inner product:

⟨h1, h2⟩ =
∫ P

0

h1(t)h2(t)dt,

where the bar denotes the complex conjugate.

The countably infinite sequence of complex harmonic signals:

1√
P
ei2πfn, f ∈ { k

P
, k ∈ Z},

provides a complete orthogonal sequence, hence, provides a basis for L2([0, P ];C).

The completeness of Fourier series in L2[0, P ] is based on the argument that trigonometric polynomials are dense in
L2([0, P ];C) (see Theorem 3.3.4) and the discussion in Section 3.3.2.

The Fourier series expansion is given by:

x(t) =
1√
P

∑
k

x̂(
k

P
)ei2π

k
P t, t ∈ [0, P ]

where

x̂(f) =
1√
P

∫ P

0

x(t)e−i2πftdt, f ∈ { k
P
, k ∈ Z} (5.2)

Thus, in the context of Section 2.3, a Fourier series expansion is the representation of a signal in terms of the collection of
a complete orthonormal harmonic signal sequence.

5.1.2 Discrete-to-Discrete (DDFT) and Continuous-to-Discrete (CDFT) Fourier transforms

In view of the above, we define Discrete-to-Discrete (DDFT), Continuous-to-Discrete (CDFT) as follows:

DDFT:

FDD : l2({0, 1, . . . , N − 1};C) → l2({
0

N
,
1

N
, . . . ,

N − 1

N
};C)

x̂ = FDD(x)

and

x̂(f) =

N−1∑
n=0

1√
N
x(n)e−i2πfn, f ∈ { 0

N
,
1

N
, . . . ,

N − 1

N
}

CDFT:
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FCD : L2([0, P ];C) → l2(Z
1

P
;C)

x̂ = FCD(x)

and

x̂(f) =

∫ P

τ=0

1√
P
x(τ)e−i2πfτdτ, f ∈ { k

P
, k ∈ Z}

The inverses of these can also be defined:

Inverse DDFT:

F−1
DD : l2({0/N, 1/N, . . . , (N − 1)/N};C) → l2({0, 1, . . . , N − 1};C)

x = F−1
DD(x̂)

and

x(n) =

N−1∑
k=0

1√
N
x̂(
k

N
)ei2π

k
N n, n ∈ {0, 1, . . . , N − 1}}

Inverse CDFT:

F−1
DD : l2(Z

1

P
;C) → L2([0, P ];C)

x = F−1
CD(x̂)

and
x(t) =

∑
k∈Z

1√
P
x̂(
k

P
)ei2π

k
P tdt, t ∈ [0, P ]

Exercise 5.1.1 a) For some N ∈ N, let x ∈ l2

(
(−N,−(N − 1), · · · , N − 1, N);C

)
with

x(n) = 1{|n|≤N1}

Find the Fourier series expansion of x. Sudy the case with N1 = N , and the case with N1 = 0.

b) For some T ∈ R+, let x ∈ L2([−T
2 ,

T
2 ];C) with

x(t) = 1{|t|≤T1}

Find the Fourier series expansion of x. Study the case with T1 = T
2 , and the case with T1 = 1

n ,

xn(t) = n1{|t|≤T1},

as n→ ∞.

Solution. a) We have for k = 0, 1, · · · , 2N + 1,
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x̂(
k

2N + 1
) =

N1∑
n=−N1

1

2N + 1
e−i 2πk

2N+1n =
1

2N + 1
e−i 2πk

2N+1N1

2N1∑
n=−0

e−i 2πk
2N+1n

For k ̸= 0, we have

x̂(
k

2N + 1
) =

1

2N + 1
e−i

2πkN1
2N+1

(1− e−i
2π(2N1+1)

2N+1 )

1− e−i 2πk
2N+1

For k = 0, we have

x̂(
0

2N + 1
) =

2N1 + 1√
2N + 1

If N1 = N , we have: For k ̸= 0

x̂(
k

2N + 1
) = 0

and for k = 0, we have

x̂(
0

2N + 1
) =

√
2N + 1

For the other extreme, if N1 = 0, we have for all k ∈ {0, · · · , 2N + 1}

x̂(
k

2N + 1
) =

1√
2N + 1

b) We have the expansion (in the L2-sense):

x(t) =
∑
k∈Z

x̂(
k

T
)

1√
T
ei

2πk
T t

with

x̂(
k

T
) =

∫ T
2

−T
2

x(t)
1√
T
e−i 2πk

T tdt

Thus, with x as given, we have

x̂(
k

T
) =

∫ T1

−T1

1√
T
ei

2πk
T t =

ei
2πkT1

T − e−i
2πkT1

T

i2π/
√
T

=
sin(2πk T1

T )

2T1

T

2T1√
T

If T1 = T
2 , we have that x̂( k

T ) = 0 for all k ̸= 0 and x̂( 0
T ) =

√
T .

If xn(t) = n1{|t|≤T1}, then we observe that x̂n( k
T ) →

2√
T

for all k ∈ Z.

We observe from these examples that, as a general insight (which can be made more rigorous under additional conditions),
if we expand the signal in time domain, we shrink it in the frequency domain; and if we shrink it in time domain, we expand
it in the frequency domain.

5.1.3 Properties of the Discrete Fourier Transforms

Theorem 5.1.1 (Parseval’s Equality) The transformations FDD and FCD are unitary, that is:

⟨x, x⟩ = ⟨x̂, x̂⟩

Proof. We prove this for FCD (FDD follows more directly using the following arguments). Let x ∈ L2([0, P ];C). Define
xK :=

∑K
−K x̂( k

P ) 1√
P
ei2π

k
P t. We know that limK→∞ ∥xK − x∥2 = 0. Consider
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⟨x, x⟩ = lim
K→∞

⟨x, xK⟩

= lim
K→∞

∫ P

0

x(t)

K∑
k=−K

x̂(
k

P
)

1√
P
ei2π

k
P t

= lim
K→∞

K∑
k=−K

x̂(
k

P
)

∫ P

0

x(t)
1√
P
e−i2π k

P t

= lim
K→∞

K∑
k=−K

x̂(
k

P
)x̂(

k

P
)

= ⟨x̂, x̂⟩ (5.3)

⊓⊔

Time-shift, periodicity and differentiation will also be discussed.

An important property is with regard to convolution. The transform of a convolution is equal to the point-wise product of
two signals. The following will be discussed in class:

Theorem 5.1.2 Let f, g ∈ L2([0, P ]). Then,

FCD(f ∗ g)(k) =
√
PFCD(f)(k)FCD(g)(k), k ∈ Z(

1

P
).

That is, convolution is equaivalent to point-wise multiplication in the frequency domain.

5.1.4 Computational Aspects: The FFT Algorithnm

The Fast Fourier Transform (FFT) is a very important algorithm to implement DTFT (FDD) in a computationally efficient
fashion in practice. The fft command in Matlab generates the transform.

Observe that for the operations described in (5.1)

FDD : l2({0, 1, . . . , N − 1};C) → l2({
0

N
,
1

N
, . . . ,

N − 1

N
};C)

so that
x̂ = FDD(x),

with

x̂(f) =

N−1∑
n=0

1√
N
x(n)e−i2πfn, f ∈ { 0

N
,
1

N
, . . . ,

N − 1

N
},

there are N complex multiplications and N complex additions for each f (and thus there will be N such computations).
Thus, the FFT algorithm in the form above has the computational complexity ofN2 complex operations (with one complex
operation being equivalent to one complex addition and one complex multiplication).

If N is even, we can write

x̂(
k

N
) =

N−1∑
n=0

1√
N
x(n)e−i2π k

N n

=

N
2 −1∑
m=0

1√
N
x(2m)e−i2π k

N 2m +

N
2 −1∑
m=0

1√
N
x(2m+ 1)e−i2π k

N (2m+1)
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=

N
2 −1∑
m=0

1√
N
x(2m)e−i2π k

N/2
m +

( N
2 −1∑
m=0

1√
N
x(2m+ 1)e−i2π k

N/2
m

)
e−i2π k

N

(5.4)

Thus, we if define x0(m) = x(2m) and x1(m) = x(2m+ 1), for m = 0, 1, · · · , N2 − 1. Thus, the above leads to

x̂(
k

N
) = x̂0(

k
N
2

) + e−i2π k
N x̂1(

k
N
2

)

Note that the Fourier transform Thus, as we see, the above leads to a parallel processing of two smaller length transforms.
If N is a power of 2, we can continue with this approach to a building block of length N = 2. By inductively splitting the
summations in the expansions as above, the FFT algorithm then reduces the computational complexity for the FDD from
N2 complex operations to N log2(N) (with N being a power of 2) such operations.

5.2 The Discrete-to-Continuous Fourier Transform (DCFT): FDC

The Discrete-to-Continuous Fourier Transform can be viewed as the inverse of FCD (with P taken to be 1): A signal
x ∈ l2(Z;R) may be expanded as:

x(n) =

∫ 1

0

x̂(f)ei2πfn, n ∈ Z

with
x̂(f) =

∑
n∈Z

x(n)e−i2πfn, f ∈ [0, 1)

5.3 The CCFT: FCC on S and its extension to L2(R)

We will define the CCFT by the relation

x(t) =

∫ ∞

f=−∞
x̂(f)ei2πftdf, f ∈ R

with

x̂(f) =

∫ ∞

τ=−∞
x(t)e−i2πftdt, f ∈ R

Two important properties are given in the following.

Theorem 5.3.1 For ϕ ∈ S and m ∈ Z+:

a) FCC(
dm

dtmϕ)(f) = (i2πf)mFCC(ϕ)(f).

b) dm

dfmFCC(ϕ)(f) = FCC((−i2πt)mϕ)(f)

Proof. a) Take m = 1, applying integration by parts,∫
d

dt
ϕ(t)e−i2πftdt = ϕ(t)e−i2πft |∞−∞ −

∫
ϕ(t)(−i2πf)ϕ(t)e−i2πftdt

Since ϕ ∈ S, the first term on the right is zero and the result follows. Form > 1, the results follows by repeating the above.
b)
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d

df

∫
ϕ(t)e−i2πftdt = lim

h→0

∫
ϕ(t)(e−i2π(f+h)t − e−i2πft)dt

h

= lim
h→0

∫
ϕ(t)(e−i2πht − 1)e−i2πftdt

h

= lim
h→0

∫
ϕ(t)

(
(cos(2πht)− 1) +−i(sin(2πht)− 0)

)
e−i2πftdt

h

=

∫
ϕ(t)(−i2πt)e−i2πftdt, (5.5)

where the last line follows from the dominated convergence theorem as in the proof of Theorem A.2.1 in the Appendix.
For m > 1, the result follows by repeating the above. ⊓⊔

Theorem 5.3.2 FCC is a continuous linear map on S to S.

Proof. Let ϕ̂ = FCC(ϕ). We first show that ϕ̂ ∈ S. We use Theorem 5.3.1 in the following. We have

sup
f∈R

|fm dk

dfk
ϕ̂(f)| = sup

f∈R
|fmFCC((−i2πt)kϕ(t))(f)|

= sup
f∈R

|FCC

(
dm

dtm

(
(
1

i2π
)m(−i2πt)kϕ(t)

))
(f)| <∞ (5.6)

Note that
(

dm

dtm

(
(2πt)kϕ(t)

)
∈ S . It follows that the term above is bounded for every m, k ∈ Z+ and we have that

ϕ̂ ∈ S.

We now discuss continuity. With ϕ̂n = FCC(ϕn), let ϕn → ϕ ≡ 0 (that is ϕ(t) = 0 for all t) in the Schwartz space S .
Then, building on the analysis above for every m, k ∈ Z+,

sup
f∈R

|fm dk

dfk
ϕ̂n(f)| → 0.

It follows that FCC(ϕn) → ϕ̂ (in the Schwartz space) where ϕ̂(f) = 0 for all f ∈ R. ⊓⊔

We will see in the following that the CCFT is also a transformation from L2(R;C) → L2(R;C).

5.3.1 The Inverse Transform

The following is known as the Riemann-Lebesgue lemma.

Theorem 5.3.3 Let g ∈ L1(R;R). Then,

lim
f→∞

∫
g(t)e−i2πftdt = 0

Proof. By Theorem 2.3.11, for every ϵ > 0 there exists fc ∈ Cc (that is fc is continuous with compact support) such that
||f − fc|| ≤ ϵ/2. Furthermore, we can approximate a continuous function fc with a function gc which is differentiable
(even with continuous derivatives, a function in C1

c -say by polynomials-) so that ||f − gc|| ≤ ϵ. Now, by integration by
parts

|
∫ b

a

gc(t)e
−i2πftdt| ≤ | i

2πf
gc(t)e

−2iπft

∣∣∣∣b
a

|+ | 1

2πf

∫ b

a

|g′c(t)dt|

The right hand side converges to 0 as |f | → ∞. This holds for every ϵ > 0. ⊓⊔
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Recall Exercise 3.3.1, where Theorem 5.3.3 was utilized to arrive at the following:

Lemma 5.3.1 The following holds for all ϕ ∈ S:

lim
n→∞

∫
sin(nx)

πx
ϕ(x)dx→ δ̄(ϕ) = ϕ(0)

With this discussion, we can show that the inverse F−1
CC is defined on S as:

F−1
CC(ϕ̂) =

∫
ϕ̂(f)ei2πftdf.

Observe that: ∫ ∞

−∞
ϕ̂(f)ei2πftdf

lim
A→∞

∫ A

f=−A

ϕ̂(f)ei2πftdf

= lim
A→∞

∫ A

f=−A

(∫
ϕ(τ)e−i2πfτdτ

)
ei2πftdf

= lim
A→∞

∫
ϕ(τ)

∫ A

f=−A

e−i2πfτei2πftdτdf (5.7)

= lim
A→∞

∫
ϕ(τ)

(∫ A

f=−A

e−i2πf(τ−t)df

)
dτ

For every fixedA, we can justify (5.7) by (Fubini’s) Theorem A.3.1. By Lemma 5.3.1, the fact that
∫ A

f=−A
e−i2πf(τ−t)df =

1
π(t−τ) sin(2Aπ(t−τ)) represents a distribution which converges to the δ̄t distribution (which then satisfies

∫
ϕ(τ)δ̄t(τ) ≡∫

ϕ(τ)δ(t− τ) =
∫
ϕ(t− u)δ(u) = ϕ(t)) leads to the desired result.

5.3.2 Plancherel’s Identity / Parseval’s Theorem

Theorem 5.3.4 For every h, g ∈ S (as well as L2(R;C), the Fourier transforms f̂ , ĝ satisfy:

⟨ĥ, ĝ⟩ = ⟨h, g⟩

The proof of this follows from the following: First suppose h, g ∈ S are Schwartz signals (where we allow such signals to
take complex values). Then, observe that∫

ĥ(f)ĝ(f)df =

∫
f

(∫
t

h(t)e−i2πftdt

)
ĝ(f)df

=

∫
t

h(t)(

∫
f

ĝ(f)e−i2πftdf)dt (5.8)

=

∫
t

h(t)

∫
f

ĝ(f)ei2πftdfdt

=

∫
t

h(t)g(t)dt (5.9)

Here, (5.8) follows from Fubini’s theorem. Hence, it follows that

⟨ĥ, ĝ⟩ = ⟨h, g⟩,
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5.3.3 Extension of FCC on L2(R;C) and Plancherel’s theorem

The above discussion applies for for h, g ∈ S (where we also allow for C-valued functions in S). We will show that one
can extend the Fourier transform for signals in L2(R;C). Furthermore, as not every function in L2(R) is also in L1(R)
(for example: f(t) = 1√

1+t2
is in L2 but not in L1), one cannot define a Fourier transform of a general function in L2(R)

pointwise directly by an integral.

Recall from Theorem 2.3.7, and the discussions following it, that continuous functions are dense in integrable functions,
and from Corollary 3.3.1 one can approximate a continuous function by its convolution with a smooth approximate identity
sequence leading to a smooth approximation. These lead to the following.

Theorem 5.3.5 S is dense in L2(R).

With this theorem, our goal will be to define the CCFT of a signal f in L2(R;C) is as follows. Let {ϕn} be a sequence of
functions in S converging to f (This is possible by the denseness of S in L2). We define the CCFT of f as the L2 limit of
a sequence of CCFTs of {ϕn}. Such an extension defines the unique extension of FCC from S to S which is continuous
on L2. This result builds on the following theorem.

Theorem 5.3.6 Let T : M → Y be a linear mapping, Y a Banach space, M a dense linear subspace of a normed linear
space X . Furthermore, let T be bounded in the sense that

∥T∥ = sup
x∈M,x̸=0

||Tx||
||x||

<∞.

Then, there exists a unique extension of T on X to Y , denoted by T̄ : X → Y , such that T̄ (x) = T (x) for x ∈M (that is,
T and T̄ are in agreement on M ). Furthermore, ||T || = ||T̄ ||.

Proof. For every x there exists a sequence xn ∈M so that xn → x in X . We want to define for every x ∈ X

T̄ (x) = lim
xn→x

T (xn) = lim
n→∞

T (xn)

First note that xn is Cauchy, as it is converging to x, and therefore since for every ϵ > 0 there existsN so that for n,m ≥ N ,
∥xn − xm∥ ≤ ϵ. It follows that sequence T (xn) is also Cauchy since for every ϵ′ = ∥T∥ϵ > 0 there exists N so that for
n,m ≥ N , |T (xn) − T (xm)| = |T (xn − xm)| ≤ ∥T∥∥xn − xm∥ ≤ ∥T∥ϵ = ϵ′. Note that T̄ (x) is well-defined, in the
sense that for any other sequence yn → x, we will have that

| lim
n→∞

T (xn)− lim
n→∞

T (yn)| = | lim
n→∞

T (xn − yn)| ≤ lim
n→∞

∥T∥|xn − x| ≤ lim
n→∞

∥T∥(|xn − x|+ |yn − x|) = 0,

since both xn and yn converge to x. Finally, we show that ∥T̄∥ = ∥T∥. First, for any x ∈ X , with M ∋ xn → x,

|T̄ (x)| = | lim
n→∞

T (xn)| ≤ ∥T∥ lim
n→∞

∥xn∥ = ∥T∥∥x∥,

and thus ∥T̄∥ ≤ ∥T∥. On the other hand, T̄ (x) = T (x) for x ∈ M and thus we must have ∥T∥ ≤ ∥T̄∥. Thus, the norms
must be equal. ⊓⊔

Now, let M = S, X = Y = L2(R;C), T = FCC and note by Theorem 5.3.4 that ||FCC || = 1 (when viewed as a
mapping from a subset of L2(R;C)). In view of this, we define FCC on L2(R;C) to be the unique extension of FCC

from S → L2(R;C). Thus, for h ∈ L2(R;C),

⟨h, h⟩ = ⟨ĥ, ĥ⟩, ĥ = FCC(h).

In view of the above, we have that Plancherel’s Theorem also applies to signals in L2(R;C).

⟨g, h⟩ = ⟨ĝ, ĥ⟩, h, g ∈ S
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that
||FCC || = 1.

By the stated (extension) theorem, it follows that FCC is also unitary on L2(R;C) with the same operator norm, that is:

⟨g, h⟩ = ⟨ĝ, ĥ⟩, h, g ∈ L2(R;C).

To verify this, let g and h be in L2(R;C) and gn → g, and let hn → h with gn, hn ∈ S being Schwartz signals. By
Plancherel’s identity:

⟨gn, hn⟩ = ⟨ĝn, ĥn⟩

Let us take the limit as n→ ∞ on both sides. For the left hand side the Cauchy-Schwarz inequality implies that

lim
n→∞

⟨gn, hn⟩ = ⟨g, h⟩,

because
|⟨gn, hn⟩ − ⟨g, h⟩| = |⟨gn − g, hn⟩+ ⟨g, hn − h⟩| ≤ ||gn − g||||hn||+ ||g||hn − h|| → 0

Likewise
|⟨ĝn, ĥn⟩ − ⟨ĝ, ĥ⟩| = |⟨ĝn − ĝ, ĥn⟩+ ⟨ĝ, ĥn − ĥ⟩| ≤ ||ĝn − ĝ||||ĥn||+ ||ĝ||||ĥn − ĥ|| → 0

Here, the convergence to zero follows from the fact that ||ĝn− ĝ|| → 0 (since ||gn−g|| = ||ĝn− ĝ|| → 0 by the discussion
above) and that ||ĥn|| is bounded. This generalizes Plancherel’s identity for signals in L2(R;C).

5.4 Fourier Transform of Distributions (FCC on S∗)

Recall that S∗ is the dual space on S, that is the space of distributions (linear and continuous functions) on S.

The Fourier transform of a distribution is defined by the following relation: Let T ∈ S∗. Then, with T̂ = FCC(T ), we
have

⟨T̂ (ϕ) = T (ϕ̂) ϕ ∈ S (5.10)

The inverse F−1
CC of a distribution is defined with the relation

F−1
CC(T )(ϕ) = T (F−1

CC(ϕ)) ϕ ∈ S

With the above, we can conclude that T̂ itself is a distribution. Just as the CCFT is a map from S to itself, the CCFT is
also a mapping from S∗ to itself. Thus, every distribution has a Fourier Transform. Furthermore, the map FCC : S∗ → S∗

is continuous, linear, and one-to-one. The continuity follows from the definition of the Fourier transform and continuity in
S∗.

This definition is consistent with the Fourier transform of a regular distribution (represented by some function ψ ∈ S )
being a distribution which is represented by the Fourier transform of ψ. That is,∫

ψ̂(f)ϕ(f) =

∫
ψ(t)ϕ̂(t).

This equality follows from Fubini’s theorem by expressing ψ̂(f) =
∫
ψ(t)e−i2πftdt.

Since any singular distribution can be expressed as a weak∗ limit of such regular distributions (represented by signals in
S), the definition above in (5.10) is consistent with the FCC of regular distributions.

