
446 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 7, NO. 1, MARCH 2020
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Abstract—We consider the existence and structure of
(zero-sum game) Nash equilibria for a two-way network in
the presence of an intelligent jammer capable of tapping
the channel signals in both directions. We assume that the
source and channel noise signals are all Gaussian random
variables, where the source signals are independent of each
other, while the noise signals are arbitrarily correlated. We
show that for fixed jammer power constraints, a Nash equi-
librium exists with respect to the system wide mean square
error, and equilibrium jamming policies are always Gaus-
sian. We derive the equilibrium policies in closed form under
various system parameters. Finally for two system scenar-
ios, we analytically determine the optimal power allocation
levels the jammer can deploy in each channel link, when
allowed to operate under an overall power constraint.

Index Terms—Decentralized signaling and estimation,
game theory, information theory, source-channel coding,
two-way Gaussian networks.

I. INTRODUCTION

D ECENTRALIZED control and estimation problems in-
volve decision makers who aim for a common goal, but

who only have local information. Networked control systems
are those involving multiple decision makers connected over
communication channels. In this paper, we consider a setup
where two decision makers wish to encode information to each
other over a shared medium.

The question of how a communication system performs in
the worst case scenario is one of vital importance, for if one
can guarantee a suitable operation in the least favorable case,
then the system will operate at least in all other cases as well.
In determining the worst case faced by a system, it is useful to
personify the noise as an intelligent “jammer,” actively working
to steer the system toward a deleterious behaviour. Furthermore,
in many scenarios, there may indeed be a malicious agent who
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intends to suppress communication and control in a decentral-
ized system. These setups motivate the use of game theoretic
methods in communications and networked control applica-
tions.

One of the earliest works to consider such a problem is by
Başar [1], where the transmission of a Gaussian source over
a one-way additive Gaussian noise channel is investigated in
the presence of an intelligent jammer. Başar establishes com-
plete solutions to a zero-sum formulation, proving the optimal-
ity of linear/affine/Gaussian policies under various setups and
assumptions. Further relevant studies include [2]–[4].

The problem stated above focuses on one-way (or point-to-
point) communications. However, modern communication sys-
tems are increasingly decentralized and multiterminal for better
utilization of limited channel resources. The simplest networked
system is the two-way channel (TWC) first introduced by
Shannon in [5].

In this paper, we consider the case of a Gaussian two-way
source-channel system with an intelligent jammer. In such a
system, each user transmits and receives signals simultaneously
(i.e., the system is in full duplex mode). This allows each en-
coder, when sending a codeword vector, to interactively adapt
the current input to its own message and all previously received
signals, hence rendering it more resilient to channel noise. The
reader is referred to [5]–[15] and the references therein for cod-
ing theorems and channel capacity results for two-way chan-
nels. In particular, it is shown in [15] that zero-delay linear
(scalar) coding and decoding achieve the Shannon theoretical
mean square error (MSE) distortion limit for the two-way Gaus-
sian system with independent sources and are hence optimal. We
herein focus on the same scalar two-way Gaussian system in the
presence of a jammer capable of accessing the channel’s signals
in both directions. Since all the system’s respective (Gaussian)
random variables are temporally uncorrelated and identically
distributed, our setting is indeed a one shot MSE optimization
problem.

The identification of optimal linear/affine/Gaussian policies
for decentralized systems involving Gaussian variables under
quadratic criteria [such as in linear quadratic Gaussian (LQG)]
is a recurring problem in stochastic networked control and
estimation theory. These certainly include the classical problem
of communicating a scalar Gaussian source over a Gaussian
channel [17]–[20], where linear encoding policies are optimal,
which also extends to the vector case under certain conditions
[21]–[28]. For nonclassical decentralized stochastic control
problems, Witsenhausen’s counterexample [29] shows that
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optimal policies for LQG systems may be nonlinear and this
suboptimality also extends to various decentralized LQG
problems as reviewed in [16, Ch. 11] and [30].

For game-theoretic formulations, somewhat surprisingly, op-
timality and linearity again coincide for a large class of setups: in
Witsenhausen’s counterexample, if the first encoder is viewed as
a maximizer and the decoder is a minimizer, then affine policies
may be optimal [31], [32], where similar to the related results in
the literature, the ordered interchangeability property of saddle
points in zero-sum games [37, Corollary 2.1 and Property 4.1,
p. 177] is a crucial tool in the analysis.

For a setup similar to the work presented in [1], but with the
game being played only between an encoder and a jammer (with
the decoder being an impartial Bayesian decision maker), it is
shown in [33] that the worst additive channel noise is Gaussian
and the optimal encoder is linear. This result may be viewed as a
Stackelberg extension of the Nash equilibrium setup given in [1]
(for a detailed discussion on the distinction between Nash versus
Stackelberg equilibria in signaling games, see [14], [34], and
[35]), where the receiver is a follower and the encoder/jammer
pair is a leader.

In view of the aforementioned discussion, this paper pro-
vides further conditions in which affine and Gaussian policies
may constitute equilibria for such decentralized quadratic opti-
mization problems. In particular, we show that for a two-way
Gaussian scalar networked system with an intelligent jammer,
an essentially unique zero-sum Nash equilibrium exists and the
equilibrium policies are affine/Gaussian. We derive the closed
form of the equilibrium policies under various system param-
eters. Thus, this paper provides a two-way (and thus a decen-
tralized) generalization, in the sense that there exists a team of
encoders/decoders against a single jammer, of the findings of
[1] where a single encoder/decoder pair is present against a jam-
mer. We also point out that a problem in which a team of agents
plays against another player can lead to subtleties with regard to
existence of equilibria (even for finite games) that do not arise
when a single agent plays against another one, as demonstrated
in [36]. Such a setup is precisely what is studied in this paper.
Finally, we note that the work presented in [7] and [13] con-
sider aspects related to our jamming problem, though in a quite
different channel coding context.

The nature of two-way channels adds significant complex-
ity to the problem. The correlation between the noise signals
of each channel direction requires special analysis in different
situations, and ultimately results in different jamming policies
depending on the noise correlation and variance values. Finding
the equilibrium jamming policy amounts to solving for the fixed
point of a best response function involving multiple variables.
Furthermore, we investigate the optimal power allocation the
jammer can employ for each channel direction under a given
overall budget; this problem has no counterpart in the one-way
setup of [1].

The rest of this paper is organized as follows. In Section II,
we formulate the problem. In Section III-A, we examine the
common setup for the two-way channel noise variables and de-
rive full closed form solutions for the equilibrium policies. In
Section III-B, we analyze using a slightly different approach a

Fig. 1. System diagram of a two-way source-channel system with an
intelligent jammer.

special “degenerate” case under which the noise variables coin-
cide in each channel direction. We compare the results to previ-
ous work and provide a qualitative analysis in Section III-C. In
Section III-D, we investigate the optimal power allocation lev-
els when the jammer is allowed to choose its power con-
straints subject to an overall budget. Two examples are shown in
Section IV and concluding remarks are drawn in Section V. All
proofs are presented in the Appendix section.