Exercise 5.4.1 Show that δ̄ has its CCFT as a distribution represented by the function h(f) = 1 for all f ∈ R.
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Example 5.1. We can compute the Fourier transform of cos(2πf0t) by viewing it as a distribution, in the sense that it
represents a distribution. Observing that cos(2πf0f) = 1

2e
i2πf0f + 1

2e
−i2πf0f , we consider:

lim
T→∞

∫ T

−T

ei2πf0f ϕ̂(f)df

= lim
T→∞

∫ T

−T

ei2πf0f
(∫

ϕ(t)e−i2πftdt

)
df

= lim
T→∞

∫
ϕ(t)

(∫ T

−T

ei2πf0fe−i2πftdf

)
dt

= lim
T→∞

∫
ϕ(t)

(∫ T

−T

ei2π(f0−t)fdf

)
dt

= lim
T→∞

∫
ϕ(t)

sin(2π(f0 − t)T )

π(f0 − t)
dt

= δ̄f0(ϕ)

(
≡

∫
ϕ(t)δf0(t)dt

)
(5.11)

In the analysis above, we use the fact that ϕ̂ ∈ S , use Fubini’s Theorem to change the order of the integrations and finally
invoke (3.8). Thus, the CCFT of a cosine will be 1/2δf0(t) + 1/2δ−f0(t). Here, the last equation in brackets is meant to
be in an intuitive sense.

Exercise 5.4.2 Compute the CCFT of the unit step function, viewed as a distribution.

5.5 FCC of periodic signals

The CCFT of a periodic signal can also be viewed as a distribution. Let x(t) be continuous and periodic with period P .
Then,

⟨x̂, ϕ⟩ = ⟨x, ϕ̂⟩

= lim
T→∞

∫ T

−T

x(f)ϕ̂(f)df

= lim
T→∞

lim
N→∞

∫ T

−T

N∑
k=−N

x̂(
k

P
)

1√
P
ei2π

k
P f ϕ̂(f)df

= lim
N→∞

lim
T→∞

∫ T

−T

N∑
k=−N

x̂(
k

P
)

1√
P
ei2π

k
P f ϕ̂(f)df (5.12)

= lim
N→∞

lim
T→∞

∫ T

−T

N∑
k=−N

x̂(
k

P
)

1√
P
ei2π

k
P f

(∫
ϕ(t)e−i2πftdt

)
df

= lim
N→∞

lim
T→∞

∫
ϕ(t)

( N∑
k=−N

x̂(
k

P
)

1√
P

∫ T

−T

ei2π
k
P fe−i2πftdf

)
dt

= lim
N→∞

lim
T→∞

∫
ϕ(t)

( N∑
k=−N

x̂(
k

P
)

1√
P

sin(2π( k
P − t)T )

π( k
P − t)

)
dt

=

∞∑
k=−∞

x̂(
k

P
)

1√
P
δ̄ k

P
(ϕ)
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≡

∫
ϕ(t)

∞∑
k=−∞

x̂(
k

P
)

1√
P
δ k

P
(t)dt

)
(5.13)

In the above, in (5.12) we can justify the change in the orders since the integration can be thought to be essentially over a
compact domain (with the contribution of the integral from outside a compact domain to be made arbitrarily small with a
sufficiently large compact set, uniformly over N ) as ϕ̂ ∈ S.

Thus, we can essentially first view a periodic signal with its CDFT and then replace the values at k
P with δ k

P
. This is

in agreement with an engineering insight: If one is to express a periodic signal with its FCD expression:

x(t) =
∑
k∈Z

x̂(
k

P
)

1√
P
ei2π

k
P t

one would expect that this would be equivalent to the integral form:

x(t) =

∫ ∑
k∈Z

x̂(
k

P
)

1√
P
δ k

P
(t)ei2πftdf,

whose equivalence is made precise through a distributional approach presented above.

5.6 Band-limited vs Time-limited Functions

Let {x(t), t ∈ R} be a CT signal. If this signal has a finite bandwidth B, that is if

x̂(f) = 0, |f | > B,

then it is not possible for the signal to have a bounded support.

Theorem 5.6.1 Let g, with ∥g∥2 ̸= 0 have a finite bandwidth. Then, g cannot have a finite support.

Sketch of Proof. The proof uses ideas from complex analysis, and the Paley-Wiener Theorem. Let g have finite support.
Consider the integral ∫

g(t)eztdt : C → C,

which is an extension from the real-line to C of the Fourier transform
∫
g(t)e−i2πftdt : R → C. Then,

dk

dzk

∫
g(t)e−ztdt,

would be finite for every k ∈ N due to the finite support condition on g. Since the integral
∫
g(t)e−ztdt is a complex

number, having finite derivatives for all k implies that the function is analytic and the Taylor series can be used to express
the signal in some neighborhood of any given point. Since this argument holds for every z ∈ C, the integral is in fact
an entire function and thus the Taylor series expansion must converge everywhere: Thus, if

∫
g(t)e−ztdt is zero in a

continuum of points, then the integral has to be identically zero for all z, leading to a contradiction which would contradict
the condition that ∥g∥2 = ∥ĝ∥2 ̸= 0 . ⊓⊔

5.7 Exercises

Exercise 5.7.1 a) Let x ∈ L2([0, 2];C) be given by:
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x(t) = 1{t≤1}t+ 1{1≤t≤2}(1− t)

Let x̂(k2 ) denote the Fourier series coefficient corresponding to { 1√
2
ei2π

k
2 t, t ∈ [0, 2]}.

With Matlab, generate the plot of the signal

xN (t) =

N∑
k=−N

x̂(
k

2
)
1√
2
ei2π

k
2 t, t ∈ [0, 2]

for N = 5, 10 and 15. Here x̂( k
P ) are the Fourier Series expansion coefficients.

Observe that, the signal looks more and more like the original signal as N gets larger.

b) Prove that limN→∞
∫
(x(t)− xN (t))2dt = 0.

Hint: Use the properties of Hilbert spaces and the fact that { 1√
P
ei2π

k
P t} forms a complete orthonormal sequence. You

could invoke this result directly in your argument.

c) Does for a general x ∈ L2([0, 2];C),
sup

t∈[0,2]

|x(t)− xN (t)| → 0,

as N → ∞? Explain your argument.

Exercise 5.7.2 CCFT is a map from from S to S. One typical example is the Gaussian signal e−at2/2 for some a > 0:

Show that for a > 0, the CCFT of
ϕ(t) = e−at2/2

is equal to
ϕ̂(f) = Ke−2π2f2/a,

for some K and conclude that ϕ̂ is also a Schwartz signal.

Show that K is independent of f . Find K.

Exercise 5.7.3 Show that CCFT is a unitary transformation from L2(R;C) to itself. That is, show that Placherel’s Identity
holds for functions in L2(R;C).

Exercise 5.7.4 a) Show that CCFT is a continuous map from S∗ to S∗. That is, CCFT maps distributions to distributions
and this is continuous map on S∗.

b) Show that the CCFT of the δ-distribution is another distribution represented by a function which is equal to 1 for all f :
That is,

FCC(δ̄) = H,

with
H(ϕ) =

∫
ϕ(t)dt

Observe that this is in agreement with the general understanding that δ̂(f) = 1 for all f .

Exercise 5.7.5 Consider an impulse train defined by:

wP (t) =
∑
n∈Z

δ(t+ nP )

so that the distribution that we can associate with this impulse train would be defined by:
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wP (ϕ) =
∑
n∈Z

ϕ(nP ),

for ϕ ∈ S.

a) Show that wP is a distribution.

b) Show that

ŵP (ϕ) =

∫
1

P
w 1

P
(t)ϕ(t)dt,

that is, the FCC of this train is another impulse train.

Exercise 5.7.6 Consider a square-integrable signal with non-zero L2 norm, with bounded support. That is, there exists a
compact set, outside of which this signal is identically zero. Can the CCFT of such a signal, with a bounded support in
time-domain, also have bounded support in frequency domain?
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Frequency Domain Analysis of Linear Time-Invariant (LTI) Systems

6.1 Input-Output Relations for Linear Time-Invariant Systems via Fourier Analysis

As we discussed in Section 4.5, a very important property of convolution systems is that if the input is a harmonic function,
so is the output: Let u ∈ L∞(R;C) given with

u(t) = ei2πft,

be the input to a linear time-invariant system

y(t) =

∫ ∞

τ=−∞
h(t− τ)u(τ)dτ =

∫ ∞

τ=−∞
h(τ)u(t− τ)dτ

Then, the output satisfies

y(t) =

(∫ ∞

−∞
h(s)e−i2πfsds

)
ei2πft

The integral

ĥ(f) :=

(∫
h(t)e−i2πftdt

)
,

is FCC(h) evaluated at f . We call this value, the frequency response of the system at frequency f , whenever it exists.

A similar discussion applies for a discrete-time system: Let h ∈ l1(Z;C). If u(n) = ei2πfn is the input to a linear
time-invariant system given with

y(n) =

∞∑
m=−∞

h(n−m)u(m) =

∞∑
m=−∞

h(m)u(n−m).

then

y(n) =

( ∞∑
m=−∞

h(m)e−i2πfm

)
ei2πfm.

We recognize that

ĥ(f) :=

∞∑
m=−∞

h(m)e−i2πfm =

(
FDC(h)

)
(f),

and call ĥ the frequency response function.

Convolution systems are used as filters through the characteristics of the frequency response.

Some Properties.

Recall the following properties of FCC .
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(i) Let u, v ∈ S. We have that (
FCC(u ∗ v)

)
(f) = û(f)v̂(f)

(ii) If v = d
dtu, then v̂(f) = i2πfû(f).

(iii)Let v = σθ(u) for some θ ∈ Z, that is v(n) = u(n+ θ). Then,

v̂(f) =
∑
n∈Z

u(n+ θ)e−i2πfn = ei2πθf û(f)

The above will be very useful properties for studying LTI systems. We can also obtain converse differentiation properties,
which will be considered in further detail in Section 7.2 while studying the Z and the Laplace transformations. Nonethe-
less, we will present two such properties in the following (see Section A.2 for a justification on changing the order of
differentiations and summations/integrations):

Let
FDC(x)(f) = x̂(f) =

∑
n

x(n)e−i2πfn

Then, through changing the order of limit and summation:

dx̂(f)

df
=

∑
n

dx(n)e−i2πfn

df
=

∑
n

(−2iπnx(n))e−i2πn

This leads to the conclusion that with v(n) = −nx(n), with v absolutely summable,

FDC(v)(f) =
1

i2π

dx̂(f)

df

Likewise, for the continuous-time case with x ∈ S

FCC(x)(f) = x̂(f) =

∫
t

x(t)e−i2πftdt

Via the analysis in Section A.2, through changing the order of limit and integration,

dx̂(f)

df
=

∫
dx(t)e−i2πft

df
dt =

∫
(−2iπtx(t))e−i2πtdt (6.1)

This leads to the conclusion that with v(t) = −tx(t), with v(t) (absolutely) integrable,

FCC(v)(f) =
1

i2π

dx̂(f)

df

In the context of LTI systems, we will occasionally build on the following properties: If u(t) = 1{t≥0}e
at, with a < 0,

then then û(f) = 1
−a+i2πf .

Likewise for FDC , for |a| < 1, if u(n) = an−11{n≥1}, then û(f) = e−i2πf 1
1−ae−i2πf .

The properties above are crucial, and typically sufficient, for studying a large class of linear time invariant systems described
by differential and difference equations (convolution systems).
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6.2 Transfer Functions and their Computation for Convolution Systems via Fourier Transforms

In applications for control, communications, and signal processing, one may design systems or filters using the properties
of the frequency response functions.

Consider the following continuous-time system with input u and output y:

N∑
k=0

ak
dk

dtk
y(t) =

M∑
m=0

bm
dm

dtm
u(t)

Taking the FCC of both sides, we obtain( N∑
k=0

ak(i2πf)
k

)
ŷ(f) =

( M∑
m=0

bm(i2πf)m
)
û(f)

This leads to:

ĥ(f) =

∑M
m=0 bm(i2πf)m∑N
k=0 ak(i2πf)

k

As an example, let us consider
dy

dt
= −ay(t) + u(t), a > 0

For this system, we obtain by taking the FCC of both sides (assuming this exists), we have

ĥ(f) =
1

a+ i2πf

and by the discussion earlier,
h(t) = e−at1{t≥0}.

Likewise, for discrete-time systems:
N∑

k=0

aky(n− k) =

M∑
m=0

bmu(n−m)

Taking the FDC of both sides (assuming the FDC exist), we obtain

ĥ(f) =
ŷ(f)

û(f)
=

∑M
m=0 bme

−i2πmf∑N
k=0 ake

−i2πkf

As an example, consider
y(n+ 1) = ay(n) + u(n), |a| < 1

For this system, we obtain by taking the FDC of both sides (assuming this exists), we arrive at (ei2πf − a)ŷ(f) = û(f)
and thus

ĥ(f) =
1

ei2πf − a
=

e−i2πf

1− ae−i2πf

As discussed earlier, this is the FDC of
h(n) = an−11{n−1≥0}

Exercise 6.2.1 Consider the R-C circuit considered in class with the equations:

dVC(t)

dt
= − 1

RC
VC(t) +

1

RC
u(t)
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u

R

C
VC

Fig. 6.1: An RC-circuit as an input-output system

a) Viewed as a linear time-invariant system, where u is the input and VC is the output, find the impulse response and the
frequency response.

b) Qualitatively, plot the Bode diagram.

Exercise 6.2.2 Consider the R-L-C circuit considered in class, with the dynamics

L
d2Q

dt2
+R

dQ

dt
+

1

C
Q = u(t)

Note VC = Q/C.

u

R

C
VC

L

Fig. 6.2: An RLC-circuit as an input-output system

a) Viewed as a linear time-invariant system, where u is the input and VC is the output, find the impulse response and the
frequency response.

b) Qualitatively, plot the Bode diagram in the setup when R is very small.

c) Show that whenR is very small, the f value which maximizes the amplitude of the frequency response is around 1
2π

√
LC

.
Such a model is often used as an antenna of a radio receiver with the value of the capacitance denoting a tuning parameter.

How to compute the inverse transform? One can, using ĥ, compute h(t) or h(n), if one is able to compute the inverse
transform. A useful method is the partial fraction expansion method. More general techniques will be discussed in the
following chapter. Let

R(λ) =
P (λ)

Q(λ)
=
p0 + p1λ+ · · ·+ pMλ

M

q0 + q1λ+ · · ·+ qNλN
, λ ∈ C

IfM < N , we call this fraction strictly proper. IfM ≤ N , the fraction is called proper and ifM > N , it is called improper.

If M > N, we can write
R(λ) = T (λ) + R̃(λ),

where T has degree M −N and R̃(λ) is strictly proper. We can in particular write:

R̃(λ) =

K∑
i=1

( mi∑
k=1

Aik

(λ− λi)k

)
where λi are the roots of Q and mi is the multiplicity of λi.
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This is important because we can use the expansion and the aforementioned properties of FCC and FDC to compute the
inverse transforms. Such approaches will be studied in further detail in the following chapter.

6.3 Exercises

Exercise 6.3.1 Consider a continuous-time system described by the equation:

dy(t)

dt
= ay(t) + u(t), t ∈ R,

where a < 0.

a) Find the impulse response of this system.

b) Suppose that the input to this system is given by cos(2πf0t). Let yf0 be the output of the system. Find yf0(t).

c) If exists, find
lim

f0→∞
yf0(t),

for all t ∈ R+.

Exercise 6.3.2 Let a system be described by:

y(n+ 1) = ay(n) + bu(n) + cu(n− 1), n ∈ Z.

a) For what values of a, b, c is this system bounded-input-bounded-output (BIBO) stable?

b) Let a = 2, b = 1, c = 1. Compute the impulse response of the system.

c) With a = 2, b = 1, c = 1; find the output as a function of n, when the input is

u(n) = 1{n≥0}

Exercise 6.3.3 Consider a Linear Time Invariant (LTI) system characterized by:

y(1)(t) = −ay(t) + u(t), t ∈ R

with a > 0.

a) Find the impulse response of this system.

b) Find the frequency response of the system.

c) Let u(t) = e−t1(t≥0). Find y(t).

Exercise 6.3.4 Consider a continuous time LTI system with a frequency response

ĥ(f) = 1(|f |<f0) f ∈ R

a) Find the impulse response of the system; that is the output of the system when the input is the signal representing the δ̄
distribution.

b) Find the CCFT of the output, when the input is given by

u(t) = e−t cos(f1t)1(t≥0)
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Exercise 6.3.5 a) Let x ∈ l2(Z;C). Compute the DCFT of

x(n) = an1(n≥0),

with |a| < 1.

b) Compute the DCFT of x:
x(n) = cos(3πf0n)

Exercise 6.3.6 Many signals take values in multi-dimensional spaces. If you were to define a CDFT for signals in
L2([0, P1]× [0, P2];C), for given P1, P2 ∈ R+, how would you define it?

Exercise 6.3.7 Let a non-anticipative LTI system be given by:

y(n) =
3

4
y(n− 1)− 1

8
y(n− 2) + u(n)

a) Compute the frequency response of this system.

b) Compute the impulse response of the system.

c) Find the output when the input is

u(n) = (
1

2
)n1(n≥0)
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The Laplace and Z-Transformations

7.1 Introduction

The powerful tools of Fourier transforms do not directly generalize to signals which are not square integrable. Laplace and
Z-transforms allow for the generalization of the machinery developed for Fourier transformable signals to a more general
class of signals. For example, applications in control systems often require the design of control policies/laws which may
turn an open-loop unstable system into a stable system; for studying such unstable signals it is essential to expand the class
of signals which can be studied using frequency domain methods. Furthermore, one-sided Laplace and Z-transforms will
be seen to be useful in studying systems which have non-zero initial conditions.

The Laplace transform generalizes the CCFT and the Z-transform generalizes the DCFT: If a signal is x is not in L1(R;R),
y(t) = x(t)e−rt may be in L1(R;R) for some r > 0. Likewise, if a signal is x is not in l1(Z;R), y(n) = x(n)r−n may be
in L1(R;R) for some r > 1. The Fourier transforms of these scaled signals correspond to the Laplace and the Z-transforms
of x.

A signal is said to be of at-most-exponential growth, if there exist real numbers M,α with |x(t)| ≤M1{t≥0}e
αt for some

M ∈ R, α ∈ R. For such signals, the Laplace transform will be defined for certain parameter values. A similar discussion
applies for the Z-transform such that if |x(n)| ≤M1{n≥0}r

n for some M ∈ R, r ∈ R, the Z-transform will be defined for
a range of values. These will be detailed further in the following.

7.1.1 The Two-sided Laplace Transform

The two-sided Laplace transform of a continuous-time signal is defined through the pointwise relation:

X = L(x)

with
X(s) =

∫
t∈R

x(t)e−st, s ∈ C

The set
{
s ∈ C :

∫
t∈R |x(t)e−st| <∞

}
is called the region of convergence (ROC).

7.1.2 The Two-sided Z-Transform

The two-sided Z-transform of a discrete-time signal is defined through the pointwise relation:

X = Z(x)

with
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X(z) =
∑
n∈Z

x(n)z−n, z ∈ C

The set {z ∈ C :
∑

n∈Z |x(n)z−n| <∞} is called the region of convergence (ROC).

7.1.3 The One-sided Laplace Transform

The one-sided Laplace transform of a continuous-time signal is defined through the pointwise relation:

X+ = L+(x)

with
X+(s) =

∫
t∈R+

x(t)e−st

The set {s ∈ C :
∫
t∈R+

|x(t)e−st| <∞} is called the region of convergence (ROC).

7.1.4 The One-sided Z-Transform

The one-sided Z-transform of a discrete-time signal is defined through the pointwise relation:

X = Z+(x)

with
X+(z) =

∑
n∈Z+

x(n)z−n

The set {z ∈ C :
∑

n∈Z+
|x(n)z−n| <∞} is called the region of convergence (ROC).

7.2 Properties

7.2.1 Linearity

Provided that z is in the ROC for both of the signals x and y

(Z(x+ y))(z) = (Z(x))(z) + (Z(y))(z)

This property applies for the other transforms as well.

7.2.2 Convolution

Provided that z is in the ROC for both of the signals x and y

(Z(x ∗ y))(z) = (Z(x))(z)(Z(y))(z)

This property applies for the other transforms as well.
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7.2.3 Shift Property

Let y(n) = x(n+m), then
(Z(y))(z) = (Z(x))(z)zm

For the one-sided transform, however, the following holds. Let m = 1. Then,

(Z+(y))(z) =

(
(Z+(x))(z)− x(0)

)
z

The general case for m ∈ Z+ can be computed accordingly. For example, let y(n) = x(n− 1), then

(Z+(y))(z) = (Z+(x))(z)z
−1 − x(−1).

Likewise, let y(t) = x(t− θ). Then,

(L(y))(s) = (L(x))(s)e−sθ (7.1)

For the one-sided transform, let y(t) = x(t− θ)1{t≥θ}. Then,

(L+(y))(s) = (L+(x))(s)e
−sθ

7.2.4 Converse Shift Property

Let y(n) = x(n)an1{n≥0}, then

(Z(y))(z) = (Z(x))(
z

a
),

provided that z
a ∈ ROC for x.

Let y(t) = x(t)eat1{t≥0}, then
(L(y))(s) = (L(x))(s− a),

provided that s− a ∈ ROC for x.

7.2.5 Differentiation Property (in time domain)

Let D(x) denote dx
dt (assumed to exist), and let x(t) = 0 for t ≤ b some b ∈ R and that |x(t)| ≤Meat. Then,

L(Dx)(s) = sL(x)(s)

L+(Dx)(s) = sL+(x)(s)− x(0),

for Re{s} > a.

7.2.6 Converse Differentiation

Suppose that lim supn→∞ |x(n)|( 1
n ) ≤ R for some R ∈ R. This implies that {z : |z| > R} is in the ROC. To see this one

should note that for every δ > 0, there exists Nδ such that for n > Nδ we have |x(n)|( 1
n ) < R+ δ. Then, take δ to be less

that |z| −R for any given |z| > R.

Now, let y(n) = −nx(n). Then,

Z+(y)(z) = z
d

dz
(Z+(x))(z),
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for |z| > R.

The proof of this result uses the fact that with

X(z) =
∑
n≥0

x(n)z−n,

for |z| > R,
X ′(z) =

∑
n≥0

−x(n)nz−n−1.

We now verify this result. First observe that

K(z) =
∑
n≥0

−x(n)nz−n−1,

is also absolutely convergent for |z| > R (by the δ,Nδ argument noted above). We now show that K(z) is indeed the
derivative of X(z). Consider

d

dz
X(z)−K(z) = lim

h→0

X(z + h)−X(z)

h
−K(z)

= lim
h→0

∑
n≥0

x(n)
(z + h)−n − z−n

h
−K(z)

= lim
h→0

N∑
n=0

x(n)
(z + h)−n − z−n

h
+

∞∑
n=N+1

x(n)
(z + h)−n − z−n

h
−K(z)

With |z| − |h| > R, observe that

(
1

z + h
)
n

− (
1

z
)
n

= (
1

z + h
− 1

z
)

n−1∑
k=0

(
1

z + h
)k(

1

z
)n−1−k

Since |z + h| ≥ |z| − |h| > R, we have that

|
1

z+h − 1
z

h
| ≤ | 1

z + h

1

z
| ≤ (R+ δ)−2

for some δ > 0. and

1

h

∣∣∣∣( 1

z + h
)n − (

1

z
)n
∣∣∣∣ ≤ n(R+ δ)−2(R+ δ)−(n−1) = n(R+ δ)−(n−1)

Thus, for all h sufficiently small, we have that

∞∑
n=N+1

x(n)
(z + h)−n − z−n

h
≤

∑
n≥N+1

x(n)n(R+ δ)−(n−1),

and this term can be made arbitrarily small (uniformly over sufficiently small h) by picking a large enough N since
lim supn→∞(|x(n)|)( 1

n ) ≤ R. For the first term, we write that

lim
h→0

N∑
n=0

x(n)
(z + h)−n − z−n

h
=

N∑
n=0

−x(n)nz−n−1,

since there are only finitely many terms. Since
∑N

n=0 −x(n)nz−n−1 −K(z) → 0 as N goes to ∞, the result follows.
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The derivative rule for the Laplace transforms follows from a similar reasoning. Let |x(t)| ≤ Meat for some M,a ∈ R.
Let y(t) = −tx(t). Then, for s with Re{s} > a, we have

L+(y)(s) =
d

ds
(L+(x))(s)

To see this, consider with L+(y)(s) = X(s)

d

ds
X(s) = lim

h→0

X(s+ h)−X(s)

h

= lim
h→0

∫
t≥0

x(t)e−(s+h)t − e−st

h
dt

= lim
h→0

∫
t≥0

x(t)e−st e
−ht − 1

h
dt

= lim
h→0

∫
t≥0

x(t)e−st

∑∞
k=0

(−ht)k

k! − 1

h
dt

= lim
h→0

∫
t≥0

−x(t)e−stt

∞∑
k=0

(−ht)k

(k + 1)!
dt

(7.2)

Since
∑∞

k=0
(−ht)k

(k+1)! ≤
∑∞

k=0
|−ht|k

k! ≤ e|ht|, and limh→0 e
|ht| = 1 for all t, and that

∫
x(t)te−ste|h|tdt is integrable when

s is in the ROC (by taking h sufficiently small), the dominated convergence theorem implies that

d

ds
X(s) =

∫
t≥0

−tx(t)e−stdt = L+{(−tx(t))}(s).

Remark 7.1. Note that for FCC , a more subtle argument is needed for pushing the derivative inside the integration in (6.1)
via applying Theorem A.2.1 to imaginary and real parts of an exponential separately. For the Z and Laplace transforms
above, we are using the liberty of the region of convergence being outside the critical curves/lines (as in |z| > R).

7.2.7 Scaling

If y(t) = x(αt), then

L(y)(s) = 1

|α|
L(x)( s

α
),

provided that s
α ∈ ROC for x.

7.2.8 Initial Value Theorem

Let x(n) ≤Man for all n ∈ Z and for some M,a ∈ R. Then,

lim
z→∞

X+(z) = x(0),

for |z| > a.

Let x(t) ≤Meat and d
dtx(t) ≤Meat for all t ∈ R and for some M,a ∈ R. Then,

lim
s→∞,Re{s}>a

sX+(s) = x(0),
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for Re{s} > a. The proof of this result follows from the differentiation property (in time domain) (and an application of
the dominated convergence theorem (see Theorem A.1.5) if Res → ∞ or the Riemann-Lebesgue Lemma (see Theorem
5.3.3) if Im(s) → ∞ but the real part does not converge to infinity).

7.2.9 Final Value Theorem

If limt→∞ x(t) =:M <∞, then
lim
t→∞

x(t) = lim
s→0,Re{s}>0

sX+(s),

Proof. Let M = limt→∞ x(t). Then with M = s
∫
Me−stdt, it suffices to show that

lim
s→0,Re{s}>0

∫
(x(t)−M)e−stdt = 0. (7.3)

For K with for all t > K: |x(t)−M | ≤ ϵ, it follows that

lim
s→0,Re{s}>0

|s
∫ ∞

K

(x(t)−M)e−stdt| ≤ lim
s→0,Re{s}>0

|sϵϵe
−Re{s}K

s
| ≤ ϵ.

On the other hand with this K fixed, the remainder lims→0,Re{s}>0 s
∫K

0
(x(t)−M)e−st = 0. Thus, (7.3) holds.

To be able to apply the Final Value Theorem, it is important to ensure that the finiteness condition, limt→∞ x(t) =: M <
∞, holds. Note that if we have that all poles of sX+(s) are in the left half plane, this ensures that limt→∞ x(t) exists
and is finite.

For a discrete-time signal, if limn→∞ x(n) <∞, then

lim
n→∞

x(n) = lim
z→1,|z|>1

(1− z−1)X+(z)

The proof follows from the same arguments used in the proof above for the Laplace setup. Once again, note that if we have
that all poles of (1− z−1)X+(z) are strictly inside the unit circle, then limn→∞ x(n) exists and is finite.

7.3 Computing the Inverse Transforms

There are usually three methods that can be applied depending on a particular problem. One is through the partial fraction
expansion and using the properties of the transforms. Typically, for linear systems, this is the most direct approach. All is
required is to know that

Z(an1n≥0)(z) =
1

1− az−1

with z ∈ {z : |z| > a} and

L(eat1t≥0)(s) =
1

s− a

with s ∈ {s : Re{s} > a}, together with the properties we discussed above. One needs to pay particular attention to the
regions of convergence: for examples both of the signals x1(t) = eat1{t≥0} and x2(t) = −eat1{t<0} have their Laplace
transforms as 1

s−a , but the first one is defined for Re{s} > a and the second one for Re{s} < a.

A second method is to try to expand the transforms using power series (Laurent series) and match the components in the
series with the signal itself.

Example 7.2. Compute the inverse transform of X(z) = 1
z2−1 where the region of convergence is defined to be {z : |z| >

1}. You may want to first write X(z) = z−2 1
1−z−2 .
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The most general method is to compute a contour integration along the unit circle or the imaginary line of a scaled signal.
In this case, for Z-transforms:

x(n) =
1

i2π

∫
c

X(z)zn−1dz

where the contour integral is taken along a circle in the region of convergence in a counter-clockwise fashion. For the
Laplace transform:

x(t) =
1

i2π

∫
c

X(s)estds,

where the integral is taken along the line Re{s} = R which is in the region of convergence. Cauchy’s Integral Formula
(see Theorem B.0.2) may be employed to obtain solutions.

However, for applications considered in this course, the partial fraction expansion is the most direct approach.

7.4 Systems Analysis using the Laplace and the Z Transforms

For a given convolution system, the property that if u is an input, h is the impulse response and y the output

(L(y))(s) = (L(u))(s)(L(h))(s)

leads to the fact that

H(s) =
Y (s)

U(s)

Likewise,
(Z(y))(z) = (Z(u))(z)(Z(h))(z)

leads to the fact that

H(z) =
Y (z)

U(z)

Besides being able to compute the impulse response and transfer functions for such systems, we can obtain useful properties
of a convolution system through the use of Laplace and Z transforms.

7.5 Causality (Realizability), Stability and Minimum-Phase Systems

A convolution system is causal (realizable) if h(n) = 0 for n < 0. This implies that if r ∈ R+ is in the region of
convergence, so is R for any R > r. Therefore, the region of convergence must contain the entire area outside some circle
if it is non-empty.

A convolution system is BIBO stable if and only if
∑

n |h(n)| < ∞, which implies that |z| = 1 must be in the region of
convergence.

Therefore, a causal convolution system is BIBO stable if and only if the region of convergence is of the form {z : |z| > R}
for some R < 1.

In particular, let P (z) and Q(z) be polynomials in z. Let the transfer function of a discrete-time LTI system be given by

H(z) =
P (z)

Q(z)

This system is stable and causal if and only if: the degree of P is less than or equal to the degree of Q and all poles of H
(that is, the zeros of Q which do not cancel with the zeros of P ) are inside the unit circle.

A similar discussion applies for continuous-time systems: Such a system is BIBO stable if the imaginary axis is in the
region of convergence. Such a system is causal if the region of convergence includes {s : Re{s} > R} for some R,
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provided that the region of convergence is non-empty. Therefore, a continuous-time system is BIBO stable and causal if
the region of convergence is of the form {s : Re{s} > R} for some R < 0. Thus, if P (s) and Q(s) be polynomials in z
and the transfer function of a continuous-time LTI system be given by

H(s) =
P (s)

Q(s)
,

this system is stable if poles of H are in the left-half plane.

A practically important property of stable and causal convolution systems is whether the inverse of the transfer function
is realizable through also a causal and stable system: Such systems are called minimum-phase systems. Thus, a system
is minimum-phase if all of its zeros and poles are inside the unit circle. A similar discussion applies for continuous-time
systems, all the poles and zeros in this case belong to the left-half plane. Such systems are called minimum phase since
every system transfer function can be written as a product of a minimum phase system transfer function and a transfer
function which has unit magnitude for a purely harmonic input but which has a larger (positive) phase change as the
frequency is varied. To make this more concrete, consider

G1(s) =
s− 1

s+ 5

This system is not minimum-phase. Now, write this system as:

G1(s) =

(
s+ 1

s+ 5

)(
s− 1

s+ 1

)
Here, G2(s) :=

s+1
s+5 is minimum-phase. G3(s) :=

s−1
s+1 is so that is magnitude on the imaginary axis is always 1. However,

this term contributes to a positive phase. This can be observed by plotting the Bode diagram, as for small ω values, the
signal has a phase close to π which gradually decays to zero.

Another way to observe this added delay is the following: Write s−1
s+1 = 1− 2

s+1 , and observe that the inverse Laplace of this
term is the Dirac delta impulse minus the effect of the inverse Laplace of − 2

s+1 ; this latter term is b(t) := −2e−t1{t≥0} or
in terms of a linear system it is the solution of a causal system with input u whose output is

∫
b(t− τ)u(τ)dτ (or generally∫ t

CeA(t−s)Bu(s) for appropriate matrices A,B,C): This term adds a delayed response compared with the effect of the
Dirac delta impulse.

Yet, another interpretation is the following: Let θ > 0. One has the approximation

1− sθ/2

1 + sθ/2
≈ e−sθ

for small s = iω values through expanding the exponential term. By our analysis earlier in (7.1), a negative complex
exponential in the Laplace transform contributes to a positive time delay. The approximation above is known as a first-
order Padé approximation.

Thus, non-minimum-phase systems have higher delay properties in their impulse responses compared to minimum-phase
systems.

7.6 Initial Value Problems using the Laplace and Z Transforms

The one-sided transforms are very useful in obtaining solutions to differential equations with initial conditions, as well as
difference equations with initial conditions.



7.7 Exercises 85

7.7 Exercises

Exercise 7.7.1 a) Compute the (two-sided) Z-transform of

x(n) = 2n1{n≥0}

Note that you should find the Region of Convergence as well.

b) Compute the (two-sided) Laplace-transform of

x(t) = e2t1{t≥0}

Find the regions in the complex plane, where the transforms are finite valued.

c) Show that the one-sided Laplace transform of cos(αt) satisfies

L+{cosαt} =
s

s2 + α2
, Re(s) > 0

d) Compute the inverse Laplace transform of

s2 + 9s+ 2

(s− 1)2(s+ 3)
, Re(s) > 1

Hint: Use partial fraction expansion and the properties of the derivative of a Laplace transform.

Exercise 7.7.2 Find the inverse Z-transform of:

X(z) =
3− 5

6z
−1

(1− 1
4z

−1)(1− 1
3z

−1
, |z| > 1

Exercise 7.7.3 Let P (z) and Q(z) be polynomials in z. Let the transfer function of a discrete-time LTI system be given by

H(z) =
P (z)

Q(z)

a) Suppose the system is BIBO stable. Show that the system is causal (non-anticipative) if and only if P (z)
Q(z) is a proper

fraction (that is the degree of the polynomial in the numerator cannot be greater than the one of the denominator).

b) Show that the system is BIBO stable if and only if the Region of Convergence of the transfer function contains the unit
circle. Thus, for a system to be both causal and stable, what are the conditions on the roots of Q(z)?

Exercise 7.7.4 Let a system be described by:

y(n+ 2) = 3y(n+ 1)− 2y(n) + u(n), n ∈ Z.

a) Is this system non-anticipative? Bounded-input-bounded-output (BIBO) stable?

b) Compute the transfer function of this system.

c) Compute the impulse response of the system.

d) Compute the output when the input is
u(n) = (−1)n1{n≥0}

Exercise 7.7.5 Let a system be described by:
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y(n+ 2) = 3y(n+ 1)− 2y(n) + u(n), n ∈ Z.

a) Is this system non-anticipative? Bounded-input-bounded-output (BIBO) stable?

b) Compute the transfer function of this system.

c) Compute the impulse response of the system.

d) Compute the output when the input is
u(n) = (−1)n1{n≥0}

Exercise 7.7.6 a) Let H(z) = 1
1−z2 . Given that H represents the transfer function (Z-transform of the impulse response)

of a causal filter, find h(n).

b) Find the solution to the following sequence of equations:

y(n+ 2) = 2y(n+ 1) + y(n), n ≥ 0

with initial conditions:
y(0) = 0, y(1) = 1.

That is, find y(n), n ≥ 0.



8

Control Analysis and Design through Frequency Domain Methods

8.1 Transfer Function Shaping through Control: Closed-Loop vs. Open-Loop

In Section 1.2.1, we discussed some control theoretic configurations mapping an input to an output and how the map can
be shaped by control design. Two common architectures are depicted in Figure 1.2 (as a general output feedback; here the
control depends on the output of the system) and in Figure 1.3 (as an error output feedback control system; here the control
depends on the error between the external input and the system output). More general configurations are also possible, as
discussed in Section 1.2.1. For consistency, we will focus on a particular architecture noting that the analysis to follow can
be generalized to any of these models.

Consider the (error) feedback loop given in Figure 8.4. Here P (s) denotes the transfer function of the system to be con-
trolled. By writing Y (s) = P (s)C(s)(R(s)− Y (s)), it follows that

Y (s)

R(s)
=

P (s)C(s)

1 + P (s)C(s)
(8.1)

is the closed-loop transfer function (under negative unity feedback). Compare this with the setup where there is no feedback:
in this case, the transfer function would have been P (s)C(s). This latter expression is often called the (open) loop-transfer
function. The goal is to shape (8.1) via the control characterized with C(s) in the frequency domain.

r

C(s) P (s)

y
-

+

Fig. 8.1

8.1.1 Some motivation via a common class of controllers: PID controllers

By Laplace transforms, we know that differentiation in time domain entails a multiplication with s, and integration involves
multiplication with 1

s . In the context of the setup of Figure 8.4, let e(t) = y(t) − r(t). A popular and practical type of
control structure involves:

u(t) = ki

∫ t

0

e(t)dt+ kd
de

dt
+ kpe(t)

which writes as, in Laplace domain,
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U(s) =

(
ki
s

+ kds+ kp

)
E(s).

Thus, the control uses both the error itself (proportional), its integration, and its derivative; leading to the term PID control.

8.2 Bode-Plot Analysis

Bode plots were studied earlier in class. With Bode plots, we observed that we can identify the transfer function of a system,
when a system is already stable. However, the Bode plot does not provide insights on how to design a control system or
how to adjust a controller so that stability is attained.

8.3 The Root Locus Method

The set {s : 1 + C(s)P (s) = 0} consists of the poles of the transfer function. If one associates with the controller a gain
parameter K, the root locus method traces the set of all poles as K ranges from 0 to ∞ (and often from 0 to −∞ as well),
so that {s : 1 +KC(s)P (s) = 0} is traced. Thus, this method provides a design technique in identifying desirable values
for the parameter K.

The root locus method allows one to identify the poles. The pole information clearly identifies BIBO stability properties.
Additionally, it lets one select desirable pole values: for example, poles with imaginary components lead to significant
transient fluctuations and poles with real parts closer to the origin (on the left half plane) dominate the behaviour involving
the response characteristics. A control engineer/designer may reasons to choose certain poles over others.

For the approach to be practical, the following key mathematical result is to be noted.

Theorem 8.3.1 Consider the polynomial a(s) +Kb(s) = 0 where a and b are polynomials. The roots of this polynomial
vary continuously as K ∈ R changes.

Proof Sketch. We will follow a contrapositive argument showing that if the roots do not converge to the roots of the
polynomial, the polynomial cannot converge either, as K approaches a fixed number (say 1, without any loss). Consider
the following three steps:
a) First show that for any polynomial p(s) = a0 + a1s+ · · ·+ an−1s

n−1 + sn, the matrix

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
... · · ·

...
0 0 0 · · · 1

−a0 −a1 −a2 · · · −an−1


has p(s) as its characteristic polynomial.

We can show this by directly by computing the characteristic polynomial (and by an inductive argument): The result holds
for n = 2. Now, let this hold for n− 1 ≥ 2. We show that it also holds for n. Observe that the determinant of the matrix

λI −A =


λ −1 0 · · · 0
0 λ −1 · · · 0
...

...
... · · ·

...
0 0 0 · · · −1
a0 a1 a2 · · · λ+ an−1


is
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λ(a1 + · · ·+ an−1λ
n−2) + (−1)n−1a0(−1)n−1 = a0 + a1λ+ · · ·+ an−1λ

n−1 + λn

Alternatively, (given earlier studies involving differential equations) you can show this by realizing that the matrix above
appears in the first-order ODE reduction of the nth order constant coefficient differential equation:

dny(t)

dtn
+ an−1

dn−1y(t)

dtn−1
+ an−2

dn−2y(t)

dtn−2
+ · · · a1

dy(t)

dt
+ a0y(t) = 0, (8.2)

by writing

x(t) =
[
y(t) dy(t)

dt · · · dn−1y(t)
dtn−1

]T
(8.3)

Then, realize that eλitc (for some constant c) solves the differential equation (8.2) and thus obtain a solution for (8.3),

leading to an eigenvalue equation: A


eλit

λie
λit

...
λn−1
i eλit

 = λi


eλit

λie
λit

...
λn−1
i eλit

. For a repeated eigenvalue we need to consider eλitt

or further functions, and a slightly more involved analysis, to arrive at generalized eigenvectors.

b) From this, one can show through some algebraic analysis that eigenvalues are uniformly bounded where the bound
continuously changes with the polynomial coefficients: Consider an eigenvalue λ with eigenvector v with Av = λv and
v =

[
v1 · · · vn

]T
. Then, for every i, we have that

|λ||vi| = |
∑
j

A(i, j)v(j)| ≤
(
max

i

∑
j

|A(i, j)|
)
max

j
|vj |

and hence

|λ|max
i

|vi| ≤
(
max

i

∑
j

|A(i, j)|
)
max

j
|vj |,

and thus |λ| ≤ maxi
∑

j |A(i, j)| for all eigenvalues. As a result |λj | ≤ max(1,
∑

i |ai|) for each 1 ≤ j ≤ n. Alternatively,
you can use a very useful result known as Gershgorin circle theorem. What matters is that the bound (on the eigenvalues)
is uniformly bounded (as K changes), since the obtained bound above changes continuously with K.

c) Now, as K changes, the coefficients of the polynomial continuously change. Therefore, the roots of the polynomial
are uniformly bounded for K sufficiently close to any fixed K∗. This implies that for every sequence Km → K∗, the
corresponding sequence of roots must contain a converging subsequence (since the ordering of the roots may be arbitrary
one can consider the metric between two vectors defined as the smallest l2 distance among all possible permutations1).Then,
we can arrive at a contradiction for the following contrapositive argument: suppose that K approaches K∗ along some
sequence but the roots do not converge to the roots of the polynomial with K = K∗.

Let {sK1 , · · · , sKn } be the roots of the polynomial pK(s) for a givenK. For any sequenceKm → K∗, by part a), the family
of roots will take values from a compact set. Thus, there must exist a converging subsequence, call such a subsequential
limit {s̄1, · · · , s̄n}. Now, if this limit is not the same as the roots of the polynomial with K = 1, then, the value of the
polynomial at K = K∗, pK∗(s) must be different then the value

∏n
m=1(s− s̄m) for some s ∈ C. But, by continuity of the

polynomial itself in K, pK(s) → p1(s) for all s ∈ C, a contradiction. Thus, every converging subsequence must converge
to the roots of the polynomial pK∗(s). For the metric for convergence, as noted, we consider the smallest possible l2 metric
on Cn among all permutations.