II. PROBLEM SETUP

Consider two terminals (decision makers) T1 and T2 attempt-
ing to concurrently exchange Gaussian independent source sig-
nals U1 and U2 , respectively, where Ui ∼ N (0, 1) has zero
mean and unit variance for i = 1, 2, across a two-way additive
Gaussian noise channel as depicted in Fig. 1. More specifically,
each terminal Ti observes signal Ui and uses transmitter policy
γi : R → R to generate signal Xi subject to the power constraint

E[(γi(Ui))2 ] ≤ ci, i = 1, 2. (1)

The two-way channel inputs are X1 ,X2 and its outputs are

Yi = X1 + X2 + Zi, i = 1, 2 (2)

where Z1 and Z2 are Gaussian random variables [which are
independent of (U1 , U2)] with zero mean and covariance matrix

Σ =

(
E[Z2

1 ] E[Z1Z2 ]
E[Z2Z1 ] E[Z2

2 ]

)
=
(

ζ1 ζ1,2
ζ1,2 ζ2

)
(3)

where ζ1,2 takes values in [−(ζ1ζ2)
1
2 , (ζ1ζ2)

1
2 ].

We furthermore assume the existence of a third party, the jam-
mer. The latter taps the channel in both directions and captures
signals Y1 and Y2 ; in return, it sends an adversarial signal νi

to each terminal Ti using the jamming policy νi = βi(y1 , y2),
i = 1, 2, where each βi is in general a random mapping. Let M
denote the set of the pairs (μ1 , μ2), where μi is the probabil-
ity measure associated with jamming signal νi under the power
constraint

E[ν2
i ] ≤ ki, i = 1, 2. (4)

Terminal Ti then receives signal Qi = Yi + νi , which it uses
together with side information Xi (i.e., its own signal sent to
Terminal Tj ) to reconstruct Uj via Ûj under decoding policy
δi : R × R :→ R, i �= j, i, j = 1, 2. We will refer to the channel
Tj → Ti as channel i throughout this paper.
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The average MSE of the system is denoted by R(γ1 , γ2 ,
δ1 , δ2 , μ1 , μ2) and calculated as

1
2

2∑
i=1

(∫ ∞

−∞
E[(Ûi − Ui)2 |νi ]dμi(νi)

)
. (5)

Let Γi
t ,Γ

i
r be the set of admissible (as specified earlier) trans-

mitter and receiver policies for terminal Ti , i = 1, 2. Naturally,
the objective of terminals T1 and T2 is to choose their encod-
ing/decoding policies so that the system MSE is minimized,
while the jammer aims at designing its policies in order to max-
imize MSE.

Definition 2.1: A policy tuple (γ∗
1 , γ

∗
2 , δ

∗
1 , δ

∗
2 , μ

∗
1 , μ

∗
2) is a

Nash equilibrium if

R(γ∗
1 , γ

∗
2 , δ

∗
1 , δ

∗
2 , μ1 , μ2) ≤ R(γ∗

1 , γ
∗
2 , δ

∗
1 , δ

∗
2 , μ

∗
1 , μ

∗
2)

≤ R(γ1 , γ2 , δ1 , δ2 , μ
∗
1 , μ

∗
2) (6)

∀γi ∈ Γi
t , δi ∈ Γi

r , i = 1, 2, (μ1 , μ2) ∈ M.
We will separately consider a special case of this problem,

which can be viewed as a degenerate case: the case when the
same noise variable affects both the channel directions, i.e.,
Z1 = Z2 (almost surely). This yields that Y1 = Y2 and the jam-
mer sees two identical signals. We first consider the nondegen-
erate case, where the elements of the channel noise covariance
matrix Σ are not all identical.

For certain power regions, the problem becomes uninterest-
ing in the sense that the jammer can employ a linear policy
βi(y1 , y2) = ai,iyi + ai,j yj that fully cancels the signal at the
terminal. If ai,i + ai,j = −1, then we have

νi = βi(y1 , y2) = ai,iyi + ai,j yj (7)

= (ai,i + ai,j )(X1 + X2) + ai,iZi + ai,jZj (8)

where i �= j. Then, we have

Qi = Yi + νi

= (1 + ai,i + ai,j )(X1 + X2) + (1 + ai,i)Zi + ai,jZj

= (1 + ai,i)Zi + ai,jZj .

Thus, the signal Qi received at the terminal is pure noise and
the MSE is maximized at 1, irrespective of the transmitter and
receiver policies. We next determine the minimum power level
ki , denoted by k̃i , that admits a linear jamming policy with
ai,i + ai,j = −1. To this end, for a linear jamming policy we
have

E[ν2
i ] = a2

i,i(C + ζi) + 2ai,iai,j (C + ζ1,2) + a2
i,j (C + ζj )

where C = c1 + c2 . Setting ai,j = −1 − ai,i and E[ν2
i ] = ki ,

we have

a2
i,i(ζi + ζj − 2ζ1,2) + 2ai,i(ζj − ζ1,2) + (C + ζj − ki) = 0.

The lowest ki value for which this equation (which is quadratic
in ai,i) admits a real solution is when the discriminant is equal
to zero. Hence

k̃i = C +
ζ1ζ2 − ζ2

1,2

ζ1 + ζ2 − 2ζ1,2
, i = 1, 2 (9)

TABLE I
NOTATION REFERENCE TABLE

with corresponding jamming coefficients

ai,i = − ζj − ζ1,2

ζ1 + ζ2 − 2ζ1,2
, ai,j = − ζi − ζ1,2

ζ1 + ζ2 − 2ζ1,2
. (10)

Thus, for each i = 1, 2, we divide our analysis into the regions

Ri
1 =

{
ki ≥ C +

ζ1ζ2 − ζ2
1,2

ζ1 + ζ2 − 2ζ1,2

}
(11)

Ri
2 =

{
ki < C +

ζ1ζ2 − ζ2
1,2

ζ1 + ζ2 − 2ζ1,2

}
. (12)

In region Ri
1 , there is no interesting problem to consider for

channel i as the jammer can simply employ the policy in (10)
regardless of the encoding/decoding policy. Furthermore, the
region R1

1 does not affect the region R2
2 ; hence, there can be

a nontrivial problem to consider along channel 2, even if the
problem along channel 1 is trivial or vice versa.

Remark 2.1: Note that we do not assume linear/affine poli-
cies in region Ri

2 a priori. In conducting our analysis, we con-
sider any admissible policy and linear/affine policies arise nat-
urally as the optimal policies.