Finally, we now show that in fact every sequence itself must be converging: suppose not, then there exists ϵ and a subse-
quence {s̄1, · · · , s̄n} such that {s̄1, · · · , s̄n} is ϵ away from the roots of the pK∗(s) under the metric considered above. But
this subsequence itself must contain a converging subsequence, by the arguments above, and the limit has to be the roots
of pK∗(s). Hence, a contradiction. ⊓⊔

1As an exercise, show that this permutation does not violate the conditions of being a metric: d̄(x, y) := minσ(d(x, σ(y)), where σ
permutes the order of the components of the vector y.
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We note that an elementary proof along this direction is given in [13].

Remark 8.1. The above also directly establishes the very useful result that when one is given a matrix, the eigenvalues of
the matrix are continuous in (pointwise perturbations of) its entries.

Exercise 8.3.1 Consider Figure 8.2.

r

C(s) P (s)

y
-

+

Fig. 8.2

a) Let the plant and controller be given with P (s) = 1
s2 (double integrator dynamics) and C(s) = kp (such a controller is

known as a proportional controller). Find the root locus as kp changes from 0 to ∞.

b) [PD Control] Consider P (s) = 1
s2 (double integrator dynamics), and C(s) = kp + kds (the term PD-controller means

proportional plus derivative control). Let kp = kd = K. Find the root locus as K changes from 0 to ∞. Conclude, while
comparing with part a above, that the addition of the derivative controller has pushed the poles to the left-half plane (thus,
leading to stability!)

c) [Reference Tracking] For the system with the controller in part b), let K > 0: Let r(t) = A1t≥0 for some A ∈ R. Find
limt→∞ y(t). Hint: Apply the Final Value Theorem. We have that R(s) = A 1

s and with Y (s) = A Ks+K
s(s2+Ks+K) we have

that sY (s) has all poles on the left-half plane. By the final value theorem, the limit is A. Thus, the output asymptotically
tracks the input signal.

Some engineering interpretation. 1
s2 can be viewed as a map from acceleration to position: d2y

dt2 = u; part a) in the above
suggests that if we only use position error we cannot have a stable tracking system; but if we use position and derivative
(that is, velocity) information, then we can make the system stable. Furthermore, if we have a reference tracking problem,
the output will indeed track the reference path.

8.4 Nyquist Stability Criterion

Consider a feedback control system with negative unity feedback as in Figure 8.4, with the loop-transfer function P (s)C(s)
and the closed-loop transfer function P (s)C(s)

1+P (s)C(s) .

With the Bode plot, we observed that we can identify the transfer function when a system is already stable. However, the
Bode plot does not provide insights on how to adjust the controller so that stability is attained. The Root Locus method
allows for parametrically adjusting the instability region. Complementing the Root Locus method, the Nyquist plot provides
further insight on controller design and its robustness properties to parameter variations, to be discussed further below.

Recall first that a right-half plane pole of 1+P (s)C(s) implies instability. In general, it is not difficult to identify the poles
of the (open-loop) transfer function P (s)C(s). Therefore, in the following we will assume that we know the number of
right-half plane poles P (s)C(s). Note also that the poles of P (s)C(s) are the same as the poles of 1+P (s)C(s); thus, we
will assume that we know the number of right-half plane poles of 1 + P (s)C(s).

For the Nyquist plot, we will construct a clockwise contour starting from −iR to the origin and then to +iR and then along
a semi-circle of radius R to close the curve. Later on we will take R→ ∞.

We will refer to this contour as a Nyquist contour.
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If there is a pole of L(s) on the imaginary axis, we should carefully exclude this from our contour: to exclude these, we
divert the path along a semi-circle of a very small radius r around the pole in a counter clock-wise fashion (which will later
be taken to be arbitrarily close to 0). The exclusion of such a pole will not make a difference in the stability analysis: we
focus on the zeroes of 1 + P (s)C(s) in the right-half plane (as such a pole cannot make 1 + P (s)C(s) = 0).

Theorem 8.4.1 Nyquist Criterion. Consider a closed loop system with the loop transfer function L(s) = C(s)P (s). Sup-
pose that L(s) has P poles in the region encircled by the Nyquist contour. Let N be the number of clockwise encirclements
of −1 by L(s) when s encircles the Nyquist contour Γ clock-wise. Then, the closed loop has N + P poles in the right-half
plane.

Note: One can alternatively trace the contours counterclockwise and then count N as the number of counterclockwise
encirclements. The result will be the same.

The proof builds on what is known as the principle of variation of the argument theorem, which we state and prove next.

Theorem 8.4.2 Let D be a closed region in the complex plane with Γ its boundary. Let f : C → C be complex differen-
tiable (and hence analytic) on D (and on Γ ) except at a finite number of poles and with a finite number of zeroes, all in
the interior of D. Then, the change in the argument of f (normalized by 2π) over Γ (known as the winding number wn) is
given by:

wn =
1

2π
∆Γargf =

1

i2π

∫
Γ

f ′(z)

f(z)
dz = Z − P,

where ∆Γ is the net variation in the angle (or argument) of f when z traces the contour Γ in the counter-clock-wise
direction; Z is the number of zeroes, and P is the number of poles (with multiplicities counted).

Proof.
a) Let z = p be a zero of multiplicity m. Then, in small neighbourhoods of p, we have

f(z) = (z − p)mg(z),

where g is analytic and non-zero. Now,

f ′(z)

f(z)
=
m(z − p)m−1g(z) + (z − p)mg′(z)

(z − p)mg(z)
=

m

z − p
+
g′(z)

g(z)

Thus, f ′(z)
f(z) has a single pole at p and the integration (normalized with 1

i2π ) will be m (by Cauchy’s integral formula
Theorem B.0.2). Thus, the sum of all residues at the zeros of f will be Z.

Now, make the same reasoning for the poles, say q, with f(z) = (z − q)−mg(z) and observe that that the sum of the
residues at the poles is −P .

Hence,

Z − P =
1

i2π

∫
f ′(z)

f(z)
dz (8.4)

b) Let Γ be parametrized as γ(t), a ≤ t ≤ b, with γ(a) = γ(b). Recall that f is complex differentiable on all of Γ . Now,
write ∫

Γ

f ′(z)

f(z)
dz =

∫ b

a

f ′(γ(t))

f(γ(t))
γ

′
(t)dt

= log(f(γ(t)))

∣∣∣∣b
a

= log(|f(γ(t))|)
∣∣∣∣b
a

+

(
i2πarg(f(γ(t)))

)∣∣∣∣b
a

,

since log(f(z)) = log(|f(z)|) + iarg(f(z)). As |f(γ(b))| = |f(γ(a))|, we have that
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Γ

f ′(z)

f(z)
dz = i2πargf(γ(t))

∣∣∣∣b
a

= i2π∆Γarg

The proof then follows from (8.4). ⊓⊔

Now, to apply this theorem, consider f(s) = 1 + P (s)C(s), as noted earlier observe that the poles of 1 + P (s)C(s) are
the same as the poles of P (s)C(s). We are interested in the zeroes of 1+P (s)C(s), and whether they are in the right-half
plane. So, all we need to compute is the number of zeroes of 1 + P (s)C(s) through the difference N = Z − P given
by the number of encirclements: Note now that the number encirclements of 1 + P (s)C(s) around 0 is the same as the
number of encirclements of P (s)C(s) around −1. So, the number of zeroes in the right-half plane of 1 + P (s)C(s) will
be P plus the winding number. As a final note, in the Nyquist analysis, we construct the contour clockwise and apply the
argument principle accordingly (so, the number of encirclements around −1 should be counted clock-wise). So, the number
of interest is N + P , as claimed.

To compute the number of clock-wise encirclements, compute L(iω) starting from ω = 0 and increase ω to ∞. Observe
that L(iω) = L(−iω), computing L(iω) for ω > 0 is sufficient to compute the values for ω < 0. Finally, to compute L(s)
as |s| → ∞, we note that often |L(s)| converges to a constant as |s| → ∞, and the essence of the encirclements is given
by the changes occurred as s traces the imaginary axis.

Exercise 8.4.1 a) Consider C(s) = K, P (s) = 1
(s+1)2 . Is this system stable for a given K > 0. Explain through the

Nyquist stability criterion.

b) Consider P (s)C(s) = 1
(s+a)3 with the controller in an error feedback form so that the closed loop transfer function is

given by P (s)C(s)
1+P (s)C(s) . Is this system stable? Explain through the Nyquist stability criterion.

c) Let P (s)C(s) = 3
(s+1)3 . Compute the gain stability margin. Draw the phase stability margin on the Nyquist curve.

θ

l

m

u

Fig. 8.3

Exercise 8.4.2 Consider the inverted pendulum displayed in Figure 8.3, where a torque of u is applied to maintain the
pendulum around θ = 0. The dynamics can be derived as

d2θ(t)

dt2
=
g

l
sin(θ(t)) +

u(t) cos(θ(t))

ml2

For simplicity, let us assume the coefficients (m, l) are selected so that the above simplifies to:

d2θ(t)

dt2
= sin(θ(t)) + u(t) cos(θ(t))

Consider the linearization around θ = 0, dθdt = 0 (with the approximation sin(θ) ≈ θ, cos(θ) ≈ 1).

Then, it follows that the Plant, modeling the linearized inverted pendulum, would have its transfer function as



8.4 Nyquist Stability Criterion 93

P (s) =
1

s2 − 1

Now, suppose that we apply the control
C(s) = k(s+ 1),

with an error feedback control configuration as in Figure 8.2.

Via the Nyquist crierion, find conditions on k so that the closed-loop linearized system is BIBO stable.

Hint. Note that P (s) has a right-half plane pole, so the Nyquist criterion has to encircle −1 clock-wise.

Robustness

Nyquist’s criterion also suggests a robustness analysis: Gain and phase margins, mainly as a way to measure how far
P (s)L(s) is from −1 in both the magnitude (1) and phase ((π)) terms.

Roughly speaking, for systems which hit the real-line only once, in the complex plane the angle between −1 and the
location where the Nyquist plot hits the unit circle (magnitude equaling 1) is called the phase stability margin. The ratio
between −1 and the point where the Nyquist plot hits the negative x-axis is called the the gain stability margin.

8.4.1 System gain, passivity and the small gain theorem

Consider a linear system with feedback, which we assume to be stable: We generalize the observation above by viewing
the input as one in L2(R;C). Consider then the gain of a linear system with:

γ := sup
u∈L2(R;C):∥u∥2 ̸=0

∥y∥2
∥u∥2

We know, by Parseval’s theorem (Theorem 5.3.4), that

γ := sup
u∈L2(R;C):∥u∥2 ̸=0

∥FCC(y)∥2
∥FCC(u)∥2

which is equal to, by writing FCC(y)(iω) = FCC(u)(iω)G(iω), where G is the closed-loop transfer function. It can then
be shown by noting that ∫

ω

|FCC(u)(iω)|2G(iω)2|dω ≤
(
sup
ω

|G(iω)|2
)∫

|FCC(u)(iω)|2,

the following holds:

γ := sup
u∈L2(R;C):∥u∥2 ̸=0

√∫
ω
|FCC(u)(iω)G(iω)|2dω

∥FCC(u)∥2
= sup

ω∈R
|G(iω)| =: ∥G∥∞

We write supu∈L2(R;C), since a maximizing frequency may not exist or a maximizing input, even if a maximizing frequency
ω∗ exists, u(t) = eiω

∗t, will not be square integrable. However, this can be approximated arbitrarily well by truncation
of the input and the output: Let ω∗ = 2πf∗ and uK(t) = 1{−K

2 ≤t≤K
2 }e

i2πf∗t. As K → ∞, the gain of the system will
approximate γ arbitrarily well.

Then, we define the gain of a linear system as:

γ := ||G(iω)||∞ = sup
ω∈R

|G(iω)|
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We note that the same definition can also be applied to multi-input multi-output systems, in which case, it follows that

γ := ||G(iω)||∞ = sup
ω∈R

λmax(G(iω)
HG(iω)).

This formula combines the insights presented in the above two formulations.

Define a system to be L2-stable if a bounded input, in the L2-sense, leads to a bounded output in the L2-sense. BIBO
stability of a linear system implies L2-stability: BIBO stability implies ∥h∥1 <∞, which implies that H(iω) is uniformly
bounded for ω ∈ R so that |H(iω)| ≤ ∥h∥1: Let um ∈ S . Then, observe that the output ∥ym∥22 =

∫
|Y m(iω)2| 1

2πdω =∫
|H2(iω)(Um)2(iω)| 1

2πdω ≤ ∥h∥21
∫
|(Um)2(iω)| 1

2πdω. Thus, following Theorem 5.3.6, we can extend the domain
(input function space) to be the entire L2 space: Now, approximate any u with ∥u∥2 < ∞ with the sequence {um ∈
S,m ∈ N}, taking the limit of the output sequence of which lets us conclude that the output ∥y∥2 is also bounded. Thus
∥y∥22 =

∫
|Y (iω)2| 1

2πdω =
∫
|H2(iω)U2(iω)| 1

2πdω <∞.

We next state a useful result on the verification of stability.

Theorem 8.4.3 (Small Gain Theorem) Consider a feedback control system with closed-loop transfer function G(s) =
H1(s)

1+H1(s)H2(s)
, where H1 and H2 are stable. Suppose further that the gains of H1 and H2 are γ1 and γ2, respectively. Then,

if γ1γ2 < 1, the closed-loop system is stable.

Note that supω
H1(iω)

1+H1(iω)H2(iω) is uniformly bounded as 1+H1(iω)H2(iω) is uniformly bounded away from 0. The proof
follows from Nyquist’s criterion: Since H1, H2 are stable, they have no poles in the right half-plane. Furthermore, since
γ1γ2 < 1, |C(s)P (s)| (here: H1(iω)H2(iω)) will be uniformly away from the point −1, thus a positive gain margin will
be maintained and −1 will not be encircled. The system is then stable.

The above concept does not involve phase properties, and it may be conservative for certain applications. On phase prop-
erties, there is a further commonly used concept of passivity: By Nyquist’s criterion, for stable P and C, if P (s)C(s) is so
that the phase is in (−π, π) for all s = iω, ω ∈ R, then the closed loop system will be stable.

8.5 Exercises

Exercise 8.5.1 Let C(s) = K, P (s) = s+1
s( s

10−1) .

Study stability properties using the root locus method as K is varied from 0 to ∞.

Exercise 8.5.2 Consider Figure 8.4.

r

C(s) P (s)

y
-

+

u

Fig. 8.4

The plant P (s) is a linearized inverted pendulum and suppose for simplicity that its transfer function is P (s) = 1
s2−1 .

Suppose that the controller applied is given with C(s) = k(s + 2) (and thus, it is a P-D controller) for some parameter
k ∈ R+.

a) Write the plant P in state space form, where the input is u and the output is y.
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b) By writing u as a function of r(t)− y(t), express the overall (closed-loop) system as a linear map from r to y.

c) Find conditions on k for the system to be BIBO stable.

d) Verify that this result is consistent with a Nyquist or root-locus method analysis.
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Realizability and State Space Representation

So far in the course, we considered the input-output approach to study control systems, which in the convolution (linear
time-invariant) system setup, resulted in frequency domain methods through a transfer function analysis (such as in arriving
at the root locus / Nyquist stability / Bode plot methods). These methods are often referred to as classical control design
tools.

In this chapter, we will introduce state-space based methods.

The notion of a state. Suppose that, given t ∈ R (or Z), we wish to compute the output of a system at t ≥ t0. In a
general causal system, we may need to use all the past applied input terms u(s); s ≤ t and/or all the past output values
y(s); s < t to compute the output at t. The state of a system summarizes all the past relevant data that is sufficient to
compute the future paths in the sense that if the state at t0, x(t0) is given, then to compute y(t), one would only need to
use {u(s) s ∈ [t0, t]}, {y(s) s ∈ [t0, t)} and x(t0). In particular, the past {y(s), us; s < t0} would not be needed.

Some systems admit a finite-dimensional state representation, some do not.

Control design based on state-space methods is called modern control design.

Consider a linear system in state-space form:

dx

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t) (9.1)

We will say that such a system is given by the 4-tuple: (A,B,C,D).

We know that the solution to this system is given with

x(t) = eAtx(0) +

∫ t

0

eA(t−s)Bu(s)ds

and

y(t) = CeAtx(0) + C

∫ t

0

eA(t−s)Bu(s)ds+Du(t)

Taking the (one-sided) Laplace transform of both sides in (9.1), we obtain for s in the ROC,

Y+(s) = C(sI −A)−1(x(0) +BU+(s)) +DU+(s)

Assuming x(0) = 0, we have the following as the transfer function

Y+(s) = (C(sI −A)−1B +D)U(s)

Note that we could also have taken the two-sided Laplace transform (see the analysis in Section 4.6).
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9.1 Realizations: Controllable, Observable and Modal Forms

A transfer function H(s) is state-space realizable if there exists finite dimensional (A,B,C,D) so that we can write for
s ∈ C, whenever well-defined,

H(s) = C(sI −A)−1B +D

Theorem 9.1.1 A transfer function of a linear time-invariant system H(s) is realizable if and only if it is a proper rational
fraction (that is, H(s) = P (s)

Q(s) where both the numerator P and the denominator Q are polynomials, and with degree of P
less than or equal to the degree of Q).

Proof. (i) If realizable, then L is proper and rational: Let L be realizable, that is

L(s) = C(sI −A)−1B +D

for finite-dimensional matrices (A,B,C,D). We will show that this implies thatL is proper and thatL is a rational fraction.

Now, for a square matrix E which is invertible, we know that det(E) =
∑

j E(i, j)(−1)i+jM(i, j), where M(i, j) is the
determinant of the matrix obtained by deleting the ith row and jth column from E. Let F be the co-factor matrix given by
F (i, j) = (−1)i+jM(i, j). It then follows that

E−1 =
1

det(A)
FT

You can verify this by noting that the diagonals ofEE−1 would be 1 (as the determinant would appear both in the numerator
and denominator), and the off-diagonals would be so that the product of each row-column pair would be equivalent to the
determinant of a square matrix whose rows are repeated, leading to a zero. Let us call F the adjoint of A. Then,

C(sI −A)−1B =
1

det(sI −A)
C[Adj(sI −A)]B

Since the denominator is a polynomial of order n, and the adjoint matrix consists of polynomials of order at most n− 1, it
follows that the expression is a fraction, which is in fact also proper.

To verify properness, we can also have the following reasoning: for |s| > maxi{|λi|}, with λi the eigenvalues of A, we
have that

(sI −A)−1 = (s(I − s−1A))−1 = s−1(I − s−1A)−1 = s−1
∞∑
k=0

(s−1A)k

Since lim|s|→∞ |s−1
∑∞

k=0(s
−1A)k| = 0, it must be that C(sI −A)−1B is strictly proper.

The presence of a non-zero D is what may lead the transfer function to be proper, and not strictly proper.

(ii) If L is proper and rational, then it is realizable: The realizations will be constructed explicitly below under various
setups; through various canonical realizable forms. ⊓⊔

Exercise 9.1.1 Can you construct a causal system which does not admit a rational transfer function? Hint: Consider
y(t) = au(t−1), where t ∈ R and a is a scalar. Or in a feedback loop: y(t) = a(r(t−1)+y(t−1)), t ∈ R. Such systems
with no rational transfer function are sometimes called distributed parameter systems.

9.1.1 Controllable canonical realization

Consider a continuous-time system given by:

N∑
k=0

ak
dk

dtk
y(t) =

N∑
m=0

bm
dm

dtm
u(t), (9.2)
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with aN = 1. Taking the Laplace transform, we know that the transfer function writes as

H(s) =

∑N
m=0 bms

m∑N
k=0 aks

s

Suppose that the system is strictly proper. Such a system can be realized with the form:

d

dt
x(t) = Ax(t) +Bu(t), y(t) = Cx(t)

Ac =


0 1 0 · · · 0
0 0 1 · · · 0
...

... · · · · · · 1
−a0 −a1 −a2 · · · −aN−1



Bc =


0
0
...
0
1


Cc =

[
b0 b1 · · · bN−1

]
If the system is proper, but not strictly proper, then, we will also have Dc = d, where d is the remainder term in the partial
fraction expansion,

H(s) = d+

K∑
i=1

( mi∑
k=1

Aik

(s− pi)k

)
(9.3)

where pi are the roots of sn +
∑N−1

k=0 aks
k and mi is the multiplicity of pi.

9.1.2 Observable canonical realization

Consider (9.2). This system can also be realized as

d

dt
x(t) = Ax(t) +Bu(t), y(t) = Cx(t)

with

A =


−aN−1 1 0 · · · 0
−aN−2 0 1 · · · 0

...
... · · · · · ·

...
−a1 0 0 · · · 1
−a0 0 0 · · · 0



B =


bN−1

bN−2

...
b0


C =

[
1 0 · · · 0

]
If we reverse the order of the coordinates of x, we arrive at;
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d

dt
x(t) = Ax(t) +Bu(t), y(t) = Cx(t)

with

Ao =


0 0 0 · · · −a0
1 0 0 · · · −a1
...

... · · · · · ·
...

0 0 0 · · · −aN−2

0 0 0 · · · −aN−1



Bo =


b0
b1
...

bN−1


Co =

[
0 0 · · · 1

]
Observe that Ao = AT

c , Bo = CT
c , Co = BT

c . This is the standard observable canonical form.

Exercise 9.1.2 Show that the transfer functions under the controllable and observable realization canonical forms are
equivalent directly by comparing Cc(sI −Ac)

−1Bc and Co(sI −Ao)
−1Bo.

9.1.3 Modal realization

Consider a partial fraction expansion (9.3) with only simple poles:

H(s) =

∑N
m=0 bms

m∑N
k=0 aks

s
= d+

N∑
i

ki
s− pi

In this case, we can realize the system as the sum of decoupled modes:

d

dt
x(t) = Ax(t) +Bu(t), y(t) = Cx(t)

with

A =


p1 0 0 · · · 0
0 p2 0 · · · · · ·
...

... · · · · · ·
...

0 0 0 · · · pN



B =


k1
k2
...
kN


C =

[
1 1 · · · 1

]
If in the partial fraction expansion is more general as in (9.3), then the corresponding structure can be realized also: this
will lead to a Jordan form for the matrix A, since, e.g.,

1

(s− pi)2
=

1

s− pi

1

s− pi

will define a serial connection of two modal blocks; the first one with x′2 = pix2 + u and the second one x′1 = pix1 + x2.
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Please see our class notes where we presented diagrams depicting each of the forms above.

Discrete-time setup. The above also apply to the discrete-time setup. For example, a discrete-time system of the form

N∑
k=0

aky(n− k) =

N∑
m=1

bmu(n−m)

with a0 = 1, can be written in the controllable canonical form

x(n+ 1) = Ax(n) +Bu(n), yt = Cxt

where
xN (n) = y(n), xN−1(n) = y(n− 1), · · · , x1(n) = y(n− (N − 1))

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

... · · · · · · 1
−aN −aN−1 −aN−2 · · · −a1



B =


0
0
...
0
1


C =

[
bN bN−1 · · · b1

]
Observable and modal canonical forms follow similarly.

9.2 Zero-State Equivalence and Algebraic Equivalence

We say that two systems (A,B,C,D) and (Ã, B̃, C̃, D̃) are zero-state equivalent if the induced transfer functions are
equal, that is

C(sI −A)−1B +D = C̃(sI − Ã)−1B̃ + D̃

Theorem 9.2.1 Two linear time-invariant state-space models (A,B,C,D) and (Ã, B̃, C̃, D̃) are zero-state equivalent if
and only if D = D̃ and CAmB = C̃ÃmB̃ for all m ∈ Z+.

Proof. For |s| > maxi{|λi|}, with λi the eigenvalues of A, we have that s−1A will have all of its eigenvalues less than 1.

(sI −A)−1 = (s(I − s−1A))−1 = s−1(I − s−1A)−1 = s−1
∞∑
k=0

(s−1A)k

Then,

C(sI −A)−1B +D =

( ∑
k∈Z+

Cs−1(s−1A)kB

)
+D = s−1

( ∑
k∈Z+

C(s−1A)kB

)
+D

and

C̃(sI − Ã)−1B̃ + D̃ =

( ∑
k∈Z+

C̃s−1(s−1Ã)kB̃

)
+ D̃ = s−1

( ∑
k∈Z+

C̃(s−1Ã)kB̃

)
+ D̃

Since for all sufficiently large |s| values, s is in the region of convergence and the above are equal functions of s, meaning
their difference is the zero function identically; this implies that all the coefficients in the expansions must be equal. Prove
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this last statement as an exercise (e.g., by writing s̄ = s−1 and study the behaviour of the difference between two absolutely
summable polynomials

∑∞
k=0 αks̄

k −
∑∞

k=0 βks̄
k = 0 for all s̄ in a neighborhood around the origin, and conclude that

αk = βk must be equal). Note that D̃ = D also follows as a result.

⊓⊔

Note that by the Cayley-Hamilton theorem, it suffices to test the relation CAmB = C̃ÃmB̃ for m = 0, · · · , n− 1 where
n is the larger of the dimensions of A or Ã.

There is an alternative notion, called algebraic equivalence: Let P be invertible and let us define a transformation through
x̃ = Px. Then, we can write the model (9.1) as

dx̃

dt
= Ãx̃(t) + B̃u(t), ỹ(t) = C̃x̃(t) + D̃u(t),

with Ã = PAP−1, B̃ = PB, C̃ = CP−1, D̃ = D. In this case, we say that (A,B,C,D) and (Ã, B̃, C̃, D̃) are alge-
braically equivalent.

Theorem 9.2.2 Show that algebraic equivalence implies zero-state equivalence but not vice versa.

Proof. Observe that for every k ∈ Z+ C̃ÃkB̃ = CP−1

(
PAkP−1

)
PB = CAm = kB. The reverse implication is not

correct. In particular, one can always artificially add further state variables to arrive at a larger matrix A which, through
zeroes in A and C so that the new component has no impact on the output variable y. ⊓⊔

9.3 Discretization

Consider
d

dt
x(t) = Ax(t) +Bu(t), y(t) = Cx(t)

Suppose that we apply piece-wise constant control actions u which are varied only at the discrete time instances given with
{t : t = kT, k ∈ Z+} so that u(t) = u(kT ) for t ∈ [kT, (k + 1)T ).

We write

x((k + 1)T ) = eATx(kT ) +

(∫ (k+1)T

kT

eA((k+1)T−s)Bu(s)ds

)
Writing τ = (k + 1)T − s with dτ = −ds, we arrive at

x((k + 1)T ) = eATx(kT ) +

(∫ T

0

eAτBdτ

)
u(kT )

With xk := x(kT ) and uk := u(kT ), we arrive at

xk+1 = Adxk +Bduk

where
Ad = eAT

Bd =

∫ T

0

eAτBdτ

If A is invertible, the integration of
∫
eAτdτ leads to A−1(eAT − I)B.
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The Sampling Theorem

One important requirement for signal transmission and storage is the need for discretization of the signal, both in time-
index sets and in signal-range sets. The former is called sampling; the latter is called quantization. In the following, we
discuss sampling.

10.1 The Sampling Theorem

Samplers perform the discretization in the time-index. We discuss a very important theorem in the following.

10.1.1 Sampling of a Continuous-Time (CT) Signal

Theorem 10.1.1 (Shannon-Nyquist Sampling Theorem) Let {x(t), t ∈ R} be a CT signal in L2(R;R) and let x̂ =
FCC(x). If this signal has a finite bandwidth B, that is if

x̂(f) = 0, |f | > B,

(that is, the support of x̂ is contained in [−B,B]) then it is possible to reconstruct this signal by samples of this signal
(with arbitrarily small error in the L2(R;R) sense, i.e., in the ∥ · ∥2 norm), where the sampling period T that allows this
satisfies

1

2T
> B.

If this condition holds, the recovery is satisfied by the relation

x̃(t) =
∑
n∈Z

x(nT )
sin(π t−nT

T )

π t−nT
T

,

where {x(nT ), n ∈ Z} denotes the samples of the signal x.

This is a remarkable result which paves the way to communications, signal processing, and digital control technologies,
which are ubiquitous in our daily lives. For example, human voice range is typically about 20 Hz to 20 kHz (female voice
typically has a higher frequency band than male voice), but primarily most of the content is between 2 to 4 KHz. The
bandwidth allocated for a telephone transmission channel is about 4 kHz. These suggest that one can recover human voice
quite well with large enough samples taken: T = 1

8000 seconds.

We now present a sketch of the proof of the result above. Let x ∈ S: We know that, by Theorem 5.3.5, any x ∈ L2(R;R)
can be approximated arbitrarily well by a signal in S and therefore, in the following, we can assume that x ∈ S (with an
arbitrarily small approximation error in the ∥ · ∥2 norm).
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Consider the sampled signal

xp(t) =

∫
x(t)

∑
k∈Z

δ(t− kT ), t ∈ R,

where
∑

k∈Z δ(t− kT ) is called an impulse train. Observe that, the impulse train is a distribution, and recall from Section
5.4 that the CCFT of a distribution is itself a distribution. We will consider x̂p(f), which denotes the CCFT of the sampled
signal, which now needs to be viewed as a distribution.

Now let us discuss what the CCFT for the impulse train
∑

k∈Z δ(t− kT ) should be:

Exercise 10.1.1 Consider an impulse train defined by:

wP (t) =
∑
n∈Z

δ(t+ nP )

so that the distribution that we can associate with this impulse train would be defined by:

wP (ϕ) =
∑
n∈Z

ϕ(nP ) = lim
N→∞

N∑
n=−N

ϕ(nP ),

for ϕ ∈ S.

a) Show that wP is a distribution.

b) Show that

ŵP (ϕ) =

∫
1

P
w 1

P
(t)ϕ(t)dt,

that is, the FCC of this train is another impulse train.

Solution. a) Let ϕn → 0 in S. Then, since supt |ϕn(t)(1 + t2)| → 0,

|wP (ϕ)| = |
∑
k∈Z

ϕn(kP )|

= |
∑
k∈Z

1

1 + k2P 2

(
ϕn(kP )(1 + k2P 2)

)
| ≤

∑
k∈Z

1

1 + k2P 2
sup
k∈Z

(
ϕn(kP )(1 + k2P 2)

)
→ 0 (10.1)

Thus, wP is continuous on S. Furthermore, wP is linear on on S since for any real α, β and ϕ1, ϕ2 ∈ S,

wP (αϕ1 + βϕ2) = αwP (ϕ1) + βwP (ϕ2).

Thus, wP is a distribution.

b) By Section 5.4, we have that ŵP (ϕ) = wP (ϕ̂). Then,

ŵP (ϕ) = wP (ϕ̂) = lim
N→∞

N∑
k=−N

ϕ̂(kP )

= lim
N→∞

N∑
k=−N

(

∫
ϕ(t)e−i2πkPtdt)

= lim
N→∞

∫
ϕ(t)

( N∑
k=−N

e−i2πkPt

)
dt

= lim
N→∞

∫
ϕ(t)

(
ei2πNPt

( 2N∑
k=0

e−i2πkPt

)
dt
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= lim
N→∞

∫
ϕ(t)

(
ei2πNPt 1− e−i2π(2N+1)Pt

1− e−i2πPt

)
dt

= lim
N→∞

∫
ϕ(t)

(
ei2πNPt e

i2π(1/2)Pt − e−i2π(2N+1/2)Pt

eiπPt − e−iπPt

)
dt

= lim
N→∞

∫
ϕ(t)

(
ei2π(N+1/2)Pt − e−i2π(N+1/2)Pt

eiπPt − e−iπPt

)
dt

= lim
N→∞

∫
ϕ(t)

(
sin(2π(N + 1/2)Pt)

sin(πPt)

)
dt

= lim
N→∞

∫
ϕ(t)

1

P

(
πPt

sin(πPt)

sin(2π(N + 1/2)Pt)

πt

)
dt

= lim
N→∞

∫
ϕ(t)

1

P

(
πPt

sin(πPt)

sin(2π(N + 1/2)Pt)

πt

)
dt

= lim
N→∞

N∑
k=−N

1

P
ϕ(
k

P
)

=

∫
1

P
w 1

P
(t)ϕ(t)dt (10.2)

where we use Fubini’s theorem in the second equality. Observe that sin(2π(N+1/2)Pt)
sin(πPt) is periodic with period 1/P . For

t ∈ [− 1
2P ,

1
2P ], this function can be shown, as we studied earlier (see Theorem 3.3.2) to (as a distribution) converge to a

delta function. Due to the periodicity, the result follows. ⊓⊔

Remark 10.1. As we observed earlier and above, the sequence of partial sums
(∑N

k=−N e−i2πkPt

)
of partial sums con-

verges to a periodic Dirac delta function as a distribution (see also Theorem 3.3.2). This sequence is known as the Dirichlet
kernel sequence.

It then follows that, the FCC of
∑

k∈Z δ(t− kT ) is another impulse train given as:

Î(f) =
1

T

∑
k

δ(f − k

T
).

This result is in agreement with an engineering intuition that if one considers I as a periodic signal, and computes its FCD

as Î( k
T ) =

1√
T
1 for all k ∈ Z, this leads to

I(t) =
∑
k

1√
T
(

1√
T
)ei2π

k
T t

Expressing this in an integral form, we obtain that

Î(f) =
1

T

∑
k

δ(f − k

T
).

The FCC of xp(t) then satisfies, by the properties of convolution in frequency domain corresponding to a time-wise product
in time domain, the following:

x̂p(f) = (Î ∗ x̂)(f).

It follows after some analysis the following relation holds

x̂p(f) =
1

T

∑
m∈Z

x̂(f −m
1

T
),
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which is an addition of shifted versions of x̂.

If T is small enough, then the signal
ˆ̃x(f) = T1(|f |< 1

2T )x̂p(f),

is exactly equal to the FCC of the original signal. Hence, a low-pass filter which takes out the repetitions of the frequency
shifted due to the convolution with the impulse sequence, except for the primary component, leads to the reconstruction of
the original signal.

Since the rectangular low-pass filter T1(|f |< 1
2T ) corresponds to

h(t) =
sin(π t

T )

π t
T

,

the reconstruction can then be written as:

x̃(t) =
∑
n∈Z

x̂p(nT )
sin(π t−nT

T )

π t−nT
T

.

It also follows that if T > 1
2B , the exact reconstruction will not be possible since the shifted frequency components will

overlap with each other. This is known as aliasing.

Remark 10.2. To see that the informational content of a finite bandwidth signal is captured by sampling, consider the
following (Shannon’s argument): Since x̂ has bounded support [−B,B], x( k

2B ) =
∫
x̂(f) 1

2B e
−i 2π

2B fkdf can be viewed
to be the FCD of f̂ , but now in time domain. Having access to x( k

2B ), k ∈ Z then is sufficient to recover x̂ which can
then be used to recover the original signal. The more detailed analysis above provides an explicit construction, and also
further insight on the approximation error when there is aliasing. The same analysis applies for the discrete-time setting to
be discussed next.

10.1.2 Sampling of a Discrete-Time (DT) Signal

A similar discussion applies to DT signals. We can view a discrete signal as a sampled continuous-time signal and hence as
a distribution; and consider the sampling of a discrete-time signal as the sampling of a distribution. The discussion, leaving
the details involving the convolution operators of distributions, leads to the following: Let {x(n)} be a DT signal. If this
signal has a finite bandwidth as B, that is if

x̂(f) = 0, |f | > B, f ∈ [0, 1),

then it is possible to reconstruct exactly this signal by samples of this signal, where the sampling period N that allows this
satisfies:

1

2N
> B

As in the CT-case, the function that we use for sampling is the discrete-time impulse train given by.

I(n) =
∑
k∈Z

δ(n− kN)

We can take the truncated sum

I(M)(n) =

M∑
k∈−M

δ(n− kN)

and work with this signal, which is in l2(Z;R) and construct an approximate signal (via Parseval’s theorem after recon-
struction of the signal via the low-pass filter) through the idealized analysis noted below.
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As earlier, using the fact that
∑M

−M e−i2πfkN , converges as a distribution, as M → ∞, to an impulse train; the DCFT of
I sequence is equal to the distribution represented by:

Î(f) =
1

N

∑
k∈Z

δ(f − k

N
)

Therefore, let xN (n) = x(n)× I(n). It follows that

x̂N (f) =
1

N

∑
k∈Z

x̂(f − k

N
)

Thus, the same discussion we had above for the CT case applies here also. Note that if we had truncated the sum as in I(M)

above, the reconstruction would be nearly identical to the term above with the error bounded via a Parseval analysis.

Applying a low-pass filter with Fourier transform given by N1(|f |< 1
2N ), whose inverse Fourier is the kernel is

h(n) =
sin(πnN )

πn
N

leads to the reconstruction to be written as:

x̃(n) =
∑
k∈Z

x(kN)
sin(π n−kN

N )

π n−kN
N

.

One further remark follows: When a signal is sampled, the unsampled components become zero. Since it is already known
that these values are zero, they can be taken out. This is known as decimation. Decimation has the effect of enlarging the
bandwidth of the sampled signal, but it does not lead to an information loss. That is, let xd(n) = xN (nN) = x(nN) for
all N where x satisfies the conditions noted above to allow for recovery from its samples. Then, we have

x̃(n) =
∑
k∈Z

xd(k)
sin(π n−kN

N )

π n−kN
N

.

Furthermore, we have that

x̂d(f) =
∑
n∈Z

xd(n)e
−i2πfn =

∑
n∈Z

xN (nN)e−i2πfn

=
∑
n∈Z

xN (nN)e−i2π f
N nN =

∑
k∈Z

xN (k)e−i2π f
N k = x̂N (

f

N
) (10.3)

10.2 Exercises

Exercise 10.2.1 Suppose that we have a continuous time signal x ∈ L2(R;R) given by:

x(t) = m1{|t|≤ 1
m},

where m ∈ R+ is a constant. Note that this signal has a bounded support.

Suppose that we sample this signal with a period T . Our goal is to try to reconstruct this signal from its samples after
passing the sampled signal through a low-pass filter with a frequency response

ĥ(f) = T1{|f |≤ 1
2T }
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Let x̄ denote the reconstructed signal.

a) Given m and T , is perfect reconstruction possible (in the L2(R;R) sense)? For what values of m,T?

b) Given an arbitrary m and T , find an upper bound on∫
R
|x(t)− x̄(t)|2dt

as a function of the FCC of x.

Hint: For part b, you may use Parseval’s Theorem. One may expect that if the energy of the signal frequencies outside
[−1/2T, 1/2T ] band is small, the reconstruction error may also be small.

Exercise 10.2.2 a) Consider a discrete-time signal {x(n)} with a bandwidth B. A discrete-time sampler samples this
signal with a period N such that the sampled signal satisfies

xp(n) =

{
x(n) if 0 ≡ n mod N,

0 else.

Following this, a decimator is applied to the system to obtain the signal:

xd(n) = xp(nN).

This new signal is stored in a storage device such as a recorder. Later, the original signal is attempted to be recovered from
the storage device. What should the relation between B and N be such that, such a recovery is perfect, that is

sup
n

|x(n)− x̃(n)| = 0,

where {x̃(n)} denotes the reconstructed signal.

Identify the steps such that {x̃(n)} is recovered from {xd(n)}.

b) Typically human voice has a bandwidth of 4kHz. Suppose we wish to store a speech signal with bandwidth equal to
4kHz with a recorder. Since the recorder has finite memory, one needs to sample the signal. What is the maximum sampling
period (in seconds) to be able to reconstruct this signal with no error.

Exercise 10.2.3 Consider an impulse train defined by:

wP (t) =
∑
n∈Z

δ(t+ nP )

so that the distribution that we can associate with this impulse train would be defined by:

wP (ϕ) =
∑
n∈Z

ϕ(nP ),

for ϕ ∈ S.

a) Show that wP is a distribution.

b) Show that

ŵP (ϕ) =

∫
1

P
w 1

P
(t)ϕ(t)dt,

that is, the FCC of this train is another impulse train.
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Exercise 10.2.4 Consider a discrete-time signal {h(n)} with DCFT as:

ĥ(f) = 1(f∈([0, 18 ]∪( 7
8 ,1)))

f ∈ [0, 1).

Determine the DCFT of the signal g(n) = h(2n), n ∈ Z.

Exercise 10.2.5 a) Let m(t) be a real-valued signal with a bandwidth B. One can use a transformation, known as the
Hilbert transform, to further compress the signal. This transform makes use of the fact that, the Fourier transform of a real
signal is conjugate symmetric.

Let x̄ denote the Hilbert transform of a signal x in L2, the space of square integrable functions with the usual inner product.
The CCFT of the Hilbert transform of a signal is given by:

ˆ̄x(f) = −isign(f)x̂(f).

Using this relation, prove that the Hilbert transform of a signal is orthogonal to the signal itself.

b) Briefly describe the (double-sideband) Amplitude Modulation (AM) and the Frequency Modulation (FM) techniques for
radio communications.

Using the result in part a), one can further suppress the bandwidth requirement for the double-sideband Amplitude Modu-
lation (AM) technique, leading to a single-sideband AM signal.

Exercise 10.2.6 Consider a square-integrable signal with non-zero L2 norm, with bounded support. That is, there exists
a compact set, outside of which this signal is identically zero. Can the CCFT of such a signal, with a bounded support in
time-domain, also have bounded support in frequency domain?

You may use any method you wish to use to answer this question.
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Stability and Lyapunov’s Method

11.1 Introduction

In many engineering applications, one wants to make sure the system behaves well in the long-run; without worrying too
much about the particular path the system takes (so long as these paths are acceptable). Stability is the characterization
ensuring that a system behaves well in the long-run. We will make this statement precise in the following.

11.2 Stability Criteria

Consider dx
dt = f(x), with initial condition x(0). Let f(0) = 0. We will consider three definitions of stability:

(i) Local Stability (around an equilibrium point): For every ϵ > 0, there exists δ > 0 such that ∥x(0)∥ < δ implies that
∥x(t)∥ < ϵ, ∀t ≥ 0 (This is also known as stability in the sense of Lyapunov).

(ii) Local Asymptotic Stability (around an equilibrium point): ∃δ > 0 such that ∥x(0)∥ < δ implies that limt→∞ ∥x(t)∥ =
0.

(iii) Global Asymptotic Stability: For every x(0) ∈ Rn, limt→∞ ∥x(t)∥ = 0. Hence, here, for any initial condition, the
system converges to 0.

It should be added that, stability does not necessarily need to be defined with regard to 0; that is stability can be defined
around any z ∈ Rn with f(z) = 0. In this case, the above norms above should be replaced with ∥x(t)− z∥ (such that, for
example for the asymptotic stability case, x(t) will converge to z).

One could consider an inverted pendulum as an example of a system which is not locally stable.

11.2.1 Linear Systems

Consider an initial value problem dx
dt = Ax, with initial conditions x(0) = x0. As studied earlier, the solution is

x(t) = eAtx0

where

eAt = I +At+A2 t
2

2
+ . . . An t

n

n!
+ . . .

is the matrix exponential (see Exercise 11.6.1). We now briefly review how to compute matrix exponentials with a focus
on stability properties. Consider first a 2× 2 matrix



112 11 Stability and Lyapunov’s Method

A = I =

[
1 0
0 1

]
In this case, eAt = I + It+ I2 t2

2! + · · ·+ In tn

n! + . . . , and

eAt =

[
et 0
0 et

]
With similar arguments, if A is diagonal with

A =

λ1 0 0
0 λ2 0
0 0 λ3

 ,
we obtain

eAt =

eλ1t 0 0
0 eλ2t 0
0 0 eλ3t

 ,
Hence, it is very easy to compute the exponential when the matrix is diagonal.