Remark 2.2: Note that we chose the two-way channel to be
symmetric in X1 ,X2 , but this is not required. The problem can
be formulated for a general channel of the form Yi = ei,1X1 +
ei,2X2 + Zi . However, this will significantly complicate the
already elaborate expressions making the problem unnecessarily
tedious.

We conclude this section by referring to Table I, which pro-
vides a summary of all the main variables used in this paper.
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TABLE II
JAMMER COEFFICIENTS FOR DIFFERENT RELATIONSHIPS BETWEEN THE NOISE VARIANCE AND COVARIANCE

III. MAIN RESULTS

A. Equilibrium Policies in the Nondegenerate Case

We consider a system where (k1 , k2) ∈ R1
2 × R2

2 . If either ki

were to belong to the Ri
1 region, then the jammer can just send

νi according to the policy described in (10), and the transmitter
and receiver policies are irrelevant. Define

ω = C(ζ1 + ζ2 − 2ζ1,2) + ζ1ζ2 − ζ2
1,2 . (13)

We then have the following theorem.
Theorem 3.1: Fix (k1 , k2) ∈ R1

2 × R2
2 .

1) There exist four saddle-point solutions (γ∗
1 , γ

∗
2 , δ

∗
1 , δ

∗
2 ,

μ∗
1 , μ

∗
2) depending on whether the transmitter uses

√
ci

or −√
ci . Assuming both transmitters use the positive

amplification, the equilibrium policies for the system are
given by

γ∗
i (ui) =

√
ciui (14)

δ∗i (qi, ui) = αi(qi − (1 + a∗
i,i + a∗

i,j )
√

ciui) (15)

β∗
i (y1 , y2) = a∗

i,iyi + a∗
i,j yj + ηi (16)

where ηi ∼ N (0, b∗i ) is a Gaussian signal with zero mean
and variance b∗i that is independent of the system signals

αi =
√

cj (1 + a∗
i,i + a∗

i,j )
G

G = (1 + a∗
i,i + a∗

i,j )
2cj + (1 + a∗

i,i)
2ζi + (a∗

i,j )
2ζj

+ (1 + a∗
i,i)(a

∗
i,j )ζ1,2 + b∗i (17)

and the coefficients a∗
i,i , a

∗
i,j , b

∗
i are detailed in Table II,

depending on the relationship between ζi and ζ1,2 .
2) Furthermore, the zero-sum Nash equilibria are essen-

tially unique up to the changes of the signs of the en-
coding/decoding coefficients.

Proof: The proof is presented in Appendix A. �

B. Equilibrium Policies in the Degenerate Case

We next consider the degenerate case of having identical
noise signals in both the channel directions (Z1 = Z2). In this
case, Y1 and Y2 are the same signal and hence the jammer only
has access to one unique signal. To address this scenario, we
consider the modified problem where the jamming signal is
given by νi = βi(yi), that is the jammer makes no use of yj .
Again, βi is in general a random mapping.

We must redefine our regions of interest since the game may
become uninteresting in the sense that the signal is fully can-
celled at the receiver when βi(yi) = −yi ; the lowest power
constraint, which admits this policy is ki = C + ζi . Therefore,
defining the regions

R̃i
1 = {ki ≥ C + ζi} (18)

R̃i
2 = {ki < C + ζi} (19)

we obtain the following result.
Theorem 3.2: Fix (k1 , k2) ∈ R̃1

2 × R̃2
2 and assume that the

jammer only has access to signal yi to jam channel i. Then, there
exist four saddle-point solutions (γ∗

1 , γ
∗
2 , δ

∗
1 , δ

∗
2 , μ

∗
1 , μ

∗
2) depend-

ing on whether the transmitters use ±√
ci . If the transmitters

use positive amplification, the equilibrium policies are

γ∗
i (ui) =

√
ciui (20)

β∗
i (yi) = a∗

i yi + ηi (21)

δ∗i (qi, ui) =
√

cj

cj + ζi − a∗
i ci

(qi − (1 + a∗
i )(

√
ciui)) (22)

a∗
i = − ki

C + ζi
ηi ∼ N

(
0,

(
1 − ki

C + ζi

)
ki

)
.

(23)

Furthermore, when the jammer is given access to only signal yi

to jam channel i, the zero-sum Nash equilibria are essentially
unique up to change in sign of the encoding/decoding coeffi-
cients.

Proof: The proof follows a similar approach as the one for
the nondegenerate case and is presented in Appendix B. �

Remark 3.1: Given access to only one signal, the jammer’s
optimal policy consists of sending β∗(y) = −( ki

C +ζi
)y + ηi .

However, in the degenerate case since the jammer has ac-
cess to the same signal (Y1 = Y2), any policy of the form
βi(y1 , y2) = ai,1y1 + ai,2y2 + ηi , which satisfies ai,1 + ai,2 =
−( ki

C +ζi
) will indeed be an equilibrium policy. We can then see

that there is actually an infinite number of equilibrium jamming
policies, which produce the same output signal νi .

C. Discussion

Let us consider a special case with the parameters c2 =
0, ζ1 → ∞, ζ1,2 = 0. These values correspond to shutting down
the channel in the direction T2 → T1 , reducing the system to
a one-way system going from T1 to T2 , which falls under the
analysis considered in [1]. Note that the notation used in each
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paper is different, but each variable in [1] has a counterpart in
this paper. Staying consistent with our notation, we next show
that our results agree with the results of [1]. Under our analysis,
the boundary between the R2

1 and R2
2 regions now becomes

C +
ζ1ζ2 − ζ2

1,2

ζ1 + ζ2 − 2ζ1,2

∣∣∣∣∣
ζ1 →∞,ζ1 , 2 =0,c2 =0

= c1 + ζ2

which is identical to the definition of the R2 region in [1] under
the following notational equivalences k2 = k2 , c

2 = c1 , ξ1 =
ζ2 , σ = 0, where the left-hand side (LHS) terms in each identity
are from [1]. The results in [1] state that for a k2 (i.e., k2 in [1])
value in the R2

2 (i.e., R2 in [1]) region, the equilibrium jamming
policy is given by

ν2 = −
(

k2

c1 + ζ2

)
y2 + η2

where η2 is given by (23) using i = 2 and C = c1 , while our
results state that the policy will be of the form β∗

2(y1 , y2) =
a2,1y1 + a2,2y2 where the values for a2,1 , a2,2 are specified in
the first row of Table II. These two results may at first not seem
to agree: one is a combination of a negative feedback term and
Gaussian noise, while the other is a linear combination of the
two received signals. However, setting ζ1 → ∞ yields

lim
ζ1 →∞

a2,2 = lim
ζ1 →∞

(
−k2ω

1
2 + (c1)(k2(c1 + ζ2 − k2))

1
2

(c1 + ζ2)ω
1
2

)

= − k2

c1 + ζ2

and transforms signal Y1 into pure noise. Thus, in the jamming
policy, the term a2,1Y1 acts as a zero mean Gaussian random
variable (which is independent of the other system signals) with
variance given by

lim
ζ1 →∞

E[(a2,1Y1)2 ] = lim
ζ1 →∞

(
k2(c1 + ζ2 − k2)

c1(ζ2 + ζ1) + ζ1ζ2

)
(c1 + ζ1)

= k2

(
1 − k2

c1 + ζ2

)
.