Note now that if AB = BA, that is, if A and B commute, then (see Exercise 11.6.2)

e(A+B) = eAeB

We will use this to compute the matrix exponential in the case where the matrix is in a Jordan form. Let us write

A =

λ1 1 0
0 λ1 1
0 0 λ1


as B + C, where

B =

λ1 0 0
0 λ1 0
0 0 λ1

 , C =

0 1 0
0 0 1
0 0 0


We note that BC = CB, for B is the identity matrix multiplied by a scalar number. Hence, eAt = eBteCt. All we need to
compute is eCt, as we have already discussed how to compute eBt. Here, one should note that C3 = 0.

More generally, for a Jordan matrix where the number of 1s off the diagonal of a Jordan block is k − 1, the kth power is
equal to 0.

Therefore,

eCt = I + Ct+ C2 t
2

2!
+ C3 t

3

3!
+ . . . ,

becomes

eCt = I + Ct+ C2 t
2

2!
=

1 t t2/20 1 t
0 0 1


Hence,

eAt =

eλ1t 0 0
0 eλ1t 0
0 0 eλ1t

1 t t2/20 1 t
0 0 1

 =

eλ1t teλ1t t2

2 e
λ1t

0 eλ1t teλ1t

0 0 eλ1t


Now that we know how to compute the exponential of a Jordan form, we can proceed to study a general matrix.

Let A = PBP−1, where B is in a Jordan form. Then,

Ak = (PBP−1)k = PBkP
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Finally,
eA = PeBP−1

and
eAt = PeBtP−1

Hence, once we obtain a diagonal matrix or a Jordan form matrix B, we can compute the exponential eAt very efficiently.

The main insight here is that the eigenvalues determine whether the system remains bounded or not. In case, we have
a repeated eigenvalue of 0, then the Jordan form determines whether the solution remains bounded or not. We state the
following theorem.

Theorem 11.2.1 For a linear differential equation
x′ = Ax,

the solution is locally and globally asymptotically stable if and only if

max
λi

{Re{λi}} < 0,

where Re{.} denotes the real part of a complex number, and λi denotes the ith eigenvalue of A.

Theorem 11.2.2 For a linear differential equation
x′ = Ax,

the system is locally stable if and only if the following two conditions hold

(i) maxλi
{Re{λi}} ≤ 0,

(ii) if Re{λi} = 0, for some λi, the algebraic multiplicity of this eigenvalue should be the same as the geometric multiplic-
ity.

In practice, many systems are not linear, and hence the above theorems are not applicable.

11.3 A General Approach: Lyapunov’s Method

A very versatile and effective approach to stabilization is via Lyapunov functions (this approach is often called Lyapunov’s
second method, the first one being an analysis based on linearization to be considered after this section). LetΩ ⊂ Rn be an
open set containing the equilibrium point, taken to be 0 here without any loss. A function : Rn → R is called a Lyapunov
function if

1. V (x) > 0, ∀x ̸= 0, x ∈ Ω,

2. V (x) = 0, if x = 0,

3. V is continuous, and has continuous partial derivatives.

First we present results on local asymptotic stability. As above, let Ω ∈ Rn be an open set containing 0.

Theorem 11.3.1 a) For a given differential equation x′(t) = f(x(t)) with f(0) = 0, and continuous f , if we can find a
Lyapunov function V such that

d

dt
V (x(t)) ≤ 0,

for all x(t) = x ∈ Ω, then, the system is locally stable (stable in the sense of Lyapunov).
b) For a given differential equation x′(t) = f(x(t)) with f(0) = 0, and continuous f , if we can find a Lyapunov function
V (x) such that
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d

dt
V (x(t)) < 0,

for x(t) = x ∈ Ω \ {0}, the system is locally asymptotically stable.
c) If b) holds for V so that lim∥x∥→∞ V (x) = ∞, and

d

dt
V (x(t)) < 0,

for x(t) = z ∈ Rn \ {0}, then the system is globally asymptotically stable.

Proof. a) Let ϵ > 0 be given, which we may assume to be so that {x : ∥x∥ = ϵ} ⊂ Ω (this is where we use the condition
that Ω is an open set containing the equilibrium point). We will show the existence of δ > 0 such that for all ∥x(0)∥ ≤ δ,
∥x(t)∥ < ϵ for all t ≥ 0.

Define m = min{x:∥x∥=ϵ} V (x) (such an m exists by the continuity of V ). Let 0 < δ ≤ ϵ so that for all ∥x∥ ≤ δ it follows
that V (x) < m. Such a δ exists by continuity of V . Now, for any ∥x(0)∥ ≤ δ, V (x(0)) < m and furthermore by the
condition d

dtV (x(t)) ≤ 0, V (x(t)) < m as long as x(t) ∈ Ω (and thus also as long as ∥x(t)∥ ≤ ϵ).

This then implies that ∥x(t)∥ < ϵ since otherwise, there would have to be some time t1 so that ∥x(t1)∥ = ϵ and ∥x(t)∥ < ϵ
for t ≤ t1, which would result in V (x(t1)) ≥ m while x(t) ∈ Ω until t1 so that

V (x(t1)) = V (x(0)) +

∫ t1

s=0

d

ds
V (x(s))ds ≤ V (x(0)) < m

leading to a contradiction.

b) ϵ = r > 0, δ > 0 satisfy the condition in part a so that with ∥x(0)∥ ≤ δ, ∥x(t)∥ ≤ r for all t so that x(t) ∈ Ω. Since
we have that d

dtV (x(t)) < 0, V (x(t)) is a monotonically decreasing family of non-negative numbers and it therefore has
a limit. Call this limit c. We will show that c = 0. Suppose c ̸= 0. Let α > 0 be such that for all ∥x∥ < α, V (x) < c. It

then follows that for all t, x(t) ∈ {x : α ≤ ∥x∥ ≤ r}. Define a = max{x:α≤∥x∥≤r}

(
∇xV (x)

)
f(x). The number a exists

since the functions considered are continuous, maximized over a compact set. This a is attained, it must be that a < 0. This
implies then that V (x(t)) = V (x(0)) +

∫ t

s=0
d
dsV (x(s))ds ≤ V (x(0)) + at, which implies that V (x(t)) will be negative

after a finite t. This can’t be true, therefore c cannot be non-zero.

c) The proof in b) applies with Ω being the entire state space: for any given x(0) = z, the set {x : V (x) ≤ z} will be
compact and the proof will follow identically. ⊓⊔

Theorem 11.3.2 [Region of asymptotic stability] Let us, in addition to the conditions noted in Theorem 11.3.1(b), further
impose that for some l, Ωl := {x : V (x) ≤ l} is a bounded set and Ωl ⊂ Ω where Ω satisfies Theorem 11.3.1(b). Then,
every solution of the system with initial state x(0) ∈ Ωl converges to equilibrium.

By following (and slightly modifying) the proof of Theorem 11.3.1(b), we can conclude that Ωl is a region of attraction for
the equilibrium point, which is defined as a set of initial states whose corresponding solutions converge to the equilibrium
point: {x(0) : limt→∞ x(t) = 0}.

Remark 11.1. For local stability, by restricting the analysis to Ω, we can allow the Lyapunov function V to take even
negative values outside Ω or not necessarily be continuous outside Ω. In Theorem 11.3.1, we used such properties of V
only on Ω.

Example 11.2. Show that x′ = −x3 is locally asymptotically stable, by picking V (x) = x2 as a Lyapunov function. Is this
solution globally asymptotically stable as well?
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Example 11.3. Show that x′ = −2x+ x3 is locally asymptotically stable, by picking V (x) = x2 as a Lyapunov function.
Is this solution globally asymptotically stable? Find a region of attraction for local stability.

Remark 11.4. One should note that BIBO stability and the stability notions considered in this chapter have very different
contexts; BIBO stability is concerned with the input-output behaviour of systems and the criteria considered in this chapter
are with regard to the effects of initial conditions (also called internal stability). The conditions are also slightly different
for the linear setup: for continuous-time linear systems, BIBO stability requires all the eigenvalues to have strictly negative
real parts. Stability itself, however, may require more relaxed conditions.

11.3.1 Revisiting the linear case

Recall that an n × n real matrix P is positive definite if P is symmetric and xTPx > 0 for all x ̸= 0. It is positive
semi-definite of xTPx ≥ 0 for all x ∈ Rn. Note that being symmetric is part of the definition.

We state the following important theorem.

Theorem 11.3.3 All eigenvalues of a square matrix A have negative real parts if and only if for any given positive definite
N , the (Lyapunov) equation

ATM +MA = −N

has a unique solution M , where the solution is positive definite.

Proof. a) Let A have eigenvalues with negative real parts: we will show that M =
∫∞
0
eA

T tNeAtdt is a solution (whose
uniqueness will also be established shortly). Since A is stable, we have

ATM +MA =

∫ ∞

0

AT eA
T tNeAtdt+

∫ ∞

0

eA
T tNeAtAdt =

∫ ∞

0

d

dt
(eA

T tNeAt)dt = −N,

where the last line follows from the fact that limt→∞ eAt = 0.

M is symmetric, which can be shown by verifying that MT =M . Furthermore, M is positive definite: for any x ̸= 0, we
have that xTMx =

∫∞
0
xT eA

T tNeAtxdt =
∫∞
0

∥
√
NeAtx∥2dt > 0, where

√
N is the invertible matrix that solves the

equation
√
N
√
N = N : with N = UΛUT where Λ is the diagonal matrix containing the (all positive real) eigenvalues

of N on the diagonal, we have that
√
N = U

√
ΛUT , where

√
Λ is a diagonal matrix consisting of square roots of the

eigenvalues of N on the diagonal.

For uniqueness, consider the following: let M̄ also solve AT M̄ + M̄A = −N . Then, since A has all eigenvalues with
negative real parts, it follows from the fundamental theorem of calculus that

M̄ = −
∫ ∞

0

d

dt
(eA

T tM̄eAt)dt

but

M̄ = −
∫ ∞

0

d

dt
(eA

T tM̄eAt)dt = −
∫ ∞

0

(eA
T tAT M̄eAt + eA

T tM̄AeAt)dt

= −
∫ ∞

0

eA
T t

(
AT M̄ + M̄A

)
eAtdt = −

∫ ∞

0

eA
T t(−N)eAtdt =

∫ ∞

0

eA
T tNeAtdt

=M

b) For the reverse direction, consider the Lyapunov function V (x) = xTMx. Then,

d

dt
V (x(t)) =

d

dt
(xT (t)Mx(t)) = xTMAx+ xTATMx = xT (MA+ATM)x = −xTNx
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which is strictly negative for all x ̸= 0. Then, Theorem 11.3.1(b) would imply that the system x′ = Ax is globally
asymptotically stable and hence, by Theorem 11.2.1, the eigenvalues of A have to have negative real parts. ⊓⊔

11.4 Non-Linear Systems and Linearization

Theorem 11.4.1 Let f : Rn → Rn be continuously differentiable. Consider x′ = f(x) and let f(x∗) = 0 for some
x∗ ∈ Rn. Let A := Df(x∗) be the Jacobian of f at x∗ (that is, with f(x) =

[
f1(x) · · · fn(x)

]T
the linearization

with A(i, j) = ∂fi

∂xj (x
∗)). Let λ1, . . . , λn be the eigenvalues of A. If Re{λi} < 0 for i = 1, · · · , n, then x∗ is locally

asymptotically stable.

Direct Proof. Without any loss, we can assume that x∗ = 0 (since the linearization is with respect to the perturbation
regardless of the fixed (equilibrium) point). Since A has all its eigenvalues strictly in the left half plane, there exists ϵ > 0
so that A + ϵI also has all the eigenvalues in the left half plane. You can show this via the continuity result in Theorem
8.3.1 (see, in particular, Remark 8.1).

Therefore, e(A+ϵI)t will remain bounded: ∥etAeϵt∥ ≤ K for some constant K for all t ≥ 0. Here, for a matrix, we use the
norm ∥A∥ = supx ̸=0

∥Ax∥2

∥x∥ . In the following, we drop the subscript 2.

Now write

x′(t) = Ax(t) + E(x(t)), (11.1)

with E(x(t)) := f(x(t)) − A(x(t)). Let r > 0 be such that ∥z∥ ≤ r implies that ∥E(z)∥ ≤ β∥z∥, where we will take β
sufficiently small (to be determined at the end of the proof). Let B := {z : ∥z∥ ≤ r

2}. The idea is to show that if x(0) ∈ B,
then x(t) ∈ B for all t ≥ 0 and limt→∞ x(t) = 0. Recall that the solution to (11.1) is given with

x(t) = eAtx(0) +

∫ t

0

eA(t−s)E(x(s))ds

and for x(0) ∈ B, we have, as long as x(τ) ∈ B for all τ ≤ t, that

∥x(t)∥ ≤ K

(
e−tϵ∥x(0)∥+ β

∫ t

0

e−ϵ(t−s)∥x(s)∥ds
)

Write α = Kβ and write the above as

∥x(t)∥ ≤ e−tϵ∥x(0)∥+ α′
∫ t

0

e−ϵ(t−s)∥x(s)∥ds

Define g(t) = etϵ∥x(t)∥. Then, the above writes as

g(t) ≤ K∥x(0)∥+ α

∫ t

0

g(s)ds (11.2)

This then implies the following
g(t) ≤ eαtK∥x(0)∥,

(by an argument known as Grönwall’s inequality). Let us now prove this intermediate step: Write:

v(s) = e−αs

∫ s

0

αg(r)dr

and

v′(s) =

(
− αe−αs

∫ s

0

αg(r)dr + e−αsαg(s)

)
= e−αsα

(
g(s)− α

∫ s

0

g(r)dr

)
≤ K∥x(0)∥αe−αs
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This implies that, since v(0) = 0

v(t) ≤
∫ t

0

K∥x(0)∥αe−αsds = K∥x(0)∥(1− e−αt)

and thus e−αt
∫ t

0
αg(r)dr ≤ K∥x(0)∥(1− e−αt) leading to∫ t

0

αg(r)dr ≤ K∥x(0)∥eαt −K∥x(0)∥

and using (11.2), we arrive at
g(t) ≤ K∥x(0)∥eαt

Then,
∥x(t)∥ ≤ eαt−ϵtK∥x(0)∥

If we now take Kβ = α < ϵ, then x(t) → 0 and the proof is complete. ⊓⊔

An alternative, and a more direct, argument can be made through a Lyapunov analysis. As noted earlier, this method is
sometimes called Lyapunov’s first method.

Proof of Theorem 11.4.1 via Lyapunov’s Method. Take x∗ = 0, we have that A := Df(0) is stable, where Df(x) is the
linearization of f at x. Then, by part b) of the proof of Theorem 11.3.3, there exists M > 0 so that the Lyapunov function
V (x) := xTMx satisfies dV (x(t))

dt = −xT (t)Nx(t), for the linearized model x′ = Ax, where N is positive-definite.

By continuous-differentiability, we have that the non-linear system satisfies Ax+ E(x) = Ax+ g(x)x with ||g(x)|| → 0
as x→ 0. To see this, apply the definition of the derivative and use continuity of this derivative.

We can then show that the Lyapunov function is also decreasing for the non-linear model as long as x is close enough to
the equilibrium. That is,

dV (x(t))

dt
=
d(xT (t)Mx(t))

dt

= xT (t)(MA+ATM)x(t) + xT (t)Mg(x(t))x(t) + xT (t)(g(x(t))TMx(t)

= −xT (t)Nx(t) + xT (t)(Mg(x(t)) + g(x(t))TM)x(t) (11.3)

It follows that −xT (t)Nx(t) ≤ −λmin∥x∥2, where λmin is the minimum eigenvalue of N . To show this, observe that
N − λminI is positive semi-definite. Now, since Mg(x(t)) + (g(x(t))TM → 0 as x(t) → 0, we have that

dV (x(t))

dt
≤ −λmin∥x(t)∥2 + xT (t)(Mg(x(t)) + (g(x(t))TM)x(t) < 0,

for x(0) small enough (note that all eigenvalues of the symmetric matrix (Mg(x(t))+(g(x(t))TM) will converge to zero,
by the continuity of the eigenvalues in the matrix entries). This establishes local asymptotic stability. ⊓⊔

The above shows that linearization can be a very effective method. However, when the linearization leads to a matrix with
an eigenvalue having a zero real part, the analysis (above based on linearization) is inconclusive and further analysis would
be required. To make this observation explicit, consider two systems

x′ = −x5

x′ = x5

which have the same linearization around 0. By a Lyapunov stability argument with taking V (x) = x2, the first system can
be shown to be locally and globally stable, whereas the second one is not (which can be verified by solving the equation
directly: show that x(t) blows up in finite time!).



118 11 Stability and Lyapunov’s Method

11.5 Discrete-time Setup

The stability results presented for continuous-time linear systems have essentially identical generalizations for the discrete-
time setup. In this case, we require the eigenvalues to be strictly inside the unit disk for asymptotic stability (local and
global); and for local stability we additionally have the relaxation that the Jordan form corresponding to an eigenvalue on
the unit circle is to be strictly diagonal: Any Jordan form block J of size N ×N , with eigenvalue λi, can be written as

λiI + E

where E is a matrix which has all terms zero, except the super-diagonal (the points right above the diagonal), at which
points the value is 1. The second term E is such that EN = 0. Finally, we use the power expansion and using the fact that
any matrix commutes with the identity matrix:

(λiI + E)n =

n∑
k=0

(
n

k

)
λni IE

n−k.

Since EN = 0, we have

(λiI + E)n =

N−1∑
k=0

(
n

k

)
λn−k
i IEk

One can have discrete-time generalizations of Lyapunov functions.

Theorem 11.5.1 Consider
xk+1 = Axk.

All eigenvalues of A have magnitudes strictly less than 1 if and only if for any given positive definite matrix N or for
N = PTP where P is any given m× n matrix with m < n, the discrete Lyapunov equation

M −ATMA = N

has a unique solution which is also positive definite.

The solution in the theorem statement is M =
∑

k∈Z+
(AT )kNAk.

11.6 Exercises

Exercise 11.6.1 Let A be a square matrix. Show that d
dte

At = AeAt.

Solution. Let t, h be scalars. Since At and Ah commute so that (At)(Ah) = (Ah)(At) we have that eA(t+h) = eAteAh.
Then,

d

dt
eAt = lim

h→0

eA(t+h) − eAt

h

= eAt lim
h→0

eAh − I

h

= eAt lim
h→0

( ∞∑
k=1

Akhk

h(k!)

)

= eAt lim
h→0

(
A+ h

∞∑
k=2

Akhk−2

k!

)
= AeAt (11.4)
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In the analysis above, the final line follows from the fact that the sum converges to zero as h → 0: let Ã(i, j) = |A(i, j)|
be the matrix consisting of the absolute value of the entries of A, then for each entry (i, j) of the matrix∣∣∣∣(h ∞∑

k=2

Akhk−2

k!

)
(i, j)

∣∣∣∣ ≤ |h|
( ∞∑

k=2

Ãk|h|k−2

k!

)
(i, j) ≤ |h|

(
Ã2

∞∑
k=2

Ãk−2|h|k−2

(k − 2)!

)
(i, j)

We have that for an arbitrary ϵ > 0, the following analysis applies:

lim
h→0

|h|
(
Ã2

∞∑
k=2

Ãk−2|h|k−2

(k − 2)!

)
(i, j)

≤ lim
h→0

|h|
(
Ã2

∞∑
k=2

Ãk−2|ϵ|k−2

(k − 2)!

)
(i, j)

= lim
h→0

|h|
(
Ã2

∞∑
k=0

Ãk|ϵ|k

k!

)
(i, j)

= lim
h→0

|h|Ã2eÃϵ(i, j)

= 0 (11.5)

The result follows.

Exercise 11.6.2 Show that for square matrices A and B, which commute, that is

AB = BA,

it follows that
e(A+B) = eAeB .

Solution. Recall that

eA = lim
T→∞

T∑
k=0

Ak

k!
=

∞∑
k=0

Ak

k!
,

with the definition that A0 = I . It follows that

eAeB = ( lim
T→∞

T∑
k=0

Ak

k!
)( lim

T→∞

T∑
l=0

Bl

l!
)

=

∞∑
k=0

∞∑
l=0

Ak

k!

Bl

l!
=

∞∑
k=0

∞∑
u=k

1

k!(u− k)!
AkBu−k (11.6)

=

∞∑
u=0

u∑
k=0

1

k!(u− k)!
AkBu−k (11.7)

=

∞∑
u=0

u∑
k=0

1

u!

u!

k!(u− k)!
AkBu−k =

∞∑
u=0

1

u!

u∑
k=0

u!

k!(u− k)!
AkBu−k

=

∞∑
u=0

1

u!

u∑
k=0

(
u

k

)
AkBu−k =

∞∑
u=0

1

u!
(A+B)u (11.8)

= e(A+B) (11.9)

In the above, (11.6) follows by defining u = k + l, and (11.7) follows from re-expressing the summation. Finally, (11.8)
follows from AB = BA and the following:
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(A+B)k =

k∑
m=0

(
k

m

)
AmBk−m.

We now prove this last statement. Clearly for k = 1,

(A+B)1 =

(
1

0

)
B +

(
1

1

)
A

Let us proceed by induction. Suppose this is true for k. Let us show that it is true for k + 1.

(A+B)k(A+B) =

k∑
m=0

(
k

m

)
Am+1Bk−m +

k∑
m=0

(
k

m

)
AmBk+1−m.

Let us separate out the terms involving ApBk+1−p for 0 ≤ p ≤ k + 1. It turns out that we obtain:

k+1∑
p=0

ApBk+1−p

((
k

p

)
+

(
k

p− 1

))
Now, (

k

p

)
+

(
k

p− 1

)
=

k!

p!(k − p)!
+

k!

(p− 1)!(k + 1− p)!

=
k!

(p− 1)!(k − p)!

(
1

p
+

1

(k + 1− p)

)
=

k!

(p− 1)!(k − p)!

(
k + 1

p(k + 1− p)

)
=

(k + 1)!

(p)!(k + 1− p)!
=

(
k + 1

p

)
(11.10)

This completes the proof.

Exercise 11.6.3 Let x(t) satisfy
dx

dt
= −x7

Is x(t) (locally) asymptotically stable?