Therefore, we conclude that the two results indeed coincide.
In general, when faced with a Gaussian system, be it one-way

or two-way, there are certain traits that appear in the jamming
policies. There is an R1-type region where the jammer has too
much power and can fully cancel the transmitted signal before it
reaches the receiver, making the game trivial. When the jammer
cannot fully cancel the signal, its equilibrium policies are either
linear or affine by combining a linear policy with Gaussian
noise. For a two-way channel, the choice of linear or affine in
the jamming policy is determined by the covariance matrix of
the noise variables, Σ. If ζi �= ζ1,2 , then a linear policy is used. If
ζi = ζ1,2 (in either the degenerate or nondegenerate case), then
an affine policy is used. The reasoning for this involves an in
depth discussion of the best response function used in the proof
of Theorem 3.1. In essence, if the function admits a fixed point
then the policy is linear, and if it does not admit a fixed point
then an affine policy is used.

D. Jamming Power Allocation

Theorems 3.1 and 3.2 fully describe the problem when the
jamming power levels k1 and k2 are fixed. Let us consider
a modified problem. Assume that the covariance matrix Σ is
fixed, and fix the transmitter power levels c1 , c2 . Maintain the
constraint (4), but now allow

k1 + k2 ≤ K (24)

the jammer then has an overall budget that it can allocate to
either channel as it sees fit.

From our earlier results in Section III, we know that for some
choice of k1 , k2 there exists a unique (up to change in sign of the
encoding policy) Nash equilibrium. One can produce a function
f(k1 , k2) that outputs the equilibrium MSE for these power
constraints. If we call channel i as the channel from terminal Tj

to Ti , we can see that the jamming signal vj plays no role in the
jamming of channel i. Then, we have

f(k1 , k2) =
1
2

(g1(k1) + g2(k2)) (25)

where gi is the distortion on channel i. Note that if ki ∈ Ri
1 , then

gi(ki) = 1. Furthermore, for ki ∈ Ri
2 we can easily calculate gi

as

gi(ki) = E[(αiQ̃i − Uj )2 ] (26)

where Q̃i = Qi − (1 + ai,i + ai,j )Xi , that is the received
signal with Xi removed. (See Appendix A for more discussion
on Q̃i .)

We can then formulate a constrained optimization problem
(OP-1)

max f(k1 , k2) s.t. h1(k1 , k2) = k1 ≥ 0

h2(k1 , k2) = k2 ≥ 0

h3(k1 , k2) = k1 + k2 − K ≤ 0.

Note that as long as K > 0, all points are regular. Let κ =
(k1 , k2) and ξ ∈ R3 .

Observe that an optimal solution exists due to the continu-
ity of f in k1 , k2 and the compactness of the set of feasible
allocations. By [38, Th. 1, p. 249], it follows that a variational
stationarity condition through the introduction of a Lagrange
multiplier would need to be satisfied at an optimal solution. The
Karush–Kuhn–Tucker (KKT) conditions then become

∇L(κ, ξ) =

(
∂

∂k1
(f(κ)) + ξ1 + ξ3

∂
∂k2

(f(κ)) + ξ2 + ξ3

)
=

(
0
0

)

ξ1k1 = 0 ξ2k2 = 0 ξ3(k1 + k2 − K) = 0.

Therefore, we know that some optimal solution exists, and we
have a necessary condition provided by the KKT conditions.
The general form of our proofs will be going about finding the
unique pair (k1 , k2), which satisfies the KKT conditions, and
hence must be the optimal solution.

Note that two cases in particular are of interest, the degenerate
case and the uncorrelated case. In both of these cases, g1 and g2
are the same function since both channels use the same jamming
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policy from Table II. This introduces a symmetry to the problem,
which results in an analytical solution for the KKT conditions.

Theorem 3.3: In the degenerate case of Z1 = Z2 (where
we have ζ1 = ζ2 = ζ), the jammer’s optimal power allocation is
as follows. For i, j = 1, 2 with i �= j, let

K∗
i =

(C + ζ)
(
(cj )

1
2 (ci + ζ) − (ci)

1
2 (cj + ζ)

)
(cj )

3
2

(27)

k̂i =
(cj )

3
2 (K∗

i + K)
(ci)

3
2 + (cj )

3
2

. (28)

If K < |mini=1,2 K∗
i |, then the allocation is given by

(k1 , k2) =

{
(K, 0) if c1(c2 + ζ)2 ≤ c2(c1 + ζ)2

(0,K) if c1(c2 + ζ)2 > c2(c1 + ζ)2 .

If K ≥ |mini=1,2 K∗
i |, the jammer allocates according to

(k1 , k2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
min(k̂1 , C + ζ),K − k1

)
if c1(c2 + ζ)2 ≤ c2(c1 + ζ)2(
K − k2 ,min(k̂2 , C + ζ2)

)
if c1(c2 + ζ)2 > c2(c1 + ζ)2

.

Proof: The proof is given in Appendix C. �
Theorem 3.4: For the uncorrelated noise case (ζ1,2 = 0),

the jammer allocates as follows.

If K < 2
(
C + ζ1 ζ2

ζ1 +ζ2

)
, the optimal allocation is the solution

to the equation

c2(C + ζ1)2 (−2ζ1ω
1
2 )k1 + (ω − ζ2

1 )x1 + ζ1(ω)
1
2 (C + ζ1)

x1(λ1,4k1 + 2λ1,5x1 + λ1,6)2

= c1(C + ζ2)2

× (−2ζ2ω
1
2 )k2 + (ω − ζ2

2 )x2 + ζ2(ω)
1
2 (C + ζ2)

x2(λ2,4k2 + 2λ2,5x2 + λ6)2 (29)

xi = (ki(C + ζi − ki)
1
2

λi,4 = ζiC
2 + ζj (C + ζi)2 − ζiω + cj (ζ2

i − ω)

λi,5 = ζici(ω)
1
2 λi,6 = (ζi + cj )(C + ζi)ω.

If K ≥ 2
(
C + ζ1 ζ2

ζ1 +ζ2

)
, the optimal allocation is ki = C +

ζ1 ζ2
ζ1 +ζ2

, i = 1, 2 so that both channels are in the Ri
1 region and

there is no signal reaching either terminal.
Proof: The proof is given in Appendix D. �

Furthermore, the power allocation, which is the optimal so-
lution to OP-1 is actually itself a Nash equilibrium, in that both
the jammer and transmitter/receiver are best responding.

Theorem 3.5: Fix a correlation matrix Σ, transmitter power
constraints c1 , c2 , and some overall jamming power budget
K. Assume that there exists a power allocation κ∗ = (k∗

1 , k
∗
2)

that solves OP-1. Let γ∗ = (γ∗
1 , γ

∗
2), δ

∗ = (δ∗1 , δ
∗
2), and β∗ =

(β∗
1 , β

∗
2) be the transmission, receiving, and jamming policies

determined by Theorem 3.1 (or Theorem 3.2 if the system is
degenerate) for this set of power constraints (c1 , c2 , k

∗
1 , k

∗
2).

Fig. 2. System wide MSE for Example 1, as we vary k1 and let k2 =
K − k1 .

Fig. 3. Gradients of the MSE along channels 1 and 2, as we vary k1
and let k2 = K − K1 . Gradients intersect at peak system wide power
allocation.

Then, these policies form a Nash equilibrium overall trans-
mission policies γ = (γ1 , γ2), which satisfy E[γi(Ui)2 ] ≤
ci and all jamming policies β = (β1 , β2), which satisfy
E(β1(Y1 , Y2)2) + E(β2(Y1 , Y2)2) ≤ K

Proof: The proof is given in Appendix E. �

IV. EXAMPLES

A. Example 1

Consider a system with parameters c1 = 3, c2 = 5,K =
5, ζ1 = ζ2 = ζ1,2 = 1. Since this choice of parameters yield
the degenerate case, we use Theorem 3.3 to determine the
power allocation and Theorem 3.2 to find the policy struc-
tures. We have that K∗

1 = −1.1656 and K∗
2 = 2.5081. We also

have that K > |mini=1,2 K∗
i |; hence the jammer will employ a

power splitting policy between the two channels. Furthermore,
the following inequalities hold: c1(c2 + ζ)2 > c2(c1 + ζ)2 and
k̂2 = 2.3823 < C + ζ. Thus, the power allocation is given by
(k1 , k2) = (2.6177, 2.3823). This can be seen in Fig. 2, which
displays the system wide MSE for different values of k1 . The
peak occurs at k1 = 2.6177. In Fig. 3, we plot the gradients
of the MSE along each channel as we vary k1 . The power
allocation, which causes the gradients to intersect is exactly the
one resulting in the highest system wide MSE, as inferred in the
proof of Theorem 3.3 found in Appendix C.

With the determined power allocation, we obtain via
Theorem 3.2 the following transmitter, receiver, and jammer
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Fig. 4. System wide MSE for Example 2, as we vary k1 and let k2 =
K − k1 .

Fig. 5. Gradients of the MSE along channels 1 and 2, as we vary k1
and let k2 = K − K1 . Gradients intersect at peak system wide power
allocation.

policies:

γ1(u1) =
√

3u1 δ1(q1 , u1)

= 0.325(q1 − (0.71)(
√

3u1))

β1(y1 , y2) = a1,1y1 + a1,2y2 + η1

a1,1 + a1,2 = − (0.29) η1 ∼ N(0, 1.856)

γ2(u2) =
√

5u2 δ2(q2 , u2)

= 0.325(q2 − (0.735)(
√

5u2))

β2(y1 , y2) = a2,1y1 + a2,2y2 + η2

a2,1 + a2,2 = −0.265 η2 ∼ N(0, 1.752).

B. Example 2

Consider now an uncorrelated system with parameters c1 =
1, c2 = 4,K = 11, ζ1 = 7, ζ2 = 10, ζ1,2 = 0. This system is
solved using Theorem 3.4. We have that K < 2(C + ζ1 ζ2

ζ1 +ζ2
);

thus the optimal jammer power allocation is also to split power
between the two channels in order to solve (29). While this
equation is difficult to solve directly, using a bisection method
the allocation is approximately (k1 , k2) = (7.98, 3.12). This al-
location is seen in Fig. 4 where the system wide MSE peaks, it
also corresponds to the allocation, which equates the gradients
along the two channels seen in Fig. 5. We then calculate the
transmitter, receiver, and jammer policies using Theorem 3.1.

Since the correlation is zero, on both channels the jammer
will use the policy outlined in the first row of Table II. We have

γ1(u1) = u1 δ1(q1 , u1) = 0.0346(q1 − (0.0694)u1)

β1(y1 , y2) = −0.4757y1 − 0.4549y2

γ2(u2) = 2u2 δ2(q2 , u2) = 0.0431(q2 − 0.9536u2)

β2(y1 , y2) = −0.4830y1 − 0.0402y2 .

V. CONCLUDING REMARKS

The results established in this paper provide a full set of
solutions for the two-way communication system presented
in Fig. 1, with independent Gaussian sources and arbitrarily
correlated Gaussian noise signals. The results in many ways
provide a natural extension of [1] to a two-way system, main-
taining the existence of a Nash equilibrium and the optimality
of linear/affine policies. In the special degenerate case, there is
actually an infinite set of equilibrium jamming policies due to
signals Y1 and Y2 being identical. There are a number of in-
tricacies for the two-way system that make the analysis more
complicated than the one-way case. The correlation between
the noise signals now plays a pertinent role in determining the
jamming policy.

We note that the assumption in this paper that the encoders
have access to Gaussian data that are not dependent is essential,
for the counterexamples presented in both [16, Ch. 11] and [30]
imply that when noisy side information is available at the de-
coder, the optimal encoder may not be linear through a Gaussian
channel, which would precisely be the setup in the context of
this paper.

Extensions of this paper include examining correlation be-
tween the sources, which would alter how terminal Ti decides
to decode with side information Xi , as well as considering non-
Gaussian noise and source variables. Another worthwhile future
direction is to investigate the vector (finite-time horizon) setup
of the problem in the sense that the two-way channel is time
correlated and each user utilizes the channel multiple times (via
a block encoding operation) to convey its source to the other
user, hence necessitating it to interactively adapt its codeword
to the previously received signals.

APPENDIX A
PROOF OF THEOREM 3.1

We proceed in two steps by separately validating the right-
hand side (RHS) and the LHS inequalities of (6) under the stated
policies in (14)–(16). We then examine the uniqueness of the
equilibrium.