Exercise 11.6.4 Consider x′′ + x′ + x = 0. Is this system asymptotically stable?

Hint: Convert this equation into a system of first-order differential equations, via x1 = x and x2 = x′1, x′2 = −x1 − x2.
Then apply V (x1, x2) = x21 + x1x2 + x22 as a candidate Lyapunov function.

Exercise 11.6.5 (A Further Lyapunov Stability Theorem and Barbalat’s Lemma) Prove the following theorem:

Theorem 11.6.1 Consider
x′ = f(x),

where f : Rn → Rn is continuous and f(0) = 0. Let V : Rn → R+ be continuously differentiable. Prove the following:
Suppose that there exists a continuous function W : Rn → R+ such that

d

dt
V (x(t)) ≤ −W (x(t)) ≤ 0

Then, provided x(t) remains bounded, W (x(t)) → 0.

Hint: Write

V (x(t)) = V (x0) +

∫ t

0

dV (x(s))

ds
ds ≤ V (x0)−

∫ t

0

W (x(s))ds
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and conclude that
∫ t

0
W (x(s))ds ≤ V (x0) for all t ≥ 0 and by the non-negativity of W , we have that

∫∞
0
W (x(s))ds ≤

V (x0). From here, we want to establish that W (x(t)) → 0, provided that (by hypothesis) x(t) remains bounded. Complete
the proof.

Prove and use Barbalat’s lemma: Let f : K → R+ be uniformly continuous over K. Then, if x(t) remains in K and if∫∞
0
f(x(s))ds is finite, then f(x(t)) → 0.

In the following two exercises, we will see two applications.

Note: The above result also implies an important stability theorem known as Lasalle’s invariance principle.

Exercise 11.6.6 (Application to formation control, consensus algorithms or opinion dynamics) Consider a network of
N agents which are connected over a graph. We say that A is an adjacency graph if A(i, j) = 1 if Agents i and Agent j
are connected and A(i, j) = 0 otherwise. For each agent i ∈ {1, · · · , N} define di =

∑N
j=1A(i, j) to be the degree of the

agent. Now define L = A−D where D is a diagonal matrix with D(i, i) = di. Such a matrix L is called a Laplacian.

Now, suppose that the agents update their states by the following equation:

dx

dt
= −Lx

Observe that L is a positive semi-definite matrix and if the graph is connected the only eigenvector corresponding to the
zero eigenvalue is

[
1 1 · · · 1

]T
. This you can see by noting that xTLx =

∑
A(i, j)(xi − xj)

2.

In this case, define the following Lyapunov function:

V (x) = xTx

Then,
d

dt
(V (x(t))) = (

dx

dt
)Tx(t) + xT (t)

dx

dt
= −xT (t)Lx(t) ≤ 0

The above ensures that x(t) remains bounded. Now, invoke Barbalat’s Lemma to conclude that xT (t)Lx(t) → 0. Since
the only eigenvalue corresponding to Lx(t) = 0 is x(t) =

[
1 1 · · · 1

]T
and throughout the updates the sum 1

N (x1(t) +
x2(t) + · · ·xN (t)) is a constant (as the sum does not change), we have that x(t) → 1

N (x1(0) + x2(0) + · · ·xN (0))

Exercise 11.6.7 (Application to adaptive control) Consider

dx

dt
= ax+ u

Suppose that our goal is to have limt→∞ x(t) = 0. We know that if we select u(t) = −(a+ κ)x for any κ > 0, the system
is stable. In particular, let κ = 1.

In many engineering applications, the value of a is unknown.

Adaptive control theory is the sub-field of control theory studying such problems. The goal is to allow the controller to
learn the system to be able to achieve the desired goal.

Suppose that the controller runs the following policy:

u(t) = −(â(t) + 1)x(t),

which leads to x′ = (a− â(t)− 1)x(t), where â(t) is an estimate of a. Suppose that we take

â′(t) = x2(t)

In this case, consider the Lyapunov function:
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V (x, â) =
x2

2
+

(â− a)2

2

Then,

d

dt
V (x(t), â(t)) = x(t)x′(t) + (â(t)− a)â′(t) = x2(t)(a− â(t)− 1) + (â(t)− a)x2(t) = −x2(t).

Now, strictly speaking this derivative analysis does not satisfy the conditions given in Theorem 11.3.1. However, it does
satisfy Theorem 11.6.1, with W (x) = x2 and V (x, â) as given. For this, we can conclude that x(t) → 0 (note that we have
that x(t) is bounded by the condition that V (x, â) is positive and its derivative is non-increasing).

Note that there is no claim that â(t) → a. This was not part of the design goal, only that x(t) → 0. However, this is
achieved by adaptive control.
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Controllability and Observability

12.1 Controllability

Consider
dx

dt
= Ax(t) +Bu(t),

where A is n× n and B is n× p. However, for simplicity, in the derivations below throughout the chapter, we will assume
that p = 1.

Definition 12.1.1 The pair (A,B) is said to be controllable if for any x(0) = x0 ∈ Rn and xf ∈ Rn, there exists T < ∞
and a control input {us, 0 ≤ s ≤ T} so that xT = xf .

Consider the following:

dx

dt
=

[
0 1
−4 −5

]
x+

[
b1
b2

]
u

In this case, if b1, b2 are both 0, it is evident that the system is not controllable: for every given x(0), the future paths are
uniquely determined.

Consider, now the more interesting case with b1 = 1 = −b2. In this case, if the initial condition x(0) =

[
x1(0)
x2(0)

]
takes

values from the subspace determined by the line x1(0) + x2(0) = 0, then, for all t > 0, the state remains in this subspace.
To see this, note that d(x1(t)+x2(t))

dt = dx1(t)+dx2(t)
dt = 0 so that the sum of the state components does not change and thus

x1(t) + x2(t) remains 0. Thus, this subspace, which is a strict subset of R2, is invariant no matter what control is applied:
this system is not controllable.

Theorem 12.1.1 Conditions (i), (ii), (iii), and (iv) below are equivalent:

(i) (A,B) is controllable.

(ii) The n× n matrix

Wc(t) =

∫ t

0

eAsBBT eA
T sds =

∫ t

0

eA(t−s)BBT eA
T (t−s)ds

is full-rank for every t > 0.

(iii)The controllability matrix
C :=

[
B AB · · · An−1B

]
is full-rank.
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(iv)The matrix [
A− λI B

]
has full rank (i.e., rank n) at every eigenvalue λ of A.

The matrix Wc above is called the controllability Grammian of (A,B).

Proof. (i) ↔ (ii). Let Wc(t) be invertible for t > 0 and let x1 be the target state to be arrived at in some finite time. In fact,
we will show that we can get to x1 at any t1 > 0: Write

x(t1) = eAt1x(0) +

∫ t1

0

eA(t1−s)Bu(s)ds

Let

u(s) = −BT eA
T (t1−s)W−1

c (t1)

(
eAt1x(0)− x1

)
Then,

x(t1) = eAt1x(0)−
∫ t1

0

eA(t1−s)BBT eA
T (t1−s)W−1

c (t1)

(
eAt1x(0)− x1

)
ds

= eAt1x(0)−
∫ t1

0

eA(t1−s)BBT eA
T (t1−s)W−1

c (t1)ds

(
eAt1x(0)− x1

)
= eAt1x(0)−Wc(t1)W

−1
c (t1)

(
eAt1x(0)− x1

)
= x1 (12.1)

Thus, invertibility of Wc(t) implies controllability.

We will now show that controllability implies that Wc(t) is invertible for every t > 0. Now, suppose that (A,B) is
controllable but Wc(t) is not invertible. Then, there exists a vector v ̸= 0 so that

vTWc(t)v = 0

or ∫ t

0

vT eA(t−s)BBT eA
T (t−s)vds = 0

or ∫ t

0

∥BT eA
T (t−s)v∥22ds = 0

implying that for s ∈ [0, t]

BT eA
T (t−s)v = 0, s ∈ [0, t] (12.2)

or BT eA
T sv = 0, s ∈ [0, t]. Now, if Wc(t) is non-singular for some t > 0, then, since eAtB is an analytic function,

by (12.2), the expression BT eA
T tv = 0 for all t ∈ R.

But if (A,B) is controllable, there exists a control input u that steers the system from x(0) = 0 to x(t1) = v for some t1,
and as a result

v = eAt10 +

∫ t1

0

eA(t1−s)Bu(s)ds = 0

and multiplying by vT ,

vT v =

∫ t1

0

vT eA(t1−s)Bu(s)ds = 0

But, by (12.2) above
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0

vT eAsBu(s)ds = 0

Thus,
vT v = 0

which is a contradiction since v ̸= 0.

(ii) ↔ (iii). Suppose that C does not have full-rank. Then, there exists v such that

vTAkB = 0, 0 ≤ k ≤ n− 1

Since eAtB can be written as a linear combination of {AkB, 0 ≤ k ≤ n−1} (by the Cayley-Hamilton theorem), it follows
that vT eAtB = 0 for all t > 0. This implies then that Wc(t) is not invertible.

Now, suppose that C is full-rank but Wc(t) is not invertible. Then, there exists a non-zero v so that vT eAtB = 0 for all
t ≥ 0 (by the argument earlier leading to (12.2). With t = 0, we have vTB = 0, taking the derivative at t = 0 leads to
vTAB = 0, and taking up to n − 1st derivative at t = 0, we have vTAkB = 0, 0 ≤ k ≤ n − 1. Thus, C cannot be
full-rank.

An implication of this relationship will be presented further below.

(iii) ↔ (iv). If C has full-rank, then the matrix [
A− λI B

]
has full rank. Suppose not: then there exists v ̸= 0 so that

vT
[
A− λI B

]
= 0

and that vTA = λvT and vTB = 0. Thus, v is a left eigenvector and λ is an eigenvalue of A. Then, vTA2 = λ2vT , and
for all 1 ≤ k ≤ n− 1: vTAk = λkvT . As a result,

vT
[
B AB · · · An−1B

]
=

[
vTB λvTB · · · λn−1vTB

]
= 0

and C does not have full-rank.

Conversely, suppose that C does not have full-rank. For this statement, we present a direct argument, but borrowing a result
to be presented later in the chapter. We will see in Section 12.5 that if the system is not controllable, then there exists a
transformation so that

Ac = PAP−1, Bc = PB,

is such that for some vector x =
[
0T wT

]
xAc = 0, xBc = 0

or
x[PAP−1, PB] = 0

meaning that
xP [AP−1, B] = 0

so that xP is orthogonal to the range of both A and B, which leads to the result. ⊓⊔

Reachable Set (from origin) and the Controllable Subspace An implication of the proof of the equivalence between (ii)
and (iii) is that the range space of C and the range space of the linear operator from the space of integrable control inputs
U = {u : R+ → R, ∥u∥1 <∞} to Rn defined with

⋃
t≥0

{
∫ t

0

eA(t−s)Bu(s)ds, u ∈ U}

are equal. This set is called the reachable (from the origin) set. This set is also called the controllable subspace.
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Exercise 12.1.1 The controllability property is invariant under an algebraically equivalent transformation of the coordi-
nates: x̃ = Px for some invertible P .

Hint: Use the rank condition and show that with dx̃
dt = Ãx̃(t) + B̃u(t) and Ã = PAP−1, B̃ = PB, and with C =[

B AB · · · An−1B
]
, we have that the transformed controllability matrix writes as C̃ =

[
B̃ ÃB̃ · · · Ãn−1B̃

]
= PC.

12.2 Observability

In many problems a controller has access to only the inputs applied and outputs measured. A very important question is
whether the controller can recover the state of the system through this information.

Consider
dx

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t)

Definition 12.2.1 The pair (A,C) is said to be observable if for any x(0) = x0 ∈ Rn, there exists T < ∞ such that the
knowledge of {(ys, us), 0 ≤ s ≤ T} is sufficient to uniquely determine x(0).

In the above, we could consider without any loss that u(t) = 0 for all t, since the control terms appear in additive forms
whose effects can be cancelled from the measurements.

Consider then
dx

dt
= Ax(t), y(t) = Cx(t)

The measurement at time t writes as:
y(t) = CeAtx(0)

taking the derivative
dy(t)

dt
= CAeAtx(0)

and taking the derivatives up to order n− 1, we obtain for 1 ≤ k ≤ n− 1

dk−1y(t)

dtk−1
= CAk−1eAtx(0)

In matrix form, we can write the above as 
y(t)
dy(t)
dt
...

dn−1y(t)
dtn−1

 =


C
CA

...
CAn−1

 eAtx(0)

Thus, the question of being able to recover x(0) from the measurements becomes that of whether the observability matrix

O :=


C
CA

...
CAn−1

 is full-rank or not. Note that adding further rows to this matrix does not increase the rank by the Cayley-

Hamilton theorem. Thus, we can recover the initial state if the observability matrix is full-rank.

Furthermore, we have that CeAt is a linear combination of {CAk, k = 0, 1, · · · , n− 1}. Therefore, if x0 is orthogonal to
{CAk, k = 0, 1, · · · , n − 1}, then it is also orthogonal to CeAt. In particular, if the observability matrix is not full-rank,
then there exists a non-zero x0 so that CeAtx0 = 0. Thus, we cannot distinguish between x0 and the 0 vector in Rn and
thus the system is not observable.
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Then, we have the following theorem:

Theorem 12.2.1 The system
dx

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t)

is observable if and only if

O =


C
CA

...
CAn−1


is full-rank.

The null-space of O, that is, {v ∈ Rn : Ov = 0} is called the unobservable subspace.

The structure of the observability matrix O and the controllability matrix C leads to the following very important and useful
duality result.

Theorem 12.2.2 (A,C) is observable if and only if (AT , CT ) is controllable.

In view of Theorem 12.1.1 (and in particular, now that we have related observability to a condition of the form given in
Theorem 12.1.1(iii)), we have the following immediate result:

Theorem 12.2.3 (A,C) is observable if and only if

Wo(t) =

∫ t

0

eA
T sCTCeAsds

is invertible for all t > 0.

12.3 Feedback and Pole Placement

Consider u = −Kx. Then,
dx

dt
= Ax(t) +Bu(t) = (A−BK)x(t)

Theorem 12.3.1 The eigenvalues of A−BK can be placed arbitrarily if and only if (A,B) is controllable.

To see this result, first consider a system in the controllable canonical realization form (see Section 9.1.1) with

d

dt
x(t) = Ax(t) +Bu(t), y(t) = Cx(t)

Ac =


0 1 0 · · · 0
0 0 1 · · · 0
...

... · · · · · · 1
−a0 −a1 −a2 · · · −aN−1



Bc =


0
0
...
0
1
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Note that, the eigenvalues of A solve the characteristic polynomial whose coefficients are located in the bottom row of Ac

(see the proof of Theorem 8.3.1).

Now, apply u = −Kx so that u =
∑N

i=1 −kixi, leading to

A−BK =


0 1 0 · · · 0
0 0 1 · · · 0
...

... · · · · · · 0
−(a0 + k1) −(a1 + k2) −(a2 + k3) · · · −(aN−1 + kN )


Once again, since the eigenvalues of this matrix is solves the characteristic polynomial whose coefficients are located in
the bottom row (by the proof of Theorem 8.3.1), and these coefficients can be placed by selecting the scalars ki, we can
arbitrarily place the eigenvalues of the closed-loop matrix by feedback.

Through a coordinate transformation x̃ = Px, every controllable system x′ = Ax + Bu can be transformed to an alge-
braically equivalent linear system in the controllable canonical realization form (Ac, Bc) above. As we saw, for a system
in this form, a control can be found so that all the eigenvalues of the closed loop system are on the left-half plane. Finally,
the system can be moved back to the original coordinates.

We now see how this (transformation into a controllable canonical realization form) is possible. With x̃ = Px, we have
that

dx̃

dt
= Ãx̃(t) + B̃u(t)

with Ã = PAP−1, B̃ = PB. Now, if (A,B) is controllable, we know that C =
[
B AB · · · An−1B

]
is full-rank. The

transformed controllability matrix writes as: C̃ =
[
B̃ ÃB̃ · · · Ãn−1B̃

]
= PC. As a result,

P = C̃C−1

whose validity follows from the fact that C is invertible. This leads us to the following conclusion.

Theorem 12.3.2 Consider x′ = Ax + Bu where u ∈ R. Every such system, provided that (A,B) is controllable, can be
transformed into a system z′ = Ãz + B̃u with the transformation z = Px so that (Ã, B̃) is in the controllable canonical
realization form.

The above then suggests a method to achieve stabilization through feedback: First transform into a controllable canonical
realization form, place the eigenvalues through feedback, and transform the system back to the original coordinate.

12.4 Observers and Observer Feedback

Consider
dx

dt
= Ax+Bu, y = Cx

Suppose that the controller intends to track the state. A candidate for such a purpose is to write an observer system of the
form

dx̂

dt
= Ax̂+Bu+ L(y − Cx̂)

We then obtain with e = x− x̂, and subtracting the above two equations from one another

de

dt
= Ae− LCe = (A− LC)e

Then, the question whether e(t) → 0 is determined whether the eigenvalues of A−LC can be pushed to the left-half plane
with some appropriate L. If the system is observable, then this is possible, with the same arguments applicable to the pole
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placement analysis presented in the previous section (note that controllability and observability are related to each other
with a simple duality property that was presented in Theorem 12.2.2: that is LT can be selected so that AT − CTLT has
all eigenvalue in the left-half plane, which will also imply that A− LC will have the same property).

Now that under observability we have that the controller can track the state with asymptotically vanishing error, suppose
that we consider

dx

dt
= Ax+Bu, y = Cx

with the goal of stabilizing the actual system state x(t).

Suppose that we run an observer, and that we consider the following feedback control policy

u(t) = −Kx̂(t)

where K is what we used for pole placement, and x̂ is what we used in our observer. In this case, we obtain the following
relation: [

dx
dt
de
dt

]
=

[
A−BK BK

0 A− LC

] [
x
e

]

Due to the upper triangular form, we conclude that
[
x(t)
e(t)

]
→ 0 if both A − BK and A − LC are stable matrices; two

conditions that we have already established under controllability and observability properties. Such a design leads to the
separation principle for linear control systems: run an observer and apply the control as if the observer state is the actual
state. This design is stabilizing.

12.5 Canonical Forms

Theorem 12.1. (i) If v ∈ Rn is in the controllable subspace, then so is Av.

(ii) If v ∈ Rn is in the unobservable subspace, then so is Av.

That is, the controllable and unobservable subspaces are A-invariant.

If a model is not controllable, then we can construct a state transformation x̃ = Px with the form x̃ =

[
x̃c
x̃c̄

]
with

dx̃

dt
=

[
Ac A12

0 Auc

] [
x̃c
x̃uc

]
+

[
Bc

0

]
u

y =
[
Cc Cuc

] [ x̃c
x̃uc

]
In the above (Ac, Bc) is controllable. In the above, A12 is some submatrix. The form above is called a controllable canon-
ical form.

The matrix P can be obtained with constructing P−1 to consist of the following: Let n1 be the rank of the controllability
matrix C. Then take the first n1 columns of P−1 to be n1 linearly independent columns of C, and the remaining n − n1
columns are arbitrary vectors which make P−1 invertible. If we write

Ac = PAP−1, Bc = PB,

we have that
P−1Ac = AP−1, P−1Bc = B

Using the fact that the controllable subspace ifA invariant, it follows that the structure ofAc has to have the given structure.
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An implication of the above analysis is that

C(sI −A)1B +D = Cc(sI −Ac)
−1Bc +D

A similar construction applies for observable canonical forms.

dx̃

dt
=

[
Ao 0
A21 Auo

] [
x̃o
x̃uo

]
+

[
Bo

Buo

]
u

y =
[
Co 0

] [ x̃o
x̃uo

]
with the property that (Ao, Co) is observable.

An implication of the above analysis is that

C(sI −A)1B +D = Co(sI −Ao)
−1Bo +D

One can apply a joint construction, known as Kalman’s decomposition. There exists a coordinate transformation so that

z = Px

with

z =


xco
xc/uo
xuc/o
xuc/uo


Ā = PAP−1

leads to

dz

dt
=


Ac/o 0 Ax/o0
Ac/x Ax/uo Ax/x Ax/uo

0 0 Auc/o 0
0 0 Auc/x Auc/uo

 z +

Bc/o

Bc/uo

0
0

u
y =

[
Cc/o 0 Cuc/o 0

]
z +Du,

where (Ac/o, Bc/o, Cc/o) is both controllable and observable. Furthermore,

C(sI −A)−1B +D = Cc/o(sI −Ac/o)
−1Bc/o +D

A corollary of the above discussion is that the minimal realization; that is, the state-space realization with the smallest
dimensions involving matrices, is attained when the system is both controllable and observable, as there are no redundant
state variables.

From the controllable canonical form, we can also establish the following result.

A linear system is stabilizable (in the sense of local or global asymptotic stability) by control if and only if Auc, whenever
exists, is a stable matrix (i.e., with eigenvalues strictly in the left half plane).

Define a control-free system to be detectable if whenever y(t) → 0 then x(t) → 0. A consequence of the observable
canonical form is that a system is detectable if and only if Auo, whenever exists, is a stable matrix.
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12.6 Using Riccati Equations to Find Stabilizing Linear Controllers [Optional]

While controllability and observability properties reveal what is possible or impossible with regard to stabilization, they
don’t directly present an easy-to-compute or constructive method for arriving at design.

One effective method is through Riccati equations. We will present the discussion for discrete-time, but the approach is
essentially identical for continuous-time (with the stability conditions of linear systems, as noted earlier, being different).

12.6.1 Controller design via Riccati equations

Consider the following linear system

xt+1 = Axt +But, (12.3)

where x ∈ Rn, u ∈ Rm.

Suppose that we would like to minimize the expression over all control laws:

∞∑
t=0

xTt Qxt + uTt Rut (12.4)

with R > 0, Q ≥ 0.

Theorem 12.6.1 Consider (12.3).

(i) If (A,B) is controllable there exists a solution to the Riccati equation

P = Q+ATPA−ATPB(BTPB +R)−1BTPA. (12.5)

(ii) if (A,B) is controllable and, with Q = CTC, (A,C) is observable; as t → −∞, the sequence of Riccati recursions,
for P0 = P̄ with P̄ arbitrary,

Pt = Q+ATPt+1A−ATPt+1B(BTPt+1B +R)−1BTPt+1A, (12.6)

converges to some limit P that satisfies (12.5). That is, convergence takes place for any initial condition P̄ . Further-
more, such a P is unique, and is positive definite. Finally, under the control policy

ut = −(BTPB +R)−1BTPAxt,

{xt} is stable.

(iii)Under the conditions of part (ii), the control minimizes (12.4),

In the above, we established a method to find K so that A − BK is stable: Run the recursions, for any arbitrary initial
condition, (12.6), find the limit P and select ut = −Kxt with

K = (BTPB +R)−1BTPA (12.7)

This controller will be stabilizing.
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12.6.2 Observer design via Riccati equations

A similar phenomenon as applies for observer design. In fact, with the above discussion, using the duality analysis presented
earlier, we can directly design an observer so that the matrix A− LC is stable. By writing the condition as the stability of
AT − CTLT , the question becomes that of finding LT for which AT − CTLT is a stable matrix.

Let (A,C) be observable. In Theorem 12.6.1, if we replace A with AT , B with CT , and defining W = BBT for any B
with (A,B) controllable, we obtain:

S =W +ASAT −ASCT (CSCT +R)−1CSAT .

or the Riccati equations
St+1 =W +AStA

T −AStC
T (CStC

T +R)−1CStA
T .

whose limit as t→ ∞ for any initial S0 will converge to a unique limit. Finally, taking

LT = (CSCT +R)−1CSAT (12.8)

will lead to the conclusion that A− LC is stable.

12.6.3 Putting controller and observer design together

Accordingly, all we need for the system:

xt+1 = Axt +But, yt = Cxt (12.9)

is that (A,B) be controllable and (A,C) be observable. With this, via (12.7)-(12.8) we can findK and L so that the system

xk+1 = Axk −BKx̂k

x̂k+1 = Axk + L(Cxk − Cx̂k)

or, equivalently, with ek = xk − x̂k, the system defined with[
xk+1

ek+1

]
=

[
A−BK BK

0 A− LC

] [
xk
ek

]
is stable.

In the above, the conditions on (A,B) being controllable and (A,C) being observable can be relaxed: controllability can
be replaced with stabilizability and observability can be relaxed to detectability. While stability will be maintained, the
only difference would be that P or S would not be guaranteed to be positive-definite.

12.6.4 Continuous-time case

A similar discussion as above applies for the continuous-time setup. We only discuss the control design, as the observer
design follows from duality, as shown above.

Consider
dx

dt
= Ax+Bu

Let Q ≥ 0, R > 0. The only difference with the continuous-time is that the discrete-time Riccati equations above are
replaced by a corresponding Riccati differential equation:

−dP
dt

= Q+ATP + PA− PBR−1BTP.
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If (A,B) is controllable and, with Q = CTC, (A,C) is observable, then there exists a unique positive-definite matrix P
such that the following algebraic Riccati equation is satisfied:

Q+ATP + PA− PBR−1BTP = 0

With this P , the control given by
u = −Kx = −R−1BTPx

is so that A−BK is stable.

12.7 Applications and Exercises

θ

l

m

u

y

M

Fig. 12.1

Exercise 12.7.1 Recall that we had studied the controlled pendulum on a cart (see Figure 12.1). The non-linear mechani-
cal/rotational dynamics equations were found to be

M
d2y

dt2
= u−m

d2

dt2
(y + l sin(θ)) = u−m

d2y

dt2
+ml

d2θ

dt2
−ml(

dθ

dt
)2 sin(θ)

m
d2θ

dt2
=
mg

l
sin(θ)− m

l

d2y

dt2
cos(θ) (12.10)

Around θ = 0, dθdt = 0, we apply the linear approximations sin(θ) ≈ θ and cos(θ) ≈ 1, and (dθdt )
2 ≈ 0 to arrive at

M
d2y

dt2
= u− (m

d2y

dt2
+ml

d2θ

dt2
)

l
d2θ

dt2
= gθ − d2y

dt2
(12.11)

Finally, writing x1 = y, x2 = dy
dt , x3 = θ, x4 = dθ

dt , we arrive at the linear model in state space form

dx

dt
=


0 1 0 0
0 0 −mg

M 0
0 0 0 1

0 0 (M+m)g
Ml 0

x+


0
1
M
0
−1
Ml

u,
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where x =


x1
x2
x3
x4

.

a) When is the linearized model controllable?

b) Does there exist a control policy with u = −Kx that makes the closed loop linearized system stable? Select specific
values for M,m, l so that controllability holds, and accordingly find an explicit K.

c) With the controller in part b), can you conclude that through the arguments presented in the previous chapter (e.g.
Theorem 11.4.1), that your (original non-linear) system is locally asymptotically stable?

Hint: a) With

A =


0 1 0 0
0 0 −mg

M 0
0 0 0 1

0 0 (M+m)g
Ml 0

 , B =


0
1
M
0
−1
Ml


we have that

[
B AB A2B A3B

]
=


0 1

M 0 mg
M2l

1
M 0 mg

M2l 0

0 −1
Ml 0 −(M+m)g

M2l2
−1
Ml 0 −(M+m)g

M2l2 0


You will be asked to find the condition for this system to be invertible in your homework assignment.

b) By controllability, we can place the eigenvalues of the matrix arbitrarily. Find an explicit K. You can use the method
presented earlier in the chapter, or try to explicitly arrive at a stabilizing control matrix.

c) Then, by Theorem 11.4.1, the system is locally stable around the equilibrium point. Precisely explain why this is the
case.

Exercise 12.7.2 Consider the linear system

dx

dt
=

0 0 0
0 1 0
2 1 1

x+

01
1

u
Is this system controllable? Does there exist a matrix K so that with u = Kx, the eigenvalues of the closed-loop matrix:(0 0 0

0 1 0
2 1 1

+

01
1

K)
can be arbitrarily assigned?

Exercise 12.7.3 Consider
dx

dt
= Ax+Bu, y = Cx

with
dx

dt
=

[
0 1
1 0

]
x+

[
0
1

]
u

y =
[
1 0

]
x

a) Is this system observable? b) Is this system controllable? c) Provide a stabilizing feedback control policy by running an
observer.

Hint: a) and b) Yes. c) The system is both controllable and observable. If the system state were available, we could have
u = −Kx and select K so that A − BK is stable. Find such a K. Now, we can run an observer as explained in Section
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12.4:
dx̂

dt
= Ax̂+Bu+ L(y − Cx̂)

with the property that A − LC is stable. Find such an L. Then, the control to be applied would be: ut = −Kx̂t. Find
explicit values.

Exercise 12.7.4 a) Show that controllability is invariant under an algebraically equivalent transformation of the coordi-
nates: x̃ = Px for some invertible P .

b) Consider
dx

dt
=

[
a b
−b a

]
x+

[
1
0

]
u

Express, through a transformation, this system in a controllable canonical realization form.

Exercise 12.7.5 Consider
dx

dt
= Ax+Bu, y = Cx

with
dx

dt
=

[
0 1
1 0

]
x+

[
0
1

]
u

y =
[
1 0

]
x

a) Is this system observable? b) Is this system controllable? c) Provide a stabilizing feedback control policy by running an
observer.

Note. The model here and the model for P given in Exercise 8.5.2 are related.

Solution. The system is both controllable and observable. If the system state were available, we could have u = −Kx and
select K so that A−BK is stable. Find such a K.

Now, we can run an observer as explain in the lecture notes:

dx̂

dt
= Ax̂+Bu+ L(y − Cx̂)

with the property that A− LC is stable. Find such an L.

Then, the control to be applied would be: ut = −Kx̂t.





A

Integration and Some Useful Properties

A.1 Measurable Space

Let X be a collection of points. Let F be a collection of subsets of X with the following properties such that F is a σ-field
(also called a σ-algebra), that is:

• X ∈ F

• If A ∈ F , then X \A ∈ F

• If Ak ∈ F , k = 1, 2, 3, . . . , then
⋃∞

k=1Ak ∈ F (that is, the collection is closed under countably many unions).

By De Morgan’s laws, and set properties, it can be shown that the collection has to be closed under countable intersections
as well.

If the third item above holds for only finitely many unions or intersections, then, the collection of subsets is said to be a
field or algebra .

With the above, (X,F) is termed a measurable space (that is we can associate a measure to this space; which we will
discuss shortly). For example the full power-set of any set is a σ-field.

A σ−field J is generated by a collection of sets A, if J is the smallest σ−field containing the sets in A, and in this case,
we write J = σ(A).

A.1.1 Borel σ−field

An important class of σ-fields is the Borel σ−field on a metric (or more generally, topological) space. Such a σ−field is
the one which is generated by open sets. The term open naturally depends on the space being considered. For this course,
we will mainly consider spaces which are complete, separable and metric spaces (such as the space of real numbers R, or
countable sets). Recall that in a metric space with metric d, a set U is open if for every x ∈ U , there exists some ϵ > 0
such that {y : d(x, y) < ϵ} ⊂ U . We note also that the empty set is a special open set.

The Borel σ−field on R is then the one generated by sets of the form (a, b) ⊂ R, that is, open intervals We will denote the
Borel σ−field on a space X as B(X).

A.1.2 Measurable Function

If (X,B(X)) and (Y,B(Y)) are measurable spaces; we say a mapping from h : X → Y is measurable if

h−1(B) = {x : h(x) ∈ B} ∈ B(X), ∀B ∈ B(Y)
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Theorem A.1.1 To show that a function is measurable, it is sufficient to check the measurability of the inverses of sets that
generate the σ-algebra on the image space.

Proof. Observe that set operations satisfy that for any B ∈ B(Y): h−1(Y \B) = X \ h−1(B) and

h−1(∪∞
i=1Bi) = ∪∞

i=1h
−1(Bi), h−1(∩∞

i=1Bi) = ∩∞
i=1h

−1(Bi).

Thus, the set of all subsets whose inverses are Borel:

M = {B ⊂ Y : h−1(B) ∈ B(X)}

is a σ-algebra over Y and this set contains the open sets. Thus, B(X) ⊂ M. ⊓⊔

Therefore, for Borel measurability, it suffices to check the measurability of the inverse images of open sets. Furthermore,
for real valued functions, to check the measurability of the inverse images of open sets, it suffices to check the measurability
of the inverse images sets of the form {(−∞, a], a ∈ R}, {(−∞, a), a ∈ R}, {(a,∞), a ∈ R} or {[a,−∞), a ∈ R}, since
each of these generate the Borel σ-field on R. In fact, here we can restrict a to be Q-valued, where Q is the set of rational
numbers.

A.1.3 Measure

A positive measure µ on (X,B(X)) is a map from B(X) to [0,∞] which is countably additive such that for Ak ∈ B(X)
and Ak ∩Aj = ∅:

µ

(
∪∞
k=1 Ak

)
=

∞∑
k=1

µ(Ak).

Definition A.1.1 µ is a probability measure if it is positive and µ(X) = 1.

Definition A.1.2 A measure µ is finite if µ(X) < ∞, and σ−finite if there exist a collection of subsets such that X =
∪∞
k=1Ak with µ(Ak) <∞ for all k.

On the real line R, the Lebesgue measure is defined on the Borel σ−field (in fact on a somewhat larger field obtained
through adding all subsets of Borel sets of measure zero: this is known as completion of a σ-field) such that for A = (a, b),
µ(A) = b − a. Borel field of subsets is a subset of Lebesgue measurable sets, that is there exist Lebesgue measurable
sets which are not Borel sets. There exist Lebesgue measurable sets of measure zero which contain uncountably many
elements; an example is the Cantor set.

A.1.4 The Extension Theorem

Theorem A.1.2 [The Extension Theorem (Carathéodory)] Let M be an algebra over X, and suppose that there exists
a map (called a pre-measure) P : M → R+ so that for any (possibly countably infinitely many) pairwise disjoint sets
An ∈ M, if the countable union ∪nAn ∈ M, then P (∪nAn) =

∑
n P (An). Suppose also that there exists a countable

collection of sets Bn with X = ∪nBn, each with P (Bn) < ∞ (that is P is σ-finite). Then, there exists a unique measure
P ′ on the σ−field generated by M, σ(M), which is consistent with P on M.

The above is useful since, when one states that two measures are equal it suffices to check if they are equal on the set of
sets which generate the σ−algebra, and not necessarily on the entire σ−field.

We can construct the Lebesgue measure on B(R) by defining it on finitely many unions and intersections of intervals of the
form (a, b), [a, b), (a, b] and [a, b], and the empty set, thus forming a field, and extending this to the Borel σ−field. Thus,
the relation µ(a, b) = b− a for b > a is sufficient to define the Lebesgue measure.
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A.1.5 Integration

Let h be a non-negative measurable function from (X,B(X)) to (R,B(R)). The Lebesgue integral of h with respect to a
measure µ can be defined in three steps:

First, for A ∈ B(X), define 1{x∈A} (or 1(x∈A), or 1A(x)) as an indicator function for event x ∈ A, that is the value that
the function takes is 1 if x ∈ A, and 0 otherwise. In this case, define∫

X
1{x∈A}µ(dx) := µ(A).

Now, let us define simple functions h such that, there exist A1, A2, . . . , An all in B(X) and positive numbers b1, b2, . . . , bn
such that hn(x) =

∑n
k=1 bk1{x∈Ak}. For such functions, define∫

X
hn(x)µ(dx) :=

n∑
k=1

bkµ(Ak).

Now, for any given measurable h, there exists a sequence of simple functions hn such that hn(x) ↑ h(x) monotonically,
that is hn+1(x) ≥ hn(x) (for a construction, if h only takes non-negative values, consider partitioning the positive real line
to two intervals [0, n) and [n,∞), and partition [0, n) to n2n uniform intervals, define hn(x) to be the lower floor of the
interval that contains h(x): thus

hn(x) = k2−n, if k2−n ≤ h(x) < (k + 1)2−n, k = 0, 1, · · · , n2n − 1,

and hn(x) = n for h(x) ≥ n. By definition, and since h−1([k2−n, (k + 1)2−n)) is Borel, hn is a simple function. If
the function takes also negative values, write h(x) = h+(x) − h−(x), where h+ is the non-negative part and −h− is the
negative part, and construct the same for h−(x). We define the limit (which exists as a real valued monotonically increasing
sequence) as the Lebesgue integral:

lim
n→∞

∫
hn(x)µ(dx) =:

∫
h(x)µ(dx)

We note that the notation
∫
hdµ or

∫
h(x)dµ(x) can also be used in place of

∫
h(x)µ(dx).

There are three important convergence theorems.

A.1.6 Fatou’s Lemma, the Monotone Convergence Theorem and the Dominated Convergence Theorem

Theorem A.1.3 (Monotone Convergence Theorem) If µ is a σ−finite positive measure on (X,B(X)) and {fn, n ∈ Z+}
is a sequence of measurable functions from X to R which pointwise, monotonically, converges to f so that 0 ≤ fn(x) ≤
fn+1(x) for all n, and

lim
n→∞

fn(x) = f(x),

for µ−almost every x, then ∫
X
f(x)µ(dx) = lim

n→∞

∫
X
fn(x)µ(dx)

The following is a consequence of the monotone convergence theorem, but is a critical result which will be utilized in the
notes.

Theorem A.1.4 (Fatou’s Lemma) If µ is a σ−finite positive measure on (X,B(X)) and {fn, n ∈ Z+} is a sequence of
measurable functions, bounded from below, from X to R, then∫

X
lim inf
n→∞

fn(x)µ(dx) ≤ lim inf
n→∞

∫
X
fn(x)µ(dx)



140 A Integration and Some Useful Properties

Theorem A.1.5 (Dominated Convergence Theorem) If (i) µ is a σ−finite positive measure on (X,B(X)), (ii) g is a Borel
measurable function with ∫

X
g(x)µ(dx) <∞,

and (iii) {fn, n ∈ Z+} is a sequence of measurable functions from X to R which satisfy |fn(x)| ≤ g(x) for µ−almost
every x, and limn→∞ fn(x) = f(x), then:∫

X
f(x)µ(dx) = lim

n→∞

∫
X
fn(x)µ(dx)

Note that for the monotone convergence theorem, there is no restriction on boundedness; whereas for the dominated
convergence theorem, there is a boundedness condition. On the other hand, for the dominated convergence theorem, the
pointwise convergence does not have to be monotone.

A.2 Differentiation under an Integral

Consider an integral that depends on two parameters of the form:

J(r) =

∫
R
g(r, t)dt

for some integrable g(r, ·) for every r ∈ [a, b].

Theorem A.2.1 Suppose that r ∈ (a, b) for some a, b ∈ R so that (i) for all t, g(r, t) is continuously differentiable and (ii)
there exists an integrable function h so that for all r ∈ (a, b),

| ∂
∂r
g(r, t)| ≤ h(t)

almost everywhere. Then,
d

dr

∫
R
g(r, t)dt =

∫
R

∂

∂r
g(r, t)dt

Proof.

d

dr

∫
R
g(r, t)dt

= lim
s→0

∫
R

g(r + s, t)− g(r, t)

s
dt

= lim
s→0

∫
R

∂

∂r
g(r + τ(r, s), t)dt

=

∫
R

∂

∂r
g(r, t)dt (A.1)

Here, r ≤ τ(r, s) ≤ r + s by the mean value theorem; and observe that lims→0 τ(r, s) = r. The last equality follows
from the dominated convergence theorem since g(r + τ(r, s), t) is dominated by h (for sufficiently small s values) and
converges pointwise. ⊓⊔

The above also applies for complex-valued functions, by considering the real and the imaginary parts separately.

As an example, consider the CCFT of a function g:

ĝ(f) =

∫
g(t)e−i2πftdt



A.3 Fubini’s Theorem (also Fubini-Tonelli’s Theorem) 141

We observe that provided
∫
|g(t)|t <∞,

d

df
ĝ(f) = −i2π

∫
g(t)te−i2πftdt

To see this, express the derivative d
df ĝ(f) as the limit limh→0

∫
g(t)e−i2πft e−i2πht−1

h dt and write

(e−i2πht − 1)

h
=

cos(2πht)− 1)

h
− i sin(2πht)− 0

h
= 2πt(sin(2πh̄t) + i cos(2πh̃t))

for some h̄ ∈ [0, h], h̃ ∈ [0, h], via the mean-value theorem for both expressions. Now, apply Theorem A.2.1.

A.3 Fubini’s Theorem (also Fubini-Tonelli’s Theorem)

Theorem A.3.1 Let f : R× R → R and E,F be Borel sets. Then,
(i) If f is non-negative on E,F ,∫

E×F

f(x, y)dxdy =

∫
E

(∫
F

f(x, y)dy

)
dx =

∫
F

(∫
E

f(x, y)dx

)
dy

(ii) If f is integrable on E,F ,∫
E×F

f(x, y)dxdy =

∫
E

(∫
F

f(x, y)dy

)
dx =

∫
F

(∫
E

f(x, y)dx

)
dy

We note that f is integrable if and only if
∫
E×F

|f(x, y)|dxdy is finite, which implies that to check for integrability it

suffices to show that one of the integrals
∫
E

(∫
F
|f(x, y)|dy

)
dx or

∫
F

(∫
E
|f(x, y)|dx

)
dy is finite. Note that if the

function considered is non-negative, we don’t seek integrability. This theorem also applies to summations. This theorem is
a very useful result while working with transformations, as we do extensively in this course.
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Cauchy’s Integral Formula

Let Ω ⊂ C be an open, connected set. Let f : Ω → C be a holomorphic function; that is, the limit

f ′(p) = lim
s→p

f(s)− f(p)

s− p

exists (which is the derivative of f at p) at every p ∈ Ω. We note that a complex function is holomorphic if and only if it is
analytic (unlike the real function setup).

Theorem B.0.1 (Cauchy’s Integral Theorem) Let γ : [0, 1] → Ω be differentiable with γ(0) = γ(1) and let Γ be the
closed contour traced by γ. Then, ∫ 1

0

f(γ(t))γ′(t)dt =

∫
Γ

f(z)dz = 0

With the above, we will now derive a very important result in complex analysis as is relevant in our course.

Theorem B.0.2 (Cauchy’s Integral Formula) Let Γ be a contour that encircles the point p ∈ C (counterclockwise) only
once and f be as above. Then, ∫

Γ

f(s)

s− p
ds = 2πif(p)

Note that this formula implies that if we know the values of a function along the boundaries of a contour, we can uniquely
recover the values of the function inside the contour, by selecting any p inside Γ and apply the result above.

Proof. a) First, observe that the value of the integral does not depend on the path as long as the path encircles p, by the
Cauchy integral theorem.

In particular, we can take Cϵ = p+ ϵei2πt as t ranges from 0 to 1.

Then, ∫
Γ

f(s)

s− p
ds =

∫
Cϵ

f(s)

s− p
ds

b) Write s = p+ ϵei2πt and ds = ϵi2πei2πt. Now, first take f(s) ≡ 1, and observe that∫
Cϵ

1

s− p
ds = ϵi2π

∫ 1

0

1

ϵei2πt
ϵei2πtdt = 2πi

c) We have then that ∫
Cϵ

f(s)

s− p
ds− 2πif(p) =

∫
Cϵ

f(s)− f(p)

s− p
ds.
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We will show that this difference is zero. Write

|
∫
Cϵ

f(s)− f(p)

s− p
ds| ≤

∫ 1

0

|f(p+ ϵei2πt)− f(p)

ϵ
ϵei2πt|dt ≤ max

t∈[0,1]
|f(p+ ϵei2πt)− f(p)|

The above holds for every ϵ > 0, and as can be taken arbitrarily close to zero, the result follows. ⊓⊔
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