A. RHS Inequality

Assume that the jammer is using an affine policy of the
form (16), not necessarily with the assumed equilibrium val-
ues (a∗

i,i , a
∗
i,j , b

∗
i ), but any general values (ai,i , ai,j , bi). We can

view the two-way system as two separate one-way channels with
each channel going from transmitter γj (·) to receiver δi(·) as
displayed in Fig. 6. In the figure, γ̃j (uj ) = (1 + ai,i +
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Fig. 6. Equivalent one-way Gaussian test system in the direction Tj →
Ti for nondegenerate case.

ai,j )γj (uj ), as the jammer is amplifying the signal Xj by
sending back a scaled version of Yi, Yj to the channel. Then,
the power constraint on the transmitter is E[γ̃i(ui)2 ] ≤ ci(1 +
ai,i + ai,j )2 . Note that the receiver has side information about
the signal Xi since terminal Ti is composed of both the trans-
mitter γi and receiver δi (see Fig. 1). This setup has a classical
solution building on the data-processing inequality of informa-
tion theory: the transmitter will amplify the signal as much as
possible and the receiver will use the minimal MSE estimator
δ∗i (qi, ui) = E[Uj |Qi = qi, Ui = ui ] (see [16, Ch. 11], or [17]–
[20]). Thus, γ̃∗

i (ui) =
√

ci(1 + ai,i + ai,j )ui , which yields that
γ∗

i (ui) =
√

ciui . Note that γ∗
i (ui) = −√

ciui is also a valid
solution; hence there are four possible equilibrium policies as
stated in the theorem. We determine the best receiver policy
when both transmitters use positive amplification (the policies
for the other equilibria can be found by simply changing the
sign of

√
ci in the transmitter and receiver functions). Writing

Qi = Q̃i + (1 + ai,i + ai,j )
√

ciUi and noting that Ui is inde-
pendent of Q̃i and Uj , it can be shown that the receiver policy
satisfies

δ∗i (qi, ui) =
E[Uj Q̃i ]
E[Q̃2

i ]
q̃i = αiq̃i

where αi is given in (17). This verifies the RHS inequality
of (6).

B. LHS Inequality

Assuming the policies in (14) and (15) at each terminal, again
for some general (ai,i , ai,j , bi) and not the assumed equilib-
rium values, the maximization problem faced by the jammer is
given by

max(μ1 ,μ2 )∈M
1
2

(
2∑

i=1

∫ ∞

−∞
E

[(
αiQ̃i − Uj

)2
∣∣∣∣ νi

]
dμi(νi)

)
.

(30)

Setting

Q̃i = Wi + νi (31)

Wi = Xj + Zi − (ai,i + ai,j )Xi (32)

we expand the ith MSE term in the abovementioned sum as
follows:∫ ∞

−∞
E

[(
αiQ̃i − Uj

)2
∣∣∣∣ νi

]
dμi(νi)

= EY1 ,Y2

[∫ ∞

−∞
E

[(
αiQ̃i − Uj

)2
∣∣∣∣ νi, y1 , y2

]
dμi(νi |y1 , y2)

]

= α2
i (ζi + (ai,i + ai,j )2ci) + (αi

√
cj − 1)2+

EY1 ,Y2

[∫ ∞

−∞
α2

i ν
2
i + 2νiE[α2

i Wi − αiUj |y1 , y2 ]

× dμi(νi |y1 , y2)
]

.

It can be shown that

E[α2
i Wi − αiUj |y1 , y2 ] = πi(y1 , y2)

where

ρi,i = αi [cj (ζi + ζj − 2ζ1,2) + ci(ζi − ζ1,2 − (ζj − ζ1,2)

× (ai,i + ai,j )) + ζ1ζ2 − ζ2
1,2 ] − (ζj − ζ1,2)

√
cj

(33)

ρi,j = − αi(ζi − ζ1,2)ci(1 + ai,i + ai,j ) − (ζi − ζ1,2)
√

cj

(34)

πi(y1 , y2) =
αi

ω
(ρi,iyi + ρi,j yj ) . (35)

Ignoring the terms, which are independent of νi , we can focus
on determining

J = max
μ1 ,μ2

2∑
i=1

E[α2
i ν

2
i ] + 2E[νiπi(Y1 , Y2)]. (36)

Applying the Cauchy–Schwarz inequality and the power con-
straint (4), we have

J ≤
2∑

i=1

α2
i ki + 2(ki)

1
2 E[πi(Y1 , Y2)2 ]

1
2 . (37)

From here we break our analysis into two parts.
Case 1: ζi �= ζ1,2

We have that E[πi(Y1 , Y2)2 ]
1
2 �= 0; thus we can uniquely

achieve the upper bound with the linear jammer policy

νi = β∗
i (y1 , y2) =

(ki)
1
2

E[πi(Y1 , Y2)2 ]
1
2
πi(y1 , y2)

=
(ki)

1
2 (pi,iyi + pi,j yj )

(C(pi,i + pi,j )2 + p2
i,iζi + p2

i,j ζj + 2ρi,iρi,j ζ1,2)
1
2
.

(38)

Therefore, the best response jamming policy to transmission
and receiving policies (14) and (15) is linear, yet these policies
were constructed when faced with an affine (linear if bi = 0)
jamming policy. Setting

λi =
(

ki

E[πi(Y1 , Y2)2 ]

) 1
2

(39)
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for each linear jamming policy with coefficients (ai,i , ai,j ), we
use (38) to define the best response mapping as follows:

T

(
ai,i

ai,j

)

→
(

(λi)ρi,i

(λi)ρi,j

)
. (40)

The equilibrium policy then has coefficients (a∗
i,i , a

∗
i,j ), which

are the fixed point of this mapping and satisfy (4) for a given
ki . However, directly finding this fixed point is computationally
difficult. We instead consider an equivalent set of conditions,
which can be proved via a geometric approach.

Proposition A.1: A sufficient and necessary set of condi-
tions for equilibria are

ai,iρi,j = ai,j ρi,i (41)

E[(ai,iYi + ai,j Yj )2 ] = ki (42)

ai,i

|ai,i | =
ρi,i

|ρi,i | (43)

ai,j

|ai,j | =
ρi,j

|ρi,j | . (44)

Proof: Assume that coefficients ai,i and ai,j are equilibrium
policies. Then, via being a fixed point of T , we have that ai,i =
(λi)ρi,i and ai,j = (λi)ρi,j , thus

ai,iρi,j = λiρi,iρi,j = ai,j ρi,i

and hence condition (41) is necessary. Also

E[(ai,iYi + ai,j Yj )2 ] = λ2
i E[πi(Y1 , Y2)2 ] = ki

and thus condition (42) is also necessary. Furthermore, we have

ai,i

|ai,i | =
(

λi

|λi |
)

ρi,i

|ρi,i | =
ρi,i

|ρi,i |
since λi > 0; thus condition (43) is necessary as well. A similar
argument shows that condition (44) is necessary. This concludes
one direction of the proof.

We next show the reverse direction, by proving that any pair
of coefficients (ai,i , ai,j ) satisfying conditions (41)–(44), forms
a fixed point of T ; therefore ai,i and ai,j are equilibrium poli-
cies. By conditions (43) and (44) we have that (ai,i , ai,j ) and
T (ai,i , ai,j ) must exist in the same quadrant on the Cartesian
plane. Combining this fact with (41) yields that they both have
the same polar angle. Finally, condition (42) means that they
both live on the same ellipse. Therefore, points (ai,i , ai,j ) and
T (ai,i , ai,j ) live on the same ellipse, in the same quadrant, and
have the same polar angle; thus they form an identical point and
hence the conditions are sufficient. �

Lemma A.1: The ellipse described by

(C + ζi)(ai,i + 0.5)2 + 2ai,j (ai,i + 0.5)(C + ζ1,2)

+ (C + ζ2)a2
i,j =

C + ζi

4
(45)

satisfies condition (41).
Lemma A.2: The ellipse defined by

a2
i,i(C + ζi) + 2ai,iai,j (C + ζ1,2) + a2

i,j (C + ζj ) = ki

satisfies condition (42).

Intersecting these two ellipses gives two possible solutions,
one in each half plane. We can then use the remaining conditions
(43) and (44) to find the only sufficient and necessary solution,
which yields the first two rows of Table II.

Case 2: ζi = ζ1,2
If ζi = ζ1,2 , then ρi,j = 0 for any affine jamming policy.

Thus, E[πi(Y1 , Y2)2 ] �= 0 is not guaranteed. Revisiting (36), if
there were a choice of ai,i , ai,j , bi , which forced ρi,i = 0, then
J = maxμ1 ,μ2

∑2
i=1 α2

i E[ν2
i ] ≤ α2

i ki , which is clearly maxi-
mized by a policy with variance ki . Therefore, the equilibrium
policy when ζi = ζ1,2 must force ρi,i = 0 and achieve variance
ki , which is the policy given in the third row of Table II.

C. Uniqueness of the Equilibrium Policies

Let the presented equilibrium be referred to as

Λ∗ = (γ∗
1 , γ

∗
2 , β

∗
1 , β

∗
2 , δ

∗
1 , δ

∗
2)

and denote any other solution by

Λ = (γ1 , γ2 , β1 , β2 , δ1 , δ2).

If Λ is also a Nash equilibrium, then the ordered inter-
changeability property of saddle points in zero-sum games [37,
Corollary 2.1, Property 4.1, p. 177] would require that both

(γ∗
1 , γ

∗
2 , β1 , β2 , δ

∗
1 , δ

∗
2) (46)

(γ1 , γ2 , β
∗
1 , β

∗
2 , δ1 , δ2) (47)

are also Nash equilibria (note that the fact that there are multiple
encoders as a team does not violate the rectangularity condition
of the policies, that is the policy sets do not depend on the
realized policies of the opposing player, the jammer).

Considering the first candidate solution (46), when faced with
γ∗

i , δ
∗
i , an optimal jamming solution must achieve the maxi-

mum of (36). When ζi �= ζ1,2 , the upper bound of the Cauchy–
Schwarz inequality can only be achieved when νi is linearly
dependent on πi(Y1 , Y2) and has variance ki , of which there are
following two possibilities:

±
(

ki

E[πi(Y1 , Y2)2 ]

) 1
2

πi(y1 , y2).

However, the negative option would result in a negative second
term in (36), lowering the overall result. Therefore, β∗

i is the
only policy to achieve the upper bound in (36).

When ζi = ζ1,2 , there is only one policy that can force
ρi,i = 0 and achieve variance ki . Any other policy has
E[(πi(y1 , y2)2 ] �= 0, forcing the equilibrium policy to be a
scaled version of πi(y1 , y2), which achieves variance ki . Since
ρi,j = 0, there are following two possibilities:

βi(y1 , y2) = ±
(

ki

C + ζi

) 1
2

yi.

The best response mapping (40) simplifies to

T

(
ai,i

ai,j

)
=

⎛
⎝−

(
ki

C +ζi

) 1
2 ai , i

|ai , i |
0

⎞
⎠. (48)
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Fig. 7. Equivalent one-way Gaussian test system in the direction Tj →
Ti for degenerate case.

We see that the best response flips the sign of ai,i ; therefore,
each of these possible policies is the best response of the other
and neither is a fixed point of T .

For the second candidate solution (47), as mentioned in the
theorem, the transmitter can choose ±√

ci and the receiver can
follow suit and both of these policies are optimal with respect
to the jamming policy. Also, the jamming policy only depends
on ci and cj , it is irrelevant to the jammer if the transmitter used
positive or negative amplification. Therefore, there exist four
Nash equilibria, which have the same jamming policy, and have
transmission and receiving policies, which are identical up to
the absolute value of

√
ci . Hence, the equilibrium is essentially

unique.

APPENDIX B
PROOF OF THEOREM 3.2

A. RHS Inequality

Assuming the jammer uses a policy of the form seen in (21),
we can do a similar analysis as before and see that the TWC
systems have two one-way channels— each going from trans-
mitter γj (·) to receiver δi(·). We view the channel as a Gaussian
test channel displayed in Fig. 7.

Then, following the same analysis on this channel we can
show that the transmitter will amplify the signal with either
±√

ci , and the receiver will compute the Bayes estimator with
side information of ui

δi(qi, ui) = E[uj |qi, ui ] =
√

cj

(1 + ai)(cj + ζi) + bi

1+ai

q̃i .

B. LHS Inequality

Assume that the transmitter and receiver are using their equi-

librium policies. Let αi =
√

cj

(1+ai )(cj +ζi )+
b i

1 + a i

. As before, we

consider∫ ∞

−∞
E
[
(αiq̃i − uj )

2
∣∣∣ νi

]
dμi(νi)

= Eyi

[∫ ∞

−∞
(α2

i ν
2
i + 2αiνiE[αi(Xj + Zi − aiXi)

−Uj | yi ])dμi(νi |yi)] + α2
i (cj + ζi + a2

i ci) + −2αi
√

cj + 1.

TABLE III
POSSIBLE CONSTRAINTS THAT YIELD A SOLUTION TO THE KKT CONDITIONS

Setting

πi(yi) =

(
αicj + zi + ciai −

√
cj

C + zi

)
yi = ρiyi. (49)

We can then arrive at an analogous expression (36). Now, similar
to abovementioned Case 2, we have that (a∗

i , b
∗
i ) force ρi = 0

and achieve the power constraint ki , therefore, jamming policy
(21) satisfies the LHS inequality of (6). We can then use the
ordered interchangeability property to show that the solution is
essentially unique, that is, the transmitter can use positive or
negative amplification, which produces four possible solutions.

APPENDIX C
PROOF OF THEOREM 3.3

For the degenerate case, we have that

∂

∂ki
f(κ) =

cj (C + ζi)2

2((cj + ζi)2 + ci(cj + ki + ζi))2 (50)

we now go about solving the KKT conditions. Recall an optimal
solution that exists due to continuity and compactness, and if
we can find a unique pair of (k1 , k2), which satisfies the KKT
conditions, it must be the optimal policy. Since the constraints
are not tight, we will by process of elimination determine which
of the constraints should be treated as tight or not. As we can
see, the derivative is always positive, hence adding more power
to a channel increases the MSE and the constraint k1 + k2 ≤ K
should be tight for an optimal solution. It is not possible for all
the three constraints to be tight simultaneously, hence we really
have three options to consider as outlined in Table III.

When ξ1 = 0, ξ2 = 0, ξ3 �= 0, the KKT condition becomes

∇L(κ, ξ) =

(
∂

∂k1
(f(κ)) + ξ3

∂
∂k2

(f(κ)) + ξ3

)
=

(
0
0

)

the only way that a solution could exist is if

∂

∂k1
(f(κ)) =

∂

∂k2
(f(κ)). (51)

That is, if we could find a power level that makes the partial
derivatives equal.

If ξi �= 0, ξj = 0, in this case we force one of the ki = 0,
which means kj = K. Then, the Lagrangian condition becomes

∇L(κ, ξ) =

(
∂

∂ki
(f(κ)) + ξ3

∂
∂kj

(f(κ)) + ξj + ξ3

)
=

(
0
0

)
.

We must then have

ξ3 = − ∂

∂ki
f(κ) ξj = −

(
∂

∂kj
f(κ) − ∂

∂ki
f(κ)

)
.
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However, ξj must be nonnegative since it is a greater than or
equal constraint in a maximization problem.

On an asymmetrical channel c1 �= c2 , the derivatives in (50)
evaluated at ki = 0 are not equal, one is larger. Moreover, as one
adds more power, the derivative decreases. Therefore, for small
power levels the jammer cannot make the derivatives equal and
supplies all power to the channel with the higher derivative yield-
ing a unique solution to the KKT conditions of either (K, 0) or
(0,K), depending on the system parameters. For higher power
levels, the jammer can make the derivatives equal and supplies
the appropriate power level to each channel to achieve equality
(51). The specific values to achieve these allocations are those
provided in the theorem.

APPENDIX D
PROOF OF THEOREM 3.4

For the uncorrelated case, we have that

∂

∂ki
f(κ) = cjω(C + ζi)2

×
(

(−2ζiω
1
2 )ki + (ω − ζ2

i )xi + ζi(ω)
1
2 (C + ζi)

xi(λi,4ki + 2λi,5xi + λi,6)2

)

(52)

where the various notations are previously described in the the-
orem. We see that evaluated at ki = 0 the derivative is ∞, and
evaluated at ki = K it is some finite positive value. Therefore,
for any power budget K we can find an allocation (k1 , k2) such
that the derivatives are equal, which is exactly the condition for
optimality in the theorem.

APPENDIX E
PROOF OF THEOREM 3.5

Let κ = (k∗
1 , k

∗
2) be the power allocation that maximizes

f(k1 , k2). Let γ = (γ1 , γ2), δ = (δ1 , δ2), and β = (β1 , β2) be
the equilibrium policies determined by Theorem 3.1 (or The-
orem 3.2 if the system is degenerate) for this set of power
constraints. Clearly, if we fix the jamming policy β then γ and
δ satisfy the RHS of inequality (6); therefore we focus on the
LHS of the inequality.

Assume that the transmitter and receiver employ policies γ
and δ designed with respect to (c1 , c2 , k

∗
1 , k

∗
2). Clearly, if the

jammer chooses the allocation (k1 , k2) = (k∗
1 , k

∗
2), any policy,

which is not β will have a lower MSE, since β is the Nash equi-
librium policy for this power allocation as proven previously.

Assume that faced with the fixed policies γ and δ, the jammer
tries to find another allocation (k1 , k2) �= (k∗

1 , k
∗
2) that achieves

a higher MSE. Following the LHS analysis of Appendix A
(or Appendix B), by (37) for a fixed set of transmission and
receiving policies γ and δ, if the jammer has a power allocation
(k1 , k2) then the average MSE is upper bounded by

1
2

(
2∑

i=1

α2
i ki +

√
kiE

[
(πi(y1 , y2))2] 1

2

)
. (53)

Let us now consider the degenerate and uncorrelated cases sepa-
rately. For the degenerate case, γ and δ will force πi(y1 , y2) = 0

and therefore the jammer chooses the allocation that maximizes

α2
1k1 + α2

2k2 . (54)

However, for the degenerate case we have

ai = −
(

k∗
i

C + ζi

)
bi = k∗

i

(
1 − k∗

i

C + ζi

)

αi =
√

ci

(1 + ai)(cj + ζi) + bi

1+ai

=
√

ci(C + ζi)
k∗

i ci + (C + ζi)(cj + ζi)
.

Thus, α2
i is exactly the expression we see for ∂

∂ki
f(κ) in (50) and

(k∗
1 , k

∗
2) satisfy the KKT conditions. Therefore, when (k∗

1 , k
∗
2) =

(K, 0), α1 > α2 , so the optimal solution to (54) is again
(k1 , k2) = (K, 0). Similarly, when (k∗

1 , k
∗
2) = (0,K), α2 > α1

and the optimal solution to (54) is (k1 , k2) = (0,K). Fi-
nally, if α1 = α2 then any allocation is the same under (54),
hence (k1 , k2) = (k∗

1 , k
∗
2) is not outperformed by any other

policy. Therefore, when we design γ and δ with respect to
(c1 , c2 , k

∗
1 , k

∗
2), we see that (k1 , k2) = (k∗

1 , k
∗
2) maximizes (54)

and therefore satisfies the LHS inequality.
For the uncorrelated case, now E[(πi(y1 , y2)2 ]

1
2 �= 0 and (53)

is maximized by the choice of k1 , k2 such that

α2
1 +

1
2

(
E[(π1(y1 , y2)2 ]

k1

) 1
2

= α2
2 +

1
2

(
E[(π2(y1 , y2)2 ]

k2

) 1
2

.

One can see that the LHS and RHS of this equation are symmet-
rical, and it can be shown that expression is the same as ∂

∂ki
f(κ)

given in (52). Therefore, if we design γ and δ with respect to
(c1 , c2 , k

∗
1 , k

∗
2), we see that (k1 , k2) = (k∗

1 , k
∗
2) maximizes (53)

and hence satisfies the LHS inequality.
